JP4321181B2 - Method for forming an overcoat insulating film containing no chromium - Google Patents
Method for forming an overcoat insulating film containing no chromium Download PDFInfo
- Publication number
- JP4321181B2 JP4321181B2 JP2003300126A JP2003300126A JP4321181B2 JP 4321181 B2 JP4321181 B2 JP 4321181B2 JP 2003300126 A JP2003300126 A JP 2003300126A JP 2003300126 A JP2003300126 A JP 2003300126A JP 4321181 B2 JP4321181 B2 JP 4321181B2
- Authority
- JP
- Japan
- Prior art keywords
- annealing
- chromium
- steel sheet
- coating
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Chemical Treatment Of Metals (AREA)
Description
本発明は、方向性電磁鋼板の絶縁被膜の形成方法に関し、特に、クロムを含まないリン酸塩系のコーティング液を用いた被膜特性と磁気特性の改善効果に優れた上塗絶縁被膜の形成方法に関するものである。 The present invention relates to a method for forming an insulating coating on a grain-oriented electrical steel sheet, and more particularly, to a method for forming a top coating insulating coating excellent in coating characteristics and magnetic properties using a phosphate-based coating liquid not containing chromium. Is.
方向性電磁鋼板は、絶縁性や加工性、防錆性等を付与するために、製品鋼板の表面に被膜処理を施すのが一般的である。かかる表面被膜は、通常、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜と、その上に被成されるリン酸塩系の上塗被膜から構成されている。 The grain-oriented electrical steel sheet is generally subjected to a coating treatment on the surface of the product steel sheet in order to impart insulation, workability, rust prevention, and the like. Such a surface film is usually composed of a base film mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based top coat film formed thereon.
上記表面被膜は、通常、高温で成膜されるが、その被膜の熱膨張率は、鋼板のそれと比較して桁違いに低い。そのため、この熱膨張率の違いに起因して、成膜後の鋼板表面には、引張張力が発生する。この張力は、鉄損を低減する効果があるため、電磁鋼板の表面に形成される被膜は、張力付与効果が大きいものが望まれている。 The surface coating is usually formed at a high temperature, but the thermal expansion coefficient of the coating is much lower than that of the steel plate. Therefore, due to the difference in thermal expansion coefficient, tensile tension is generated on the steel sheet surface after film formation. Since this tension has an effect of reducing iron loss, it is desired that the coating film formed on the surface of the electromagnetic steel sheet has a large tension imparting effect.
上記の諸特性を満たすために、従来から数多くの研究が行われ、種々のコーティング被膜が提案されている。例えば、特許文献1には、仕上焼鈍で鋼板表面に形成されるガラス状被膜の上に、コロイド状シリカと、リン酸アルミニウム、無水クロム酸およびクロム酸塩の1種または2種以上を添加したコーティング液を塗布、焼付けた張力付加表面被膜が、また、特許文献2には、フォルステライト被膜を有する方向性電磁鋼板の上に、コロイド状シリカ、リン酸マグネシウムと無水クロム酸、クロム酸塩、重クロム酸塩のいずれか1種または2種以上とからなるコーティング液を塗布、焼付けた絶縁被膜が提案されている。
In order to satisfy the above characteristics, many studies have been conducted and various coating films have been proposed. For example, in
一方、近年では、廃液処理や作業環境ならびに自然環境に対する配慮などから、クロムや鉛等の有害物質を含まない製品が強く望まれるようになり、方向性電磁鋼板の分野においても、クロムを含まない表面被膜の開発が行われている。しかし、クロムを含まない絶縁被膜は、吸湿性が激しく、また、付与される張力が低くて鉄損改善効果が小さい等の品質上の問題を抱えていた。 On the other hand, in recent years, products that do not contain toxic substances such as chromium and lead have been strongly desired due to waste liquid treatment, work environment and consideration of the natural environment. Surface coatings are being developed. However, the insulating coating containing no chromium has a problem of quality such as high hygroscopicity, low tension applied, and small iron loss improvement effect.
上記問題を解決する技術として、例えば、特許文献3には、コロイド状シリカ、リン酸アルミニウム、ホウ酸および硫酸塩からなるコーティング液を、フォルステライト被膜を有する方向性珪素鋼板表面に塗布、焼付ける方法が開示されている。また、特許文献4〜6には、リン酸塩とコロイダルシリカおよびクロム化合物を主成分とする従来の張力付与型絶縁被膜において、クロム化合物の代りに酸化物コロイド状物質、ホウ素化合物、Ca,Mn等の金属の有機酸塩を添加する方法がそれぞれに開示されている。
しかしながら、上述した従来のクロムを含まない被膜形成技術は、耐吸湿性や張力付与による鉄損改善効果を、従来のクロム含有被膜に近いレベルまで改善するものではあるが、その効果にバラツキが大きく、場合によっては製品化できないほど鉄損や耐吸湿性が劣化することがあり、実用化するには不十分なものであった。 However, the above-described conventional film formation technology that does not contain chromium improves the iron loss improvement effect due to moisture absorption resistance and tension application to a level close to that of the conventional chromium-containing film, but the effect varies greatly. In some cases, iron loss and moisture absorption resistance may deteriorate so that it cannot be commercialized, which is insufficient for practical use.
本発明の目的は、クロムを含まないリン酸塩系のコーティング液を用いて、従来のクロム含有被膜と同等以上の優れた被膜特性と磁気特性改善効果を有する上塗絶縁被膜の有利な形成方法を提案することにある。 An object of the present invention is to provide an advantageous method of forming a top insulating film having excellent film characteristics and magnetic property improvement effects equivalent to or better than those of conventional chromium-containing films, using a phosphate-based coating solution containing no chromium. It is to propose.
発明者らは、クロムを含まない被膜が抱える上記問題点、即ち、耐吸湿性、鉄損改善効果にバラツキが大きいという問題点は、何らかの外乱要因があって所望の特性が達成できないものと考え、その原因究明に向けて鋭意研究を行った。その結果、仕上焼鈍後の方向性電磁鋼板の表面に、上塗絶縁被膜を塗布、焼付けする際の雰囲気条件が、上記バラツキを生じさせる主要因であることを突き止め、本発明を完成するに至った。 The inventors consider that the above-mentioned problems of the coating film not containing chromium, that is, the problem of large variation in moisture absorption resistance and iron loss improvement effect, cannot achieve desired characteristics due to some disturbance factor. , Earnestly researched to investigate the cause. As a result, it was determined that the atmospheric conditions when applying and baking the overcoat insulating coating on the surface of the grain-oriented electrical steel sheet after finish annealing were the main factors causing the above-mentioned variation, and the present invention was completed. .
すなわち、本発明は、仕上焼鈍後の方向性電磁鋼板の表面に、クロムを含まないリン酸塩系のコーティング液を塗布し、平坦化焼鈍により焼付けて上塗絶縁被膜を形成する方法において、前記平坦化焼鈍の200〜700℃での平均昇温速度を10〜60℃/secとし、均熱温度域における酸素ポテンシャルPH2O/PH2が0.2以下の雰囲気下で行うことを特徴とするクロムを含まない上塗絶縁被膜の形成方法である。 That is, the present invention provides a method of applying a phosphate-based coating liquid not containing chromium on the surface of a grain-oriented electrical steel sheet after finish annealing and baking it by flattening annealing to form a flat insulating film. Chromium is characterized in that it is carried out in an atmosphere in which the average temperature increase rate at 200 to 700 ° C. is 10 to 60 ° C./sec and the oxygen potential P H2O / P H2 in the soaking temperature range is 0.2 or less. This is a method for forming an overcoat insulating film that does not contain.
なお、本発明における上記仕上焼鈍後の方向性電磁鋼板は、表面にフォルステライト被膜を有しないものであっても有効に作用する。 The grain-oriented electrical steel sheet after finish annealing in the present invention works effectively even if it does not have a forsterite film on the surface.
本発明によれば、クロムを含まないリン酸塩系のコーティング液を使用しても、被膜特性、磁気特性が共に優れた方向性電磁鋼板を安定して得ることができる。また、絶縁被膜の脱クロム化が可能となる結果、廃液処理の簡素化、作業環境の改善、自然環境の保護等に大きく寄与する。 ADVANTAGE OF THE INVENTION According to this invention, even if it uses the phosphate type coating liquid which does not contain chromium, the grain-oriented electrical steel sheet excellent in both the film characteristic and the magnetic characteristic can be obtained stably. In addition, since the insulating coating can be dechromed, it greatly contributes to simplification of waste liquid treatment, improvement of the working environment, protection of the natural environment, and the like.
最初に、本発明を開発する契機となった実験について説明する。
C:0.045mass%、Si:3.25mass%、Mn:0.07mass%、Se:0.02mass%を含み、残部が実質的にFeよりなる珪素鋼スラブを、1380℃で30分間加熱してから熱間圧延を行い板厚2.2mmの熱延鋼板とし、この熱延鋼板を950℃で1分間の熱延板焼鈍をした後、1000℃で1分間の中間焼鈍を挟む2回の冷間圧延を行い、最終板厚0.23mmの冷延鋼板とした。その後、この冷延鋼板を、酸素ポテンシャルPH20/PH2:0.55のH2,N2混合雰囲気中で、850℃×2分の脱炭焼鈍を施した後、酸化マグネシウム100重量部、酸化チタン2重量部、硫酸ストロンチウム1重量部よりなる焼鈍分離剤を鋼板表面に両面で12g/m2塗布・乾燥し、その後、二次再結晶焼鈍と続く乾H2雰囲気中での1200℃×10時間の純化焼鈍とからなる仕上焼鈍を行い、未反応の分離剤をリン酸酸洗して除去し、ガラス質のフォルステライト被膜を有する方向性電磁鋼板とした。上記のようにして得た方向性電磁鋼板を、300mm×l00mmの大きさに剪断し、SST試験機(Single Sheet Tester,単板磁気試験器)を用いて磁気特性(鉄損)の測定を行った。
First, an experiment that triggered the development of the present invention will be described.
C: 0.045mass%, Si: 3.25mass%, Mn: 0.07mass%, Se: 0.02mass%, the remainder of the silicon steel slab consisting essentially of Fe is heated at 1380 ° C for 30 minutes and then hot Rolled into a hot-rolled steel sheet with a thickness of 2.2 mm. This hot-rolled steel sheet was subjected to hot-rolled sheet annealing at 950 ° C. for 1 minute, and then cold-rolled twice at 1000 ° C. for 1 minute. A cold-rolled steel sheet having a final thickness of 0.23 mm was obtained. Thereafter, this cold-rolled steel sheet was decarburized and annealed at 850 ° C. for 2 minutes in a mixed atmosphere of H 2 and N 2 with an oxygen potential of P H20 / P H2 : 0.55, and then 100 parts by weight of magnesium oxide, titanium oxide An annealing separator consisting of 2 parts by weight and 1 part by weight of strontium sulfate is coated and dried on both sides of the steel sheet at a rate of 12 g / m 2 , followed by secondary recrystallization annealing and 1200 ° C for 10 hours in a dry H 2 atmosphere. Finished annealing consisting of the above-mentioned purification annealing was performed, and the unreacted separating agent was removed by phosphoric acid pickling to obtain a grain-oriented electrical steel sheet having a glassy forsterite film. The grain-oriented electrical steel sheet obtained as described above is sheared to a size of 300 mm x 100 mm, and the magnetic properties (iron loss) are measured using an SST tester (Single Sheet Tester). It was.
その後、上記リン酸酸洗後の方向性電磁鋼板に、特許文献3に開示されたコーティング液と同じ成分からなる、コロイド状シリカ40重量部、リン酸アルミニウム50重量部、ホウ酸5重量部、硫酸マグネシウム10重量部の配合割合からなるリン酸塩系のコーティング液を、乾燥重量にして両面で10g/m2塗布した後、コーティング液の焼付けと平坦化焼鈍とを兼ねて、90%N2+10%H2雰囲気中で、800℃×2分間の焼鈍を行った。この焼鈍の際、均熱温度域における雰囲気の露点を変えて、酸素ポテンシャルPH20/PH2を0.05〜0.5の範囲で変化させた。なお、比較としてコロイド状シリカ40重量部、リン酸アルミニウム50重量部、無水クロム酸10重量部からなる従来技術に属するコーティング液についても同様の方法で塗布、焼付けし、平坦化焼鈍を行った。このようにして得た鋼板について、再びSST試験機で磁気特性を測定すると共に、Pの溶出試験を行った。Pの溶出試験は、50mm×50mmの試験片3枚を、100℃の蒸留水中で5分間浸漬煮沸して被膜表面からPを溶出させ、その溶出したPを定量分析するものであり、このPの溶出量は、被膜の水に対する溶解のし易さを示すもので、被膜の耐吸湿性を評価するのに有効な指標となる。 Thereafter, the grain-oriented electrical steel sheet after the phosphoric acid pickling is composed of 40 parts by weight of colloidal silica, 50 parts by weight of aluminum phosphate, 5 parts by weight of boric acid, and the same component as the coating solution disclosed in Patent Document 3. After applying a phosphate coating liquid consisting of 10 parts by weight of magnesium sulfate to a dry weight of 10 g / m 2 on both sides, 90% N 2 for both baking of the coating liquid and flattening annealing Annealing was performed at 800 ° C. for 2 minutes in a + 10% H 2 atmosphere. During the annealing, the oxygen potential P H20 / P H2 was changed in the range of 0.05 to 0.5 by changing the dew point of the atmosphere in the soaking temperature range. For comparison, a coating solution belonging to the prior art consisting of 40 parts by weight of colloidal silica, 50 parts by weight of aluminum phosphate, and 10 parts by weight of chromic anhydride was also applied and baked by the same method, and flattening annealing was performed. The steel sheet thus obtained was again measured for magnetic properties with an SST tester and subjected to a P dissolution test. In the P dissolution test, three 50 mm × 50 mm test pieces were immersed and boiled in distilled water at 100 ° C. for 5 minutes to elute P from the surface of the film, and quantitatively analyze the eluted P. The elution amount indicates the ease of dissolution of the film in water and is an effective index for evaluating the moisture absorption resistance of the film.
上記試験の結果について、酸素ポテンシャルPH20/PH2と鉄損W17/50との関係を図1に、酸素ポテンシャルPH20/PH2とP溶出量との関係を図2に示した。これらの図から、従来のクロム含有コーティング液を塗布した鋼板では、雰囲気の酸素ポテンシャルが変化しても、磁気特性およびP溶出量とも大きな変化はなく良好な値を維持しているのに対し、クロムを含まないリン酸塩系のコーティング液を塗布した鋼板では、酸素ポテンシャルPH20/PH2が低い領域では、鉄損およびP溶出量ともクロム含有コーティング液の場合と同等の良好な特性が得られているものの、酸素ポテンシャルPH20/PH2が0.2を超えると、鉄損、Pの溶出量がともに急増し、磁気特性、耐吸湿性が急激に劣化することがわかった。 Regarding the results of the above test, FIG. 1 shows the relationship between the oxygen potential P H20 / P H2 and the iron loss W 17/50, and FIG. 2 shows the relationship between the oxygen potential P H20 / P H2 and the P elution amount. From these figures, in the steel plate coated with the conventional chromium-containing coating solution, even if the oxygen potential of the atmosphere changes, the magnetic properties and P elution amount do not change greatly, while maintaining a good value, In the steel plate coated with phosphate-based coating solution that does not contain chromium, the iron loss and P elution amount are as good as those of the chromium-containing coating solution in the region where the oxygen potential P H20 / P H2 is low. However, it was found that when the oxygen potential P H20 / P H2 exceeds 0.2, both the iron loss and the elution amount of P increase rapidly, and the magnetic properties and moisture absorption resistance deteriorate rapidly.
この焼鈍雰囲気の酸素ポテンシャルによる被膜特性の変化のメカニズムについて、発明者らは以下のように考えている。
まず、従来のクロムを含有したコーティング液では、リン酸塩とコロイド状シリカとが反応し、残ったフリーのリン酸がクロムによってトラップされる結果、Pの溶出が抑制されて耐吸湿性が改善される。さらに、酸素ポテンシャルPH20/PH2が高い場合には、たとえ乾燥中に割れ(クラック)が発生したとしても、クロムの修復機能によりクラックが容易に修復されるため、Pが溶出する起点も減少する。また、クラックの修復により強固な被膜が形成されるため、鋼板への張力効果が高まり、磁気特性(鉄損)が改善されるものと考えられる。
The inventors consider the mechanism of the change in film properties due to the oxygen potential in the annealing atmosphere as follows.
First, in the conventional chromium-containing coating solution, phosphate and colloidal silica react, and the remaining free phosphoric acid is trapped by chromium. As a result, elution of P is suppressed and moisture absorption resistance is improved. Is done. Furthermore, when the oxygen potential P H20 / P H2 is high, even if cracks occur during drying, the cracks are easily repaired by the chromium repair function, so the starting point of P elution is reduced. To do. In addition, since a strong film is formed by repairing cracks, it is considered that the tension effect on the steel sheet is increased and the magnetic properties (iron loss) are improved.
これに対して、上記実験で用いたクロムを含まないリン酸塩系のコーティング液では、上記クロムの代わりに金属硫酸塩とホウ酸に、フリーのリン酸をトラップする働きを持たせているが、焼鈍時の雰囲気の酸素ポテンシャルPH20/PH2が高い場合には、雰囲気の酸素分がコーティングにダメージを与えるためクラックが発生し易くなり、上記リン酸をトラップする効果が不十分になる。さらに、クロムを含まないリン酸塩系のコーティング液では、クロムの自己修復機能がないために、焼付けたコーティング被膜や下地のフォルステライト被膜に部分的にクラックが発生したり、剥離を生じたりする。また、クロムを含まないリン酸塩系のコーティング被膜のクラック周辺を分析すると、多くの場合、リンが濃化し、Siの量が少ないことから、この部分には、フリーのリン酸が強く濃化していることが予想される。その結果、クラックや剥離した部分が存在すると、この部分からフリーのリン酸が溶出し、耐吸湿性を劣化させるものと考えられる。また、上記のようなクラックの存在は、被膜自体の強度を弱めることにもなるため、張力付与効果を低減し鉄損の改善効果を失わせるものと考えられる。
一方、酸素ポテンシャルPH20/PH2が低い場合には、雰囲気酸素分が低いためにクラックの発生が抑えられることによって、Pが溶出する起点が減少し、耐吸湿性が改善されると共に、被膜自体も十分な強度が確保できるため、本来の張力効果が発揮されて鉄損も効果的に低減されるものと考えられる。
In contrast, the phosphate-based coating liquid that does not contain chromium used in the above experiment has a function of trapping free phosphoric acid in metal sulfate and boric acid instead of chromium. When the oxygen potential P H20 / P H2 of the atmosphere during annealing is high, the oxygen content in the atmosphere damages the coating, so that cracks are likely to occur, and the effect of trapping phosphoric acid is insufficient. In addition, the phosphate-based coating solution that does not contain chromium does not have a self-healing function of chromium, so cracks may occur in the baked coating film or the underlying forsterite film, or peeling may occur. . In addition, when analyzing the periphery of cracks in phosphate coating films that do not contain chromium, in many cases phosphorus is concentrated and the amount of Si is small, so free phosphoric acid is strongly concentrated in this area. It is expected that As a result, if there is a crack or a peeled portion, free phosphoric acid is eluted from this portion, which is considered to deteriorate the moisture absorption resistance. Moreover, since the presence of cracks as described above also weakens the strength of the coating itself, it is considered that the effect of imparting tension is reduced and the effect of improving iron loss is lost.
On the other hand, when the oxygen potential P H20 / P H2 is low, since the atmospheric oxygen content is low, the generation of cracks is suppressed, thereby reducing the starting point from which P is eluted, improving the moisture absorption resistance, and the coating film. Since the strength itself can be secured, it is considered that the original tension effect is exhibited and the iron loss is effectively reduced.
次に、本発明に係る上塗絶縁被膜の形成方法について説明する。
本発明において、上塗絶縁被膜を形成する方向性電磁鋼板の素材は、Siを含有した従来公知の方向性電磁鋼板用の素材であれば、特に鋼種を問わない。方向性電磁鋼板の製造方法も、特に限定されるものではなく、上記従来公知の鋼スラブを従来公知の方法で加熱し、熱間圧延した後、必要に応じて熱延板焼鈍を行い、その後、1回もしくは中間焼鈍を挟む複数回の冷間圧延により最終板厚に圧延し、脱炭を兼ねた一次再結晶焼鈍を施した後、マグネシアを主体とした焼鈍分離剤を塗布し、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を行うのが好ましい。
Next, the formation method of the top coat insulating film according to the present invention will be described.
In the present invention, the material of the grain-oriented electrical steel sheet for forming the top coat is not particularly limited as long as it is a conventionally known material for grain-oriented electrical steel sheets containing Si. The production method of the grain-oriented electrical steel sheet is not particularly limited, and the above-described conventionally known steel slab is heated by a conventionally known method, hot-rolled, and then subjected to hot-rolled sheet annealing as necessary, and thereafter Rolled to the final plate thickness by cold rolling multiple times with one or more intermediate annealings, and after applying primary recrystallization annealing that also serves as decarburization, apply an annealing separator mainly composed of magnesia, and then secondary It is preferable to perform finish annealing that combines recrystallization annealing and purification annealing.
なお、通常の方向性電磁鋼板の場合、仕上焼鈍後の鋼板表面には、ガラス質のフォルステライト被膜が形成されている。しかし脱炭焼鈍後、鋼板表面に塗布する焼鈍分離剤として、アルミナを用いたり、あるいは、マグネシアに塩化物を添加した分離剤を用いたりすることにより、表面にフォルステライト被膜をほとんど形成させないようにし、打抜性や磁気特性を改善する技術も開発されている。本発明は、このような被膜を形成させない鋼板に対しても、有効に適用することができる。その理由は、酸素ポテンシャルの低い条件で焼鈍するため、鋼板の酸化による品質劣化がない、コーティングにクラックが発生していないので、フォルステライト被膜がなくても耐食性の劣化が少ないからである。 In the case of a normal grain-oriented electrical steel sheet, a vitreous forsterite film is formed on the surface of the steel sheet after finish annealing. However, after decarburization annealing, alumina is used as an annealing separator to be applied to the steel sheet surface, or a forsterite film is hardly formed on the surface by using a separator containing magnesia added with chloride. Techniques for improving punchability and magnetic properties have also been developed. The present invention can also be effectively applied to a steel sheet that does not form such a coating. The reason for this is that since annealing is performed under conditions with a low oxygen potential, there is no quality deterioration due to oxidation of the steel sheet, and cracks are not generated in the coating, so there is little deterioration in corrosion resistance even without a forsterite film.
続いて、上記仕上焼鈍済みの方向性電磁鋼板の表面に、クロムを含まないリン酸塩系コーティング液を塗布する。このコーティング液としては、従来公知のもの、例えば、特許文献3に開示されたコロイド状シリカとリン酸アルミニウム、ホウ酸及び硫酸塩からなるコーティング液や、特許文献4〜6に開示されたリン酸塩とコロイダルシリカおよびクロム化合物を主成分とするコーティング液において、クロム酸の代わりに、ホウ酸化合物、酸化物コロイドあるいは金属有機酸塩等を添加したコーティング液等、クロムを含まないリン酸塩系のコーティング液であればいずれも好適に用いることができる。さらに、本発明においては、上記コーティング液に、シリカ、アルミナ等の無機鉱物粒子を添加し、耐スティッキング性の改善を図ってもよい。 Then, the phosphate coating liquid which does not contain chromium is apply | coated to the surface of the said directionally annealed grain-oriented electrical steel sheet. Examples of the coating liquid include conventionally known coating liquids such as a coating liquid composed of colloidal silica and aluminum phosphate, boric acid and sulfate disclosed in Patent Document 3, and phosphoric acid disclosed in Patent Documents 4 to 6. Phosphate-based phosphate-free coating solution containing boric acid compound, oxide colloid or metal organic acid salt, etc. instead of chromic acid, in coating solution containing salt, colloidal silica and chromium compound as main components Any coating solution can be suitably used. Furthermore, in the present invention, the sticking resistance may be improved by adding inorganic mineral particles such as silica and alumina to the coating solution.
なお、クロムを含まないリン酸塩系のコーティング液の目付量は、両面で4〜15g/m2の範囲とすることが好ましい。4g/m2より少ないと層間抵抗が低下し、15g/m2より多いと占積率が低下するため好ましくないからである。 Note that the basis weight of the phosphate-based coating liquid not containing chromium is preferably in the range of 4 to 15 g / m 2 on both sides. This is because if it is less than 4 g / m 2 , the interlayer resistance decreases, and if it exceeds 15 g / m 2 , the space factor decreases, which is not preferable.
上記のコーティング液を塗布、乾燥した後、焼付けと平坦化焼鈍とを兼ねた焼鈍(以降、単に、「平坦化焼鈍」という。)を行う。この平坦化焼鈍の均熱温度域における雰囲気は、酸素ポテンシャルPH20/PH2で0.2以下にすることが、本発明においては特に重要である。PH20/PH2が0.2を超えると、上述したように、フリーなリン酸のトラップが不十分となる他、被膜にクラックが発生し易くなり、被膜特性および磁気特性の劣化を招くからである。 After the coating liquid is applied and dried, annealing that combines baking and planarization annealing (hereinafter simply referred to as “planarization annealing”) is performed. It is particularly important in the present invention that the atmosphere in the soaking temperature region of this flattening annealing is 0.2 or less in terms of oxygen potential P H20 / P H2 . When P H20 / P H2 exceeds 0.2, as described above, free phosphoric acid traps become insufficient, and cracks are likely to occur in the coating, resulting in deterioration of coating properties and magnetic properties. .
平坦化焼鈍におけるその他の条件は、特に限定されるものではないが、200〜700℃の平均昇温速度は10〜60℃/secとする必要がある。昇温速度が10℃/secより低いと、水蒸気等のガスの発生により被膜に膨れが発生し易く、逆に、60℃/secを超えると、被膜にクラックを発生し易いからである。また、焼鈍条件は、700〜950℃の温度で2〜120秒程度の時間とするのが望ましい。温度が低すぎたり時間が短すぎたりすると平坦化が不十分となって形状不良が発生し易く、一方、温度が高すぎたり時間が長すぎたりすると、平坦化焼鈍の効果が強すぎてクリープ変形し、磁気特性の劣化を招くからである。 Although the other conditions in planarization annealing are not specifically limited, The average temperature increase rate of 200-700 degreeC needs to be 10-60 degreeC / sec. This is because if the rate of temperature rise is lower than 10 ° C./sec, the coating tends to swell due to the generation of gas such as water vapor, and conversely if it exceeds 60 ° C./sec, cracks are likely to occur in the coating. Moreover, it is desirable that the annealing condition is a temperature of 700 to 950 ° C. and a time of about 2 to 120 seconds. If the temperature is too low or the time is too short, flattening is insufficient and shape defects tend to occur.On the other hand, if the temperature is too high or the time is too long, the effect of flattening annealing is too strong and creep occurs. This is because it deforms and causes deterioration of the magnetic characteristics.
板厚0.23mmに圧延した含珪素冷延鋼板(Si:3.2mass%)に、圧延方向の直角方向に対して10°傾けた方向に深さ20μmの溝を4mmピッチで形成する磁区細分化処理を施した後、酸素ポテンシャルPH20/PH2が0.55のH2,N2混合雰囲気中で、850℃×2分の脱炭焼鈍を施し、その後、マグネシア100重量部に対し塩化ニッケル3重量部を添加した粉体を主体とする焼鈍分離剤を塗布、乾燥してから、公知の方法で仕上焼鈍を行い、その後、未反応の分離剤をリン酸酸洗により除去し、フォルステライト被膜のない方向性電磁鋼板を得た。この仕上焼鈍後の鋼板の磁束密度B8は1.89Tであった。その後、リン酸酸洗処理後の鋼板表面に、成分組成が乾固固形分比率で、コロイド状シリカ:50重量部、リン酸マグネシウム:40重量部、硫酸マンガン:9.5重量部、微粉末シリカ粒子:0.5重量部からなるリン酸塩系のコーティング液を両面で10g/m2塗布した後、200〜700℃までを10℃/secの昇温速度で加熱後、均熱温度:850℃、均熱時間:30秒の平坦化焼鈍を施した。なお、上記平坦化焼鈍においては、均熱温度域における雰囲気の酸素ポテンシャルPH20/PH2を0.05〜0.45の範囲で変化させた。上記のようにして得た鋼板について、発粉性、耐熱性、磁歪特性、密着性、占積率、外観、防錆性およびP溶出量について、下記の要領で調査した。また、鉄損については、仕上焼鈍後および上塗絶縁被膜形成後に測定を行った。 Magnetic domain refinement process in which grooves with a depth of 20μm are formed at a pitch of 4mm on a silicon-containing cold-rolled steel sheet (Si: 3.2mass%) rolled to a thickness of 0.23mm in a direction inclined 10 ° to the direction perpendicular to the rolling direction After decarburization, decarburization annealing was performed at 850 ° C. for 2 minutes in a mixed atmosphere of H 2 and N 2 having an oxygen potential P H20 / P H2 of 0.55, and then 3 parts by weight of nickel chloride per 100 parts by weight of magnesia. After applying and drying an annealing separator mainly composed of a powder added with a powder, finish annealing is performed by a known method, and then the unreacted separating agent is removed by phosphoric acid pickling so that there is no forsterite film. A grain-oriented electrical steel sheet was obtained. The magnetic flux density B 8 of the steel sheet after the final annealing was 1.89T. Then, on the surface of the steel sheet after the phosphoric acid pickling treatment, the component composition is a dry solid ratio, colloidal silica: 50 parts by weight, magnesium phosphate: 40 parts by weight, manganese sulfate: 9.5 parts by weight, fine powder silica particles : Phosphate-based coating solution consisting of 0.5 parts by weight was applied at 10 g / m 2 on both sides, heated to 200-700 ° C at a heating rate of 10 ° C / sec, soaking temperature: 850 ° C, soaking Heating time: A flattening annealing of 30 seconds was performed. In the planarization annealing, the oxygen potential P H20 / P H2 of the atmosphere in the soaking temperature range was changed in the range of 0.05 to 0.45. About the steel plate obtained as mentioned above, it investigated in the following way about powdering property, heat resistance, a magnetostriction characteristic, adhesiveness, a space factor, an external appearance, rust prevention property, and P elution amount. Further, the iron loss was measured after finish annealing and after the formation of the top coat.
・鉄損:SST試験機を用いて、鉄損W17/50を測定した。
・発粉性:SEMを用いて被膜表面を500倍で観察し、表面に膨れや割れがないものを○、膨れや割れが僅かにあるものを△、膨れ、割れの発生が激しいものを×と評価した。
・耐熱性(耐スティッキング性):50mm×50mmの大きさの試験片10枚を密着して重ね、20MPaの圧縮荷重を付与した状態で、乾窒素雰囲気中で800℃×2hrの焼鈍を行った後、重ねた試験片の上に500gの分銅を落下させたとき、重ねた試験片が全て分離した時の分銅の落下高さを測定し、その高さが20cm未満を○、20cm以上40cm未満を△、60cm以上を×と評価した。
・磁歪:λP-Pが4×10-4となる圧縮応力(MPa)を測定し評価した。
・密着性:各種大きさの直径を有する丸棒に試験片を巻き付け、剥離が起こらない最小曲げ径(直径)にて評価した。
・占積率:JIS C 2550 に規定された占積率試験に準拠し測定した。
・外観:目視観察により、被膜表面の美麗さを評価した。
・防錆性:温度50℃、露点50℃の大気雰囲気中に50時間保持後、表面を目視観察し、錆の発生がないものを○、若干の錆が発生したものを△、錆が激しいものを×と評価した。
・P溶出試験:50mm×50mmの試験片3枚を、100℃の蒸留水中で5分間浸漬煮沸して被膜表面から溶出したPを定量分析し評価した。
Iron loss: Iron loss W 17/50 was measured using an SST tester.
・ Powdering property: Using SEM, observe the surface of the film at a magnification of 500 times, ○ if there is no swelling or cracking on the surface, △ if there is a slight swelling or cracking, × if there is severe swelling or cracking × It was evaluated.
・ Heat resistance (sticking resistance): Ten test pieces of 50 mm x 50 mm in size were closely stacked and subjected to annealing at 800 ° C for 2 hours in a dry nitrogen atmosphere with a 20 MPa compression load applied. Later, when a weight of 500 g was dropped on the stacked specimen, the fall height of the weight when all the stacked specimens were separated was measured, and the height was less than 20 cm ○, 20 cm or more and less than 40 cm Was evaluated as Δ, and 60 cm or more was evaluated as ×.
Magnetostriction: Compressive stress (MPa) at which λ PP is 4 × 10 −4 was measured and evaluated.
-Adhesiveness: A test piece was wound around a round bar having various diameters, and the minimum bending diameter (diameter) at which peeling did not occur was evaluated.
-Space factor: Measured according to the space factor test specified in JIS C 2550.
Appearance: The beauty of the coating surface was evaluated by visual observation.
・ Rust prevention: After holding in an air atmosphere at a temperature of 50 ° C and a dew point of 50 ° C for 50 hours, the surface is visually observed, ○ if there is no rust, △ if there is some rust, rust is severe Things were rated as x.
P dissolution test: Three test pieces of 50 mm × 50 mm were immersed and boiled in 100 ° C. distilled water for 5 minutes, and P eluted from the coating surface was quantitatively analyzed and evaluated.
上記試験の結果を、表1に示した。本実施例の上塗絶縁被膜のコーティング液は、特許文献3で開示されたリン酸塩系のコーティング液のホウ酸を無添加としたものであるが、このような成分組成のコーティング液を用いても、本発明の条件、即ち、雰囲気の酸素ポテンシャルPH20/PH2を0.2以下とした条件で焼鈍することにより、被膜特性(耐吸湿性、密着性等)ならびに磁気特性に優れた方向性電磁鋼板を得ることができる。 The results of the above test are shown in Table 1. The coating liquid for the top coat insulating film of this example is the phosphate-based coating liquid disclosed in Patent Document 3 with no addition of boric acid. In addition, by annealing under the conditions of the present invention, that is, the oxygen potential P H20 / P H2 of the atmosphere is 0.2 or less, a directional electromagnetic wave excellent in film properties (moisture absorption resistance, adhesion, etc.) and magnetic properties is obtained. A steel plate can be obtained.
最終仕上焼鈍後の磁束密度B8が1.89Tであるフォルステライト被膜付きの含珪素方向性電磁鋼板(Si:3.3mass%)をリン酸酸洗処理した後、成分組成が乾固固形分比率で、コロイド状シリカ:50重量部、各種第1リン酸塩化合物:40重量部、各種無機化合物:9.5重量部、微粉末シリカ粒子:0.5重量部からなるリン酸塩系のコーティング液(第1リン酸塩化合物、無機化合物については表2中に記載)を両面で10g/m2塗布した後、200〜700℃までを昇温速度20℃/secで加熱し、酸素ポテンシャルPH20/PH2を0.06または0.32に制御した雰囲気中で、850℃×30秒の平坦化焼鈍を施した。 After subjecting a silicon-containing grain-oriented electrical steel sheet with a forsterite coating (Si: 3.3 mass%) with a magnetic flux density B 8 of 1.89 T after final finish annealing to a phosphoric acid pickling treatment, the component composition is in the ratio of dry solid to solid , Colloidal silica: 50 parts by weight, various first phosphate compounds: 40 parts by weight, various inorganic compounds: 9.5 parts by weight, fine powder silica particles: 0.5 parts by weight After applying 10 g / m 2 on both sides of the acid salt compound and inorganic compound), heat up to 200-700 ° C at a heating rate of 20 ° C / sec, and set the oxygen potential P H20 / P H2 Flattening annealing at 850 ° C. for 30 seconds was performed in an atmosphere controlled to 0.06 or 0.32.
上記のようにして得た鋼板について、実施例1と同様にして諸特性を調査し、その結果を表2に併せて示した。この結果から、特許文献4〜6等に記載されたクロムを含まないリン酸塩系のコーティング液を用いても、平坦化焼鈍時の雰囲気の酸素ポテンシャルPH20/PH2を適切な範囲内に低下させることにより優れた磁気特性、被膜特性を有する方向性電磁鋼板が得られることがわかる。 About the steel plate obtained as mentioned above, various characteristics were investigated like Example 1, and the result was combined with Table 2 and shown. From this result, the oxygen potential P H20 / P H2 of the atmosphere at the time of flattening annealing is within an appropriate range even when using the phosphate-based coating liquid not containing chromium described in Patent Documents 4 to 6 and the like. It turns out that the grain-oriented electrical steel sheet which has the outstanding magnetic characteristic and film characteristic is obtained by making it reduce.
本発明の技術は、方向性電磁鋼板のみならず、無方向性電磁鋼板の分野にも活用することができる。
The technology of the present invention can be used not only for grain-oriented electrical steel sheets but also for non-oriented electrical steel sheets.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003300126A JP4321181B2 (en) | 2003-08-25 | 2003-08-25 | Method for forming an overcoat insulating film containing no chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003300126A JP4321181B2 (en) | 2003-08-25 | 2003-08-25 | Method for forming an overcoat insulating film containing no chromium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005068493A JP2005068493A (en) | 2005-03-17 |
JP4321181B2 true JP4321181B2 (en) | 2009-08-26 |
Family
ID=34405160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003300126A Expired - Fee Related JP4321181B2 (en) | 2003-08-25 | 2003-08-25 | Method for forming an overcoat insulating film containing no chromium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4321181B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI270578B (en) * | 2004-11-10 | 2007-01-11 | Jfe Steel Corp | Grain oriented electromagnetic steel plate and method for producing the same |
BE1017086A3 (en) | 2006-03-29 | 2008-02-05 | Ct Rech Metallurgiques Asbl | PROCESS FOR THE RECLAIMING AND CONTINUOUS PREPARATION OF A HIGH STRENGTH STEEL BAND FOR ITS GALVANIZATION AT TEMPERATURE. |
CN102115881B (en) * | 2010-12-27 | 2012-05-02 | 上海迪升防腐新材料科技有限公司 | Environment-friendly insulating coating solution for non-oriented silicon steel and preparation and application thereof |
US20220090226A1 (en) * | 2019-01-16 | 2022-03-24 | Nippon Steel Corporation | Method for producing grain-oriented electrical steel sheet |
JP7448819B2 (en) | 2020-08-20 | 2024-03-13 | 日本製鉄株式会社 | Grain-oriented electrical steel sheet and its manufacturing method |
-
2003
- 2003-08-25 JP JP2003300126A patent/JP4321181B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005068493A (en) | 2005-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5181571B2 (en) | Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
JP5194641B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film | |
JP5980216B2 (en) | Method for producing insulating coating on directional electromagnetic flat steel product and electromagnetic flat steel product coated with the insulating coating | |
JP6031951B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP3255640B1 (en) | Method for predicting transformer noise property | |
JP2009057591A (en) | Treatment liquid for forming chromium-free insulation film on grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet provided with insulation film | |
JP6920439B2 (en) | Annealing separator composition for grain-oriented electrical steel sheets and method for manufacturing grain-oriented electrical steel sheets | |
WO2022215709A1 (en) | Grain-oriented electromagnetic steel sheet and method for forming insulating film | |
JP5633402B2 (en) | Directional electrical steel sheet with chromeless tension coating | |
JP6558325B2 (en) | Treatment liquid for forming chromium-free tension coating, grain-oriented electrical steel sheet with chromium-free tension film, method for producing grain-oriented electrical steel sheet with chromium-free tension film, and core for transformer | |
JP5098466B2 (en) | Treatment liquid for chromeless tension coating, method of forming chromeless tension coating, and grain-oriented electrical steel sheet with chromeless tension coating | |
JP4321181B2 (en) | Method for forming an overcoat insulating film containing no chromium | |
JP4983334B2 (en) | Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet | |
JP4682590B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
JP4635457B2 (en) | A grain-oriented electrical steel sheet having a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance, and a method for forming a phosphate insulating coating that does not contain chromium and has excellent moisture absorption resistance. | |
JP5633401B2 (en) | Treatment liquid for chromeless tension coating and method for forming chromeless tension coating | |
JP6881581B2 (en) | Directional electrical steel sheet | |
JP4305040B2 (en) | Method for forming chromeless coating for grain-oriented electrical steel sheet | |
WO2022215710A1 (en) | Grain-oriented electrical steel sheet and method for forming insulating film | |
CN114106593B (en) | Paint for oriented silicon steel surface coating, oriented silicon steel plate and manufacturing method thereof | |
WO2020012665A1 (en) | Grain-oriented electromagnetic steel sheet and manufacturing method for same | |
JP4677765B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
CN115151681B (en) | Grain-oriented electrical steel sheet with insulating film and method for producing same | |
JP4810820B2 (en) | Directional electrical steel sheet with chromeless coating and method for producing the same | |
RU2774384C1 (en) | Anisotropic electrical steel sheet, intermediate steel sheet for anisotropic electrical steel sheet and methods for their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4321181 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140612 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |