[go: up one dir, main page]

JP4311071B2 - Defect determination method of exhaust purification system - Google Patents

Defect determination method of exhaust purification system Download PDF

Info

Publication number
JP4311071B2
JP4311071B2 JP2003117904A JP2003117904A JP4311071B2 JP 4311071 B2 JP4311071 B2 JP 4311071B2 JP 2003117904 A JP2003117904 A JP 2003117904A JP 2003117904 A JP2003117904 A JP 2003117904A JP 4311071 B2 JP4311071 B2 JP 4311071B2
Authority
JP
Japan
Prior art keywords
exhaust
temperature
exhaust gas
fuel
nox catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003117904A
Other languages
Japanese (ja)
Other versions
JP2004324477A (en
Inventor
雅彦 石川
雅人 都築
辰優 杉山
暢樹 小林
淳 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003117904A priority Critical patent/JP4311071B2/en
Publication of JP2004324477A publication Critical patent/JP2004324477A/en
Application granted granted Critical
Publication of JP4311071B2 publication Critical patent/JP4311071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化を行う排気浄化システムにおいて、該排気浄化システムを構成する要素の不具合を検出する方法に関する。
【0002】
【従来の技術】
内燃機関、特に希薄燃焼を行う内燃機関から排出される排気を浄化すべく、排気に含まれる物質を酸化する機能を有する触媒、例えば吸蔵還元型NOx触媒(以下、「NOx触媒」という)を担持したフィルタと、該フィルタの上流側に更にNOx触媒を設けることで、排気中に含まれる微粒子状物質を捕集するとともに、排気中のNOxを高い浄化率で浄化する技術が公開されている(例えば、特許文献1を参照。)。しかし、該フィルタの上流側に設けられているNOx触媒の触媒機能である排気中の物質を酸化する機能が劣化すると、排気の浄化が十分に行われない。
【0003】
また、フィルタに担持されたNOx触媒は、排気が高酸素濃度状態である場合は排気中に含まれるNOxを触媒内へと吸蔵し、触媒周囲の雰囲気が低酸素濃度状態で且つ還元成分である燃料の未燃成分が存在している場合等は、触媒内に吸蔵されているNOxを還元することで排気中のNOxを浄化する触媒である。そこで、排気温度に応じて還元剤として排気に添加される燃料の粒径を調整することで、触媒内に吸蔵されているNOxをより効率的に還元する技術が公開されている(例えば、特許文献2を参照。)。
【0004】
しかし、上流側のNOx触媒の触媒機能である排気中の物質を酸化する機能が劣化すると、該フィルタに流入する排気の温度が上昇せずに、結果的に多量の燃料がフィルタに流入し、該フィルタに担持されたNOx触媒によって燃料が酸化されることで、フィルタの温度が急激に上昇し、フィルタが溶損する虞がある。
【0005】
【特許文献1】
特開2002−129950号公報
【特許文献2】
特開2000−240429号公報
【特許文献3】
特開2002−122019号公報
【特許文献4】
特開2002−227636号公報
【0006】
【発明が解決しようとする課題】
吸蔵還元型NOx触媒の上流側に酸化機能を有する触媒、例えば更にNOx触媒を備える内燃機関の排気浄化システムにおいて排気の浄化を行う場合、例えば該NOx触媒に吸蔵されているNOxの還元を行う場合には、排気中に燃料もしくは燃料が改質された炭化水素(以下、単に「燃料」という)が添加される。添加された燃料の一部が上流側の触媒で該燃料が酸化されることで、下流側のNOx触媒に流入する排気温度が上昇する。それとともに添加された燃料が該NOx触媒に供給されることで、該NOx触媒に流入する排気が、高温且つリッチ状態となり、該NOx触媒に吸蔵されているNOxの還元が行われる。
【0007】
ここで、NOxの還元を効率的に行うために、該NOx触媒に流入する排気の温度を適切な温度にすべく排気に含まれる燃料の量を制御する必要があるが、上流側の触媒の酸化機能が低下すると、排気中に含まれる燃料の量が増加しても排気温度が上昇しない。その結果、本来上流側において酸化反応によって酸化される燃料が該NOx触媒に流入するため、過剰な燃料によって該NOx触媒の急激な温度上昇が生じ、該NOx触媒が熱劣化もしくは溶損する虞がある。このような該NOx触媒の熱劣化等の問題は、吸蔵されたNOxの還元時に限られるのではなく、排気温度に応じて排気へ燃料を添加する制御を行うときに起こり得るものである。従って、内燃機関の排気浄化システムにおいて、その構成要素の機能の低下を予め判断することが必要となる。
【0008】
本発明は上記状況に鑑みてなされたもので、排気中のNOxを吸蔵還元するNOx触媒の上流側に、更に酸化機能を有する触媒を備え、排気温度に応じて排気に燃料を添加する制御を行う内燃機関の排気浄化システムにおいて、該排気浄化システムを構成する各要素の本来の機能が低下しているか否かをより正確に判断し、該要素の機能が低下している場合には該要素の不具合と判定する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記した課題を解決するために、NOx触媒に流入する排気の温度とNOx触媒から流出する排気の温度との差に着目した。これは、内燃機関の排気浄化システムに何らかの不具合が生じたときに、NOx触媒の上流側に設けられる触媒の酸化機能が低下したのであれば、排気に添加された燃料が酸化されにくくなるため、NOx触媒に流入する排気の温度があまり上昇しないとともに、NOx触媒に流入する排気に含まれる燃料の量が増加するためにNOx触媒での酸化反応で、NOx触媒から流出する排気の温度は上昇し、その結果NOx触媒に流入する排気の温度とNOx触媒から流出する排気の温度との排気温度差が大きくなることによる。
【0010】
そこで、排気通路に設けられ、排気に含まれる物質を酸化する機能を有する前段排気浄化触媒と、前記前段排気浄化触媒の下流側の排気通路に設けられ、排気中のNOxを吸蔵、還元するNOx触媒と、前記前段排気浄化触媒と前記NOx触媒の間の排気通路を流れる排気の温度を検出する排気温度検出手段と、少なくとも前記排気温度検出手段によって検出された排気温度に基づいて、前記前段排気浄化触媒の上流側の排気通路を流れる排気に燃料を添加する燃料添加手段と、を備える内燃機関の排気浄化システムにおいて、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差を検出又は推定し、前記排気温度検出手段によって検出される排気の温度が所定の排気温度となるべく前記燃料添加手段によって排気に燃料の添加が行われる際に前記燃料添加手段によって添加されるべき燃料の量が所定の添加量を越えるとき、検出又は推定された前記排気温度差が所定温度差以上である場合には前記前段排気浄化触媒の酸化機能が劣化していると判定する。
【0011】
前記内燃機関の排気浄化システムにおいては、燃焼室から排出された排気は、前段排気浄化触媒を経た後に前記NOx触媒に流入する。従って、排気中に含まれるNOxは、主に前記NOx触媒に吸蔵される。ここで、前記NOx触媒での吸蔵NOx量が増加するに従いNOx触媒の浄化能力が低下するため、NOx触媒に流入する排気の温度や空燃比を一定の条件とすることで、前記NOx触媒に吸蔵されたNOxを還元、放出し、前記NOx触媒の浄化能力を回復させる必要がある。ここで、該NOx触媒の浄化能力の回復のための排気の温度等の制御を、該NOx触媒のNOx還元制御という。
【0012】
また、前記NOx触媒には、排気中に含まれるSOxも吸蔵され、前記NOx触媒でのSOx吸蔵量が増加するに従い、前記NOx触媒の触媒機能が低下する。従って、NOx触媒に流入する排気の温度や空燃比を一定の条件とすることで、前記NOx触媒に吸蔵されたSOxを放出し、前記NOx触媒の浄化能力を回復させる必要がある。該NOx触媒の浄化能力の回復のための排気の温度等の制御を、該NOx触媒のSOx被毒再生制御という。
【0013】
ここで、前記NOx触媒の還元制御やSOx被毒再生制御においては、前記NOx触媒に流入する排気の温度を適切な温度に昇温させるとともに、該排気中に還元剤としての燃料を含有させる必要がある。そこで、前記燃料添加手段によって、前記NOx触媒に流入する排気、即ち、前記前段排気浄化触媒と前記NOx触媒との間を流れる排気の温度を制御すべく、排気中に燃料を添加する。
【0014】
従って、前記NOx触媒に流入する排気の温度を上昇させる必要がある場合は、前記燃料添加手段によって排気中に燃料を添加することで、該添加された燃料の一部が前記前段排気浄化触媒で酸化された結果、排気温度が上昇する。それとともに残りの添加された燃料が前記NOx触媒に供給され、前記NOx触媒の触媒機能の回復制御に必要な排気の空燃比が形成される。尚、前記燃料添加手段による排気への燃料の添加は、上述のNOx触媒の触媒機能の回復を目的としたものに限られず、該NOx触媒に流入する排気の温度を制御するために行われるものであればよい。
【0015】
ここで、前記所定の添加量とは、前記NOx触媒に流入する排気の温度を目標の温度に上昇させるのに添加されるために燃料の添加量として定義される。そこで、前記燃料添加手段によって排気に前記所定の添加量分の燃料が添加され、前記NOx触媒に流入する排気の温度を目標の温度に上昇させる場合において、前記前段排気浄化触媒において排気の昇温を十分に図ることができないときは、更に排気の昇温を促進するために前記燃料添加手段によって排気へ添加されるべき燃料の量が増量される。即ち、前記前段排気浄化触媒での酸化による発熱量の増加を促すために、前記所定の添加量を越える量の燃料が添加されるべきであると判断される。
【0016】
しかし、前記前段排気浄化触媒の酸化機能が劣化することによっても、前記燃料添加手段による添加量が前記所定の添加量を越えた量となるが、前記排気浄化システムにおいては前記前段排気浄化触媒の他にも構成要素が存在するため、その他の構成要素の不具合に起因した燃料の添加量が増量することが考えられる。
【0017】
そこで、前記排気浄化システムにおいては、前記前段排気浄化触媒の酸化機能が劣化しているか否かを、前記NOx触媒に流入する排気の温度と、前記NOx触媒から流出する排気の温度との排気温度差に基づいて判断する。即ち、前記前段排気浄化触媒の酸化機能が劣化することによって排気の昇温が鈍化するため、排気温度の上昇を促進すべく前記燃料添加手段による燃料の添加量が増加する。その結果、前記NOx触媒にも多量の燃料が流入するため、前記NOx触媒における燃料の酸化によって前記NOx触媒から流出する排気の温度は高くなる。
【0018】
従って、前記前段排気浄化触媒の酸化機能が劣化する場合は、該酸化機能が劣化していない場合に比べ、前段排気浄化触媒の上流側と下流側の排気温度との差が顕著となる。そこで、該排気温度差が、前記前段排気浄化触媒の酸化機能が劣化したと判断される温度差として定義される前記所定の温度差以上となることをもって、前記前段排気浄化触媒の酸化機能と判断するのである。
【0019】
これにより、該排気浄化システムを構成する要素である前段排気浄化触媒の本来の機能が低下しているか否かを判断し、該要素の機能が低下している場合には該要素の不具合と判定することが可能となる。
【0020】
また、前記NOx触媒は、該NOx触媒が担持されたフィルタであって、排気に含まれる粒子状物質を捕集することができる排気浄化手段であってもよい。
【0021】
ここで、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差の検出については、次のように行われる。前記排気浄化システムにおいて、前記排気温度検出手段を第一排気温度検出手段とし、そして、更に前記NOx触媒の下流の排気通路を流れる排気の温度を検出する第二排気温度検出手段が備えられる。そこで、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差は、前記第二排気温度検出手段によって検出された排気温度と前記第一排気温度検出手段によって検出された排気温度との差より、算出される。
【0022】
即ち、前記排気温度検出手段である前記第一排気温度検出手段は、前記燃料添加手段による燃料の添加の基準となる排気温度を検出するとともに、前記NOx触媒の酸化機能の劣化を判断するための排気温度差における前記NOx触媒に流入する排気の温度を検出することになる。尚、前記燃料添加手段による燃料の添加の基準となる排気温度の検出と、前記NOx触媒の酸化機能の劣化を判断するための排気温度差における前記NOx触媒に流入する排気の温度の検出を、異なる排気温度検出手段によって行ってもよい。
【0023】
また、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差の検出については、更に次のように行うことも可能である。即ち、前記排気浄化システムにおいて、更に、前記NOx触媒の下流の排気通路を流れる排気の空燃比を検出する排気空燃比検出手段が備えられる。そこで、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差は、前記排気温度検出手段によって検出される排気温度と前記排気空燃比検出手段によって検出される排気の空燃比とから推定する。
【0024】
即ち、前記NOx触媒の下流側に設けられた排気空燃比検出手段によって検出された排気空燃比は、前記NOx触媒を経た排気の空燃比であるから、前記NOx触媒における酸化反応で消費された燃料の量を推定することが可能と考えられる。そこで、推定された消費燃料量から前記NOx触媒から流出する排気の温度が推定され、該推定された排気温度と、前記排気温度検出手段によって検出された前記NOx触媒の上流側の排気温度より、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差を検出することが可能となる。
【0025】
ここで、先述までの内燃機関の排気浄化システムにおいては、排気浄化システムの構成要素である前記前段排気浄化触媒の不具合が判定される。しかし、該排気浄化システムにおいて、前記燃料添加手段によって添加されるべき燃料の量が前記所定の添加量を越える場合には、前記前段排気浄化触媒の他に、前記燃料添加手段自身の不具合が考えられる。
【0026】
そこで、前記排気浄化システムにおいて、更に、前記排気温度検出手段によって検出される排気の温度が所定の排気温度となるべく前記燃料添加手段によって排気に燃料の添加が行われる際に前記燃料添加手段によって添加されるべき燃料の量が所定の添加量を越えるとき、検出された前記排気温度差が所定温度差より小さい場合には前記燃料添加手段の燃料添加機能が劣化していると判定する。
【0027】
即ち、先述したように、前記排気温度検出手段によって検出される排気の温度が所定の排気温度となるべく前記燃料添加手段によって排気へ燃料の添加が行われる際に前記燃料添加手段によって添加されるべき燃料の量が所定の添加量を越えるときとは、前記前段排気浄化触媒による排気の温度上昇が適切に行われていないことに起因する。この排気温度の上昇が適切に行われない要因としては、先述した前段排気浄化触媒の酸化機能の劣化の他に、前記燃料添加手段の燃料添加機能の劣化が考えられる。ここで、前記燃料添加手段の燃料添加機能とは、排気に対して添加すべき量の燃料をより正確に添加する機能をいい、その燃料添加機能の劣化には、例えば、前記燃料添加手段が燃料添加弁である場合には、該燃料添加弁の目詰まり等が挙げられる。
【0028】
そこで、検出された前記排気温度差が前記所定温度差より低い場合には、前記前段排気浄化触媒の酸化機能が劣化したとは判断せずに、前記燃料添加手段の燃料添加機能が劣化していると判断する。これにより、該排気浄化システムを構成する要素である燃料添加手段の本来の機能が低下しているか否かを判断し、該要素の機能が低下している場合には該要素の不具合と判定することが可能となる。
【0029】
また、上記までの排気浄化システムの不具合を判定する方法については、前記排気浄化システムを含めた一のシステムとしても構成することも可能である。即ち、前記排気浄化システムは、更に、前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差を検出する検出手段と、先述した前記前段排気浄化触媒の不具合と、それに加えて前記燃料添加手段の不具合を判定する不具合判定手段と、を備えるシステムとして構成され得る。
【0030】
【発明の実施の形態】
ここで、本発明に係る内燃機関の排気浄化システムの不具合判定方法の実施の形態について図面に基づいて説明する。図1は、本発明が適用される排気浄化システム、該排気浄化システムを含む内燃機関1およびその制御系統の概略構成を表すブロック図である。
【0031】
内燃機関1は、4つの気筒2を有する内燃機関である。また、気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。燃料噴射弁3は、燃料を所定圧に蓄圧する蓄圧室4と接続されている。蓄圧室4は、燃料供給管5を介して燃料ポンプ6と連通している。
【0032】
次に、内燃機関1には吸気枝管7が接続されており、吸気枝管7の各枝管は、気筒2の燃焼室と吸気ポートを介して連通している。ここで、気筒2の燃焼室と吸気ポートとの連通は、吸気弁(図示略)の開閉によって行われる。また、吸気枝管7は吸気管8に接続されている。吸気管8には、該吸気管8内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ9が取り付けられている。前記吸気管8における吸気枝管7の直上流に位置する部位には、該吸気管8内を流通する吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。
【0033】
ここで、エアフローメータ9と吸気絞り弁10との間に位置する吸気管8には、排気のエネルギーを駆動源として作動する遠心過給機(ターボチャージャ)17のコンプレッサハウジング17aが設けられ、コンプレッサハウジング17aより下流の吸気管8には、前記コンプレッサハウジング17a内で圧縮されて高温となった吸気を冷却するためのインタークーラ18設けられている。
【0034】
一方、内燃機関1には排気枝管12が接続され、排気枝管12の各枝管が排気ポートを介して気筒2の燃焼室と連通している。ここで、気筒2の燃焼室と排気ポートとの連通は、排気弁(図示略)の開閉によって行われる。また、排気枝管12の側面には、排気枝管12を流れる排気に対して燃料を添加する燃料添加弁30が設けられている。
【0035】
また、前記排気枝管12は、前記遠心過給機17のタービンハウジング17bと接続されている。前記タービンハウジング17bは、排気管13と接続され、この排気管13は、下流にてマフラー(図示略)に接続されている。更に、排気管13の途中には、内燃機関から排出される排気に含まれるNOxを吸蔵、還元して排気の浄化を行うNOx触媒16bが設けられている。そしてNOx触媒16bの上流には、排気中に含まれる物質を酸化する機能を有する触媒、例えばNOx触媒16bと同様のNOx触媒が前段排気浄化触媒16aとして設けられている。尚、NOx触媒16bに代えて、NOx触媒が担持されたフィルタであって排気中の粒子状物質を捕集する機能を有する排気浄化手段を用いてもよい。
【0036】
更に、NOx触媒16bの下流の排気管13には、該排気管13内を流通する排気の流量を調節する排気絞り弁14が設けられている。この排気絞り弁14には、ステップモータ等で構成されて該排気絞り弁14を開閉駆動する排気絞り用アクチュエータ15が取り付けられている。
【0037】
ここで、燃料噴射弁3および燃料添加弁30は、電子制御ユニット(以下、ECU:Electronic Control Unitと称する)20からの制御信号によって開閉動作を行う。即ち、ECU20からの指令によって、燃料噴射弁3および燃料添加弁30における燃料の噴射時期および噴射量が燃料噴射弁毎に制御される。
【0038】
更に、アクセル開度センサ19がECU20と電気的に接続されており、ECU20はアクセル開度に応じた信号を受け取り、それより内燃機関1に要求される機関出力等を算出する。また、クランクポジションセンサ34がECU20と電気的に接続されており、ECU20は内燃機関1の出力軸の回転角に応じた信号を受け取り、内燃機関1の機関回転速度や気筒2におけるサイクルの状態等を算出する。
【0039】
また、前段排気浄化触媒16aとNOx触媒16bとの間の排気管13には、該区間を流れる排気、即ち前段排気浄化触媒16aから流出しNOx触媒16bに流入する排気の温度を検出する上流側排気温度センサ31が、NOx触媒16bの下流の排気管13にはNOx触媒16bから流出する排気の温度を検出する下流側排気温度センサ32が設けられている。更に、NOx触媒16bの下流の排気管13であって下流側排気温度センサ32の近傍には、NOx触媒16bから流出する排気の空燃比を検出する排気空燃比センサ33が設けられている。
【0040】
上流側排気温度センサ31、下流側排気温度センサ32および排気空燃比センサ33は、それぞれECU20は電気的に接続されている。これらのセンサと、前段排気浄化触媒16aおよび、NOx触媒16b等で構成される排気浄化システムによって、排気の浄化が行われる。そこで、ECU20は、NOx触媒16の排気浄化能力を再生させるために、上流側排気温度センサ31によって検出された排気温度や排気空燃比センサ33によって検出された空燃比の値に基づいてNOx触媒16bに流入する排気の温度や排気の空燃比を制御する。
【0041】
例えば、NOx触媒16bに吸蔵されたNOxを還元するために、NOx触媒16bに流入する排気の温度を上昇させ、且つ該排気の空燃比をリッチ状態とするNOx還元制御、NOx触媒16bに吸蔵されたSOxを離脱させるためにNOx触媒16bに流入する排気の温度を上昇させ、且つ該排気の空燃比を交互にリッチ側の空燃比とリーン側の空燃比に切り替えるいわゆるSOx被毒再生制御や、NOx触媒16bに代えてNOx触媒が担持されたフィルタが設けられている場合には該フィルタに捕集されている粒子状物質を酸化し除去するために該フィルタに流入する排気の温度を上昇させ、且つ該排気の空燃比を適切な空燃比に制御するフィルタ再生制御等が挙げられる。
【0042】
このとき、ECU20より燃料添加弁30に対して噴射指令が出されることで、排気温度および排気の空燃比が調整される。燃料添加弁30より排気中に噴射された燃料の一部は、前段排気浄化触媒16aの酸化機能によって酸化されることで、NOx触媒16bに流入する排気の温度が上昇する。更に、残りの燃料が、NOx触媒16bに供給されることで、各再生制御に必要な排気の空燃比が形成される。
【0043】
この排気温度と排気の空燃比に関する制御は、上流側排気温度センサ31によって検出された排気温度および排気空燃比センサ33によって検出された空燃比に基づいて、NOx触媒16bに流入する排気の温度と空燃比を推定し、その推定される空燃比が所定の排気温度と排気の空燃比となるように、燃料添加弁30による燃料の添加量を制御するものである。NOx触媒16bにおける排気温度と上流側排気温度センサ31によって検出される排気温度との関係、およびNOx触媒16bにおける排気の空燃比と排気空燃比センサ33によって検出される空燃比との関係は、予め実験等で求めておきマップとしてECU20内のROMに格納しておけばよい。
【0044】
ここで、NOx触媒16bに流入する流入する排気の温度を上昇させるには、ECU20が上流側排気温度センサ31によって検出される排気温度に基づいて、燃料添加弁30による排気への燃料の添加量を調整するのは先述の通りであるが、排気に燃料を添加しているにもかかわらず排気温度が適切な温度に上昇しない場合には、排気浄化システムの不具合として、排気浄化システムを構成し排気温度の上昇に大きく起因する前段排気浄化触媒16aの酸化機能の劣化、もしくは燃料添加弁30の目詰まり等による不正確な量の燃料添加が起こると考えられる。更に、このような不具合が生じている状態では、結果的にNOx触媒16bに供給される排気の温度を正確に制御することが困難となり、先述したNOx還元制御等が確実に行われなくなるだけではなく、NOx触媒16bに過剰の燃料が供給されることでNOx触媒16bが過度に昇温し、NOx触媒16bが熱劣化もしくは溶損する虞が生じる。
【0045】
そこで、NOx触媒16bに流入する排気の温度を制御する場合において、前段排気浄化触媒16aもしくは燃料添加弁30の不具合を判定する制御について、図2に基づいて説明する。図2はNOx触媒16bに流入する排気の温度制御時における排気浄化システムの不具合を判定する制御のフローチャートである。また、該不具合判定制御は、NOx触媒16bに流入する排気の温度を上流側排気温度センサ31によって検出される排気温度に基づいて制御する必要がある場合、例えば先述したNOx還元制御、SOx被毒再生制御などが行われる場合に、ECU20によって実行される。
【0046】
先ず、S100においては、燃料添加弁30によって添加されるべき燃料の量が、所定の添加量より多いか否かが判断される。ここで、添加されるべき燃料の量とは、NOx触媒16bに流入する排気の温度を所定の温度とするために、上流側排気温度センサ31によって検出される排気温度に基づいてECU20によって算出される燃料の量である。また、所定の添加量とは、例えば、排気温度をT1度だけ上昇させるのに本来的に必要な燃料添加量であって、予め実験等によって測定されてECU20内のROMに格納されている値である。
【0047】
即ち、S100においては、排気温度を上昇させるにあたり、本来必要とされている添加量より多い量の燃料がECU20によって要求されているか否かが判断される。従って、前段排気浄化触媒16a、NOx触媒16b、燃料添加弁30等から構成される排気浄化システムにおいて何らかの不具合が発生している場合には排気温度の上昇が適切に行われていないため、本来必要とされている添加量より多い燃料を添加する必要があると判断されることになる。そこで、S100において、燃料添加弁30によって添加されるべき燃料の量が、所定の添加量より多い場合は、排気浄化システムに何らかの不具合が発生していると考えられ、S101へ進む。一方で、S100において、燃料添加弁30によって添加されるべき燃料の量が、所定の添加量以下の場合は、排気浄化システムには不具合は発生していないと考えられるため、本制御を終了する。
【0048】
S101では、NOx触媒16bに流入する排気の温度とNOx触媒16bから流出する排気の温度との排気温度差がΔT以上であるか否かが判断される。ここで、本実施の形態の排気浄化システムにおいて、上流側排気温度センサ31によって検出された排気温度に基づいて燃料添加弁30による燃料の添加量を調整して排気温度を制御する場合、排気温度の制御における不具合は、(1)前段排気浄化触媒16aによる酸化機能の劣化と、(2)燃料添加弁30による添加が正確に行われないことによって生じると考えられ得る。
【0049】
(1)の不具合においては、前段排気浄化触媒16aの酸化機能が劣化したことによって、排気温度の上昇を更に促進すべくECU20から要求される燃料の添加量が増加したために、(2)の不具合においては、燃料添加弁30が目詰まり等によって、実際に燃料添加弁30から添加される燃料の量がECU20からの指令に対して少なくなっているために、結果的にECU20から要求される燃料の添加量が増加すると考えられる。
【0050】
そこで、本実施の形態の排気浄化システムにおいて、(1)の不具合が発生した場合、燃料添加弁30によって排気に添加された燃料が前段排気浄化触媒16aによって酸化されにくくなるため、該部位での排気温度の上昇が鈍化する。従って、上流側排気温度センサ31によって検出される排気温度の上昇も小さくなるため、更に燃料添加弁30に対して排気に燃料を添加すべくECU20より指令が出される。その結果、排気中に多量の燃料が含有されることとなり、その排気がNOx触媒16bへと流入する。そして、その排気中に含有される燃料が、NOx触媒16bの有する酸化機能によって酸化されることで発熱し、NOx触媒16bから流出する排気の温度が急激に上昇する。
【0051】
そのため、NOx触媒16bの下流側に位置する下流側排気温度センサ32によって検出する排気温度とNOx触媒16bの上流側に位置する上流側排気温度センサ31によって検出する排気温度との温度差が、大きく開くこととなる。そこで、ΔTを、前段排気浄化触媒16aの酸化機能の劣化に起因する、NOx触媒16bに流入する排気の温度とNOx触媒16bから流出する排気の温度との温度差とすることで、前段排気浄化触媒16aの酸化機能の劣化を判定するものである。S101において、該排気温度差がΔT以上であると判断されるとS102へ進み、該排気温度差がΔTより小さいと判断されるとS103へ進む。
【0052】
S102においては、S101で先述した排気温度差がΔT以上であると判断されたことより、前段排気浄化触媒16aにおいて不具合が生じた、即ち前段排気浄化触媒16aの酸化機能が劣化したと判定する。S102の処理が終了すると、本制御を終了する。
【0053】
S103においては、S101で先述した排気温度差がΔTより小さいと判断されたことより、前段排気浄化触媒16aには不具合は生じておらず、排気浄化システムのもう一つの不具合である燃料添加弁30において不具合が生じた、即ち燃料添加弁30が目詰まり等によって正確な量の燃料を添加できない状態にあると判定する。S103の処理が終了すると、本制御を終了する。
【0054】
尚、上記の実施の形態においては、NOx触媒16bから流出する排気の温度を下流側排気温度センサ32によって検出しているが、それに代えて上流側排気温度センサ31によって検出される排気温度と排気空燃比センサ33によって検出されるNOx触媒16bの下流を流れる排気の空燃比から推定してもよい。該排気の空燃比より、燃料添加弁30によって排気に添加された燃料のうちどの程度が、NOx触媒16bにおいて酸化され排気温度の上昇に起因したかを推定することが可能であるから、それによりNOx触媒16bから流出する排気の温度を推定するものである。このようにすることで、下流側排気温度センサ32を設ける必要がなくなる。
【0055】
また、上記の実施の形態において、前段排気浄化触媒16aとNOx触媒16bの間の排気管に設けられている上流側排気温度センサ31は、燃料添加弁30による排気への燃料添加の基準となる排気温度と、NOx触媒16bに流入する排気の温度を測定していることになるが、前段排気浄化触媒16aとNOx触媒16bの間に更に一台の排気温度センサを設け、それぞれの排気温度を異なる排気温度センサによって検出するようにしてもよい。
【0056】
本制御によると、NOx触媒に流入する排気の温度とNOx触媒から流出する排気の温度との温度差によって、該排気浄化システムを構成するNOx触媒の上流側に位置し酸化機能を有する触媒の本来の機能が低下しているか否か、もしくは排気中に燃料を添加する燃料添加弁の本来の機能が低下しているか否かがより正確に判断され、それぞれの機能が低下している場合には該触媒もしくは該燃料添加弁の不具合と判定することが可能となる。更には、不具合と判定された該触媒もしくは該燃料添加弁については、それらの機能を再生させるような処理を行うことによって、または運転者等に該不具合を知らせることで、不具合と判定された該触媒もしくは該燃料添加弁の修理、交換等を促すことが可能である。
【0057】
【発明の効果】
本発明に係る、内燃機関の排気浄化システムの不具合判定方法においては、排気中のNOxを吸蔵還元するNOx触媒の上流側に、酸化機能を有する触媒を備え、排気温度に応じて排気に燃料を添加する制御を行う内燃機関の排気浄化システムにおいて、NOx触媒に流入する排気の温度とNOx触媒から流出する排気の温度との温度差によって、該排気浄化システムを構成するNOx触媒の上流側に位置し酸化機能を有する触媒の本来の機能の劣化をより正確に判定することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る排気浄化システムの不具合判定方法が実行される排気浄化システムおよび該排気浄化システムを含む内燃機関およびその制御系統の概略構成を表すブロック図である。
【図2】本発明の実施の形態に係る排気浄化システムの不具合判定方法が実行される排気浄化システムにおいて、排気浄化システムの構成要素の不具合を判定する不具合判定制御を示すフロー図である。
【符号の説明】
1・・・・内燃機関
3・・・・燃料噴射弁
16a・・・・前段排気浄化触媒
16b・・・・NOx触媒
20・・・・ECU
30・・・・燃料添加弁
31・・・・上流側排気温度センサ
32・・・・下流側排気温度センサ
33・・・・排気空燃比センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a failure of an element constituting an exhaust purification system in an exhaust purification system that performs exhaust purification of an internal combustion engine.
[0002]
[Prior art]
In order to purify exhaust gas discharged from an internal combustion engine, particularly an internal combustion engine that performs lean combustion, a catalyst having a function of oxidizing a substance contained in the exhaust gas, for example, a NOx storage reduction catalyst (hereinafter referred to as “NOx catalyst”) is supported. In addition to collecting the particulate matter contained in the exhaust gas and providing NOx catalyst in the exhaust gas at a high purification rate by providing a NOx catalyst on the upstream side of the filter. For example, see Patent Document 1.) However, if the function of oxidizing the substance in the exhaust gas, which is the catalytic function of the NOx catalyst provided on the upstream side of the filter, is deteriorated, the exhaust gas is not sufficiently purified.
[0003]
Further, the NOx catalyst supported by the filter occludes NOx contained in the exhaust into the catalyst when the exhaust is in a high oxygen concentration state, and the atmosphere around the catalyst is in a low oxygen concentration state and is a reducing component. When an unburned component of the fuel is present, the catalyst purifies NOx in the exhaust gas by reducing NOx stored in the catalyst. Therefore, a technique for more efficiently reducing NOx occluded in the catalyst by adjusting the particle size of the fuel added to the exhaust as a reducing agent in accordance with the exhaust temperature is disclosed (for example, a patent) See reference 2.)
[0004]
However, when the function of oxidizing the substance in the exhaust gas which is the catalytic function of the upstream NOx catalyst is deteriorated, the temperature of the exhaust gas flowing into the filter does not rise, and as a result, a large amount of fuel flows into the filter, When the fuel is oxidized by the NOx catalyst supported on the filter, the temperature of the filter rapidly increases and the filter may be melted.
[0005]
[Patent Document 1]
JP 2002-129950 A
[Patent Document 2]
Japanese Patent Laid-Open No. 2000-240429
[Patent Document 3]
JP 2002-122019 A
[Patent Document 4]
JP 2002-227636 A
[0006]
[Problems to be solved by the invention]
When exhaust purification is performed in an exhaust purification system of an internal combustion engine having an oxidation function, for example, a NOx catalyst, further upstream of the NOx storage reduction catalyst, for example, when NOx stored in the NOx catalyst is reduced In the exhaust gas, fuel or a fuel-modified hydrocarbon (hereinafter simply referred to as “fuel”) is added. As a part of the added fuel is oxidized by the upstream catalyst, the temperature of the exhaust gas flowing into the downstream NOx catalyst rises. At the same time, the added fuel is supplied to the NOx catalyst, so that the exhaust gas flowing into the NOx catalyst becomes a high temperature and rich state, and NOx stored in the NOx catalyst is reduced.
[0007]
Here, in order to efficiently reduce NOx, it is necessary to control the amount of fuel contained in the exhaust gas so that the temperature of the exhaust gas flowing into the NOx catalyst becomes an appropriate temperature. When the oxidation function decreases, the exhaust temperature does not rise even if the amount of fuel contained in the exhaust increases. As a result, the fuel that is originally oxidized by the oxidation reaction on the upstream side flows into the NOx catalyst, so that the excessive temperature of the NOx catalyst may increase due to excessive fuel, and the NOx catalyst may be thermally deteriorated or melted down. . Such problems such as thermal deterioration of the NOx catalyst are not limited to the reduction of the stored NOx, but can occur when control is performed to add fuel to the exhaust gas according to the exhaust gas temperature. Therefore, in the exhaust gas purification system for an internal combustion engine, it is necessary to determine in advance a decrease in the function of its constituent elements.
[0008]
The present invention has been made in view of the above situation, and further includes a catalyst having an oxidation function on the upstream side of the NOx catalyst that occludes and reduces NOx in the exhaust, and controls to add fuel to the exhaust according to the exhaust temperature. In an exhaust gas purification system for an internal combustion engine to be performed, it is more accurately determined whether or not the original function of each element constituting the exhaust gas purification system is deteriorated. It is an object of the present invention to provide a method for determining that a defect has occurred.
[0009]
[Means for Solving the Problems]
The present invention focuses on the difference between the temperature of the exhaust gas flowing into the NOx catalyst and the temperature of the exhaust gas flowing out of the NOx catalyst in order to solve the above problems. This is because the fuel added to the exhaust gas is less likely to be oxidized if the oxidation function of the catalyst provided on the upstream side of the NOx catalyst is lowered when some trouble occurs in the exhaust gas purification system of the internal combustion engine. The temperature of the exhaust gas flowing into the NOx catalyst does not increase so much, and the amount of fuel contained in the exhaust gas flowing into the NOx catalyst increases, so that the temperature of the exhaust gas flowing out from the NOx catalyst increases due to the oxidation reaction in the NOx catalyst. As a result, the exhaust gas temperature difference between the temperature of the exhaust gas flowing into the NOx catalyst and the temperature of the exhaust gas flowing out of the NOx catalyst becomes large.
[0010]
Therefore, a front-stage exhaust purification catalyst that is provided in the exhaust passage and has a function of oxidizing substances contained in the exhaust, and a NOx that is provided in the exhaust passage downstream of the front-stage exhaust purification catalyst and stores and reduces NOx in the exhaust gas. A catalyst, an exhaust temperature detecting means for detecting a temperature of exhaust flowing in an exhaust passage between the upstream exhaust purification catalyst and the NOx catalyst, and at least the upstream exhaust based on the exhaust temperature detected by the exhaust temperature detecting means And a fuel addition means for adding fuel to the exhaust gas flowing through the exhaust passage upstream of the purification catalyst. An exhaust gas purification system for an internal combustion engine comprising: a temperature of exhaust gas flowing out from the NOx catalyst; and a temperature of exhaust gas flowing into the NOx catalyst The exhaust gas temperature difference is detected or estimated, and the exhaust gas temperature detected by the exhaust gas temperature detecting means is set to a predetermined exhaust gas temperature so that the fuel addition means Therefore, when the amount of fuel to be added by the fuel adding means exceeds a predetermined addition amount when the fuel is added to the exhaust, the detected or estimated exhaust gas temperature difference is equal to or greater than the predetermined temperature difference. Determines that the oxidation function of the preceding exhaust purification catalyst has deteriorated.
[0011]
In the exhaust gas purification system of the internal combustion engine, the exhaust gas discharged from the combustion chamber flows into the NOx catalyst after passing through the pre-stage exhaust gas purification catalyst. Therefore, NOx contained in the exhaust gas is mainly stored in the NOx catalyst. Here, since the purification capacity of the NOx catalyst decreases as the amount of NOx occluded in the NOx catalyst increases, the temperature of the exhaust gas flowing into the NOx catalyst and the air-fuel ratio are made constant so that the NOx catalyst occludes. It is necessary to reduce and release the NOx that has been released to restore the purification ability of the NOx catalyst. Here, the control of the exhaust gas temperature and the like for recovery of the purification ability of the NOx catalyst is referred to as NOx reduction control of the NOx catalyst.
[0012]
The NOx catalyst also stores SOx contained in the exhaust gas, and the catalytic function of the NOx catalyst decreases as the amount of SOx stored in the NOx catalyst increases. Therefore, by setting the temperature and air-fuel ratio of the exhaust gas flowing into the NOx catalyst to be constant, it is necessary to release the SOx stored in the NOx catalyst and restore the purification capability of the NOx catalyst. Control of the exhaust gas temperature and the like for recovery of the purification ability of the NOx catalyst is referred to as SOx poisoning regeneration control of the NOx catalyst.
[0013]
Here, in the reduction control of the NOx catalyst and the SOx poisoning regeneration control, it is necessary to raise the temperature of the exhaust gas flowing into the NOx catalyst to an appropriate temperature and to contain the fuel as the reducing agent in the exhaust gas. There is. Therefore, the fuel is added to the exhaust gas in order to control the temperature of the exhaust gas flowing into the NOx catalyst, that is, the temperature of the exhaust gas flowing between the upstream exhaust purification catalyst and the NOx catalyst.
[0014]
Therefore, when it is necessary to increase the temperature of the exhaust gas flowing into the NOx catalyst, a part of the added fuel is added to the front exhaust gas purification catalyst by adding fuel to the exhaust gas by the fuel addition means. As a result of the oxidation, the exhaust temperature rises. At the same time, the remaining added fuel is supplied to the NOx catalyst, and an air-fuel ratio of exhaust gas necessary for the recovery control of the catalytic function of the NOx catalyst is formed. The addition of the fuel to the exhaust by the fuel addition means is not limited to the purpose of recovering the catalytic function of the NOx catalyst, but is performed to control the temperature of the exhaust flowing into the NOx catalyst. If it is.
[0015]
Here, the predetermined addition amount is defined as an addition amount of fuel to be added to raise the temperature of the exhaust gas flowing into the NOx catalyst to a target temperature. Therefore, in the case where the fuel for the predetermined addition amount is added to the exhaust gas by the fuel addition means and the temperature of the exhaust gas flowing into the NOx catalyst is raised to a target temperature, the temperature of the exhaust gas is increased in the upstream exhaust purification catalyst. When it is not possible to sufficiently achieve the above, the amount of fuel to be added to the exhaust is increased by the fuel addition means in order to further promote the temperature rise of the exhaust. That is, it is determined that an amount of fuel exceeding the predetermined addition amount should be added in order to promote an increase in the amount of heat generated by oxidation at the upstream exhaust purification catalyst.
[0016]
However, even if the oxidation function of the front-stage exhaust purification catalyst deteriorates, the amount added by the fuel addition means exceeds the predetermined addition amount. However, in the exhaust purification system, Since there are other components, it is conceivable that the amount of fuel added due to the malfunction of the other components is increased.
[0017]
Therefore, in the exhaust purification system, the exhaust temperature of the exhaust gas flowing into the NOx catalyst and the exhaust gas flowing out from the NOx catalyst is determined whether or not the oxidation function of the upstream exhaust purification catalyst is deteriorated. Judge based on the difference. That is, since the temperature rise of the exhaust gas is slowed due to the deterioration of the oxidation function of the upstream exhaust purification catalyst, the amount of fuel added by the fuel addition means increases to promote the increase in the exhaust gas temperature. As a result, since a large amount of fuel also flows into the NOx catalyst, the temperature of the exhaust gas flowing out from the NOx catalyst becomes high due to the oxidation of the fuel in the NOx catalyst.
[0018]
Therefore, when the oxidation function of the front-stage exhaust purification catalyst deteriorates, the difference between the upstream and downstream exhaust temperatures of the front-stage exhaust purification catalyst becomes more prominent than when the oxidation function does not deteriorate. Therefore, when the exhaust temperature difference is equal to or greater than the predetermined temperature difference defined as a temperature difference at which it is determined that the oxidation function of the front-stage exhaust purification catalyst has deteriorated, it is determined that the oxidation function of the front-stage exhaust purification catalyst. To do.
[0019]
Thus, it is determined whether or not the original function of the front-stage exhaust purification catalyst that is an element constituting the exhaust purification system is deteriorated. If the function of the element is deteriorated, it is determined that the element is defective. It becomes possible to do.
[0020]
The NOx catalyst may be a filter on which the NOx catalyst is supported, and may be exhaust purification means that can collect particulate matter contained in the exhaust gas.
[0021]
Here, detection of the exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst is performed as follows. In the exhaust purification system, the exhaust temperature detection means is a first exhaust temperature detection means, and further, a second exhaust temperature detection means for detecting the temperature of the exhaust gas flowing in the exhaust passage downstream of the NOx catalyst is provided. Therefore, the exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst is determined by the exhaust gas temperature detected by the second exhaust gas temperature detecting means and the first exhaust gas temperature detecting means. It is calculated from the difference with the detected exhaust gas temperature.
[0022]
That is, the first exhaust temperature detection means, which is the exhaust temperature detection means, detects an exhaust temperature that is a reference for fuel addition by the fuel addition means, and determines deterioration of the oxidation function of the NOx catalyst. The temperature of the exhaust gas flowing into the NOx catalyst at the exhaust gas temperature difference is detected. It is to be noted that detection of the exhaust temperature serving as a reference for fuel addition by the fuel addition means, and detection of the temperature of the exhaust gas flowing into the NOx catalyst in the exhaust gas temperature difference for judging deterioration of the oxidation function of the NOx catalyst, Different exhaust temperature detection means may be used.
[0023]
Further, the detection of the exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst can be further performed as follows. That is, the exhaust purification system further includes exhaust air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust flowing through the exhaust passage downstream of the NOx catalyst. Therefore, the exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst is detected by the exhaust gas temperature detected by the exhaust gas temperature detecting means and the exhaust air-fuel ratio detecting means. Estimated from the air-fuel ratio of the exhaust.
[0024]
That is, since the exhaust air / fuel ratio detected by the exhaust air / fuel ratio detecting means provided downstream of the NOx catalyst is the air / fuel ratio of the exhaust gas that has passed through the NOx catalyst, the fuel consumed by the oxidation reaction in the NOx catalyst. It is considered possible to estimate the amount of. Therefore, the temperature of the exhaust gas flowing out from the NOx catalyst is estimated from the estimated amount of fuel consumed, and from the estimated exhaust temperature and the exhaust gas temperature upstream of the NOx catalyst detected by the exhaust temperature detection means, It becomes possible to detect an exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst.
[0025]
Here, in the exhaust gas purification system of the internal combustion engine up to the foregoing, the malfunction of the preceding exhaust gas purification catalyst which is a component of the exhaust gas purification system is determined. However, in the exhaust purification system, when the amount of fuel to be added by the fuel addition means exceeds the predetermined addition amount, there is a problem with the fuel addition means itself in addition to the preceding exhaust purification catalyst. It is done.
[0026]
Therefore, in the exhaust purification system, when the fuel is added to the exhaust gas by the fuel addition unit so that the temperature of the exhaust detected by the exhaust temperature detection unit becomes a predetermined exhaust temperature, the addition is performed by the fuel addition unit. When the amount of fuel to be exceeded exceeds a predetermined addition amount, if the detected exhaust gas temperature difference is smaller than the predetermined temperature difference, it is determined that the fuel addition function of the fuel addition means has deteriorated.
[0027]
That is, as described above, when the fuel is added to the exhaust gas by the fuel adding means so that the exhaust temperature detected by the exhaust temperature detecting means becomes a predetermined exhaust temperature, it should be added by the fuel adding means. The case where the amount of fuel exceeds the predetermined addition amount is due to the fact that the temperature of the exhaust gas is not properly raised by the preceding exhaust purification catalyst. As a factor that the exhaust gas temperature is not appropriately raised, in addition to the deterioration of the oxidation function of the preceding exhaust purification catalyst, the deterioration of the fuel addition function of the fuel addition means can be considered. Here, the fuel addition function of the fuel addition means refers to a function of more accurately adding the amount of fuel to be added to the exhaust gas. In the case of a fuel addition valve, the fuel addition valve is clogged.
[0028]
Therefore, when the detected exhaust gas temperature difference is lower than the predetermined temperature difference, the fuel addition function of the fuel addition means deteriorates without determining that the oxidation function of the front exhaust purification catalyst has deteriorated. Judge that Thereby, it is determined whether or not the original function of the fuel addition means, which is an element constituting the exhaust purification system, is deteriorated. If the function of the element is deteriorated, it is determined that the element is defective. It becomes possible.
[0029]
In addition, the above-described method for determining the malfunction of the exhaust purification system can be configured as one system including the exhaust purification system. That is, the exhaust purification system further includes detection means for detecting an exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst, and the above-mentioned malfunction of the previous exhaust gas purification catalyst. And a failure determination means for determining a failure of the fuel addition means.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Here, an embodiment of a failure determination method for an exhaust purification system of an internal combustion engine according to the present invention will be described based on the drawings. FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system to which the present invention is applied, an internal combustion engine 1 including the exhaust purification system, and a control system thereof.
[0031]
The internal combustion engine 1 is an internal combustion engine having four cylinders 2. Further, a fuel injection valve 3 for directly injecting fuel into the combustion chamber of the cylinder 2 is provided. The fuel injection valve 3 is connected to a pressure accumulation chamber 4 that accumulates fuel at a predetermined pressure. The pressure accumulating chamber 4 communicates with the fuel pump 6 through the fuel supply pipe 5.
[0032]
Next, an intake branch pipe 7 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 7 communicates with a combustion chamber of the cylinder 2 via an intake port. Here, the communication between the combustion chamber of the cylinder 2 and the intake port is performed by opening and closing an intake valve (not shown). The intake branch pipe 7 is connected to the intake pipe 8. An air flow meter 9 that outputs an electrical signal corresponding to the mass of the intake air flowing through the intake pipe 8 is attached to the intake pipe 8. An intake throttle valve 10 for adjusting the flow rate of the intake air flowing through the intake pipe 8 is provided at a portion of the intake pipe 8 located immediately upstream of the intake branch pipe 7. The intake throttle valve 10 is provided with an intake throttle actuator 11 that is configured by a step motor or the like and that opens and closes the intake throttle valve 10.
[0033]
Here, the intake pipe 8 located between the air flow meter 9 and the intake throttle valve 10 is provided with a compressor housing 17a of a centrifugal supercharger (turbocharger) 17 that operates using exhaust energy as a drive source. An intercooler 18 is provided in the intake pipe 8 downstream of the housing 17a for cooling the intake air that has been compressed in the compressor housing 17a and has reached a high temperature.
[0034]
On the other hand, an exhaust branch pipe 12 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 12 communicates with the combustion chamber of the cylinder 2 through an exhaust port. Here, the communication between the combustion chamber of the cylinder 2 and the exhaust port is performed by opening and closing an exhaust valve (not shown). A fuel addition valve 30 that adds fuel to the exhaust gas flowing through the exhaust branch pipe 12 is provided on the side surface of the exhaust branch pipe 12.
[0035]
The exhaust branch pipe 12 is connected to the turbine housing 17 b of the centrifugal supercharger 17. The turbine housing 17b is connected to an exhaust pipe 13, and the exhaust pipe 13 is connected downstream to a muffler (not shown). Further, in the middle of the exhaust pipe 13, there is provided a NOx catalyst 16b for purifying the exhaust by storing and reducing NOx contained in the exhaust discharged from the internal combustion engine. Further, a catalyst having a function of oxidizing substances contained in the exhaust, for example, a NOx catalyst similar to the NOx catalyst 16b, is provided upstream of the NOx catalyst 16b as the pre-stage exhaust purification catalyst 16a. In place of the NOx catalyst 16b, an exhaust purification means that is a filter carrying the NOx catalyst and has a function of collecting particulate matter in the exhaust gas may be used.
[0036]
Further, an exhaust throttle valve 14 for adjusting the flow rate of the exhaust gas flowing through the exhaust pipe 13 is provided in the exhaust pipe 13 downstream of the NOx catalyst 16b. The exhaust throttle valve 14 is provided with an exhaust throttle actuator 15 that is configured by a step motor or the like and that drives the exhaust throttle valve 14 to open and close.
[0037]
Here, the fuel injection valve 3 and the fuel addition valve 30 are opened and closed by a control signal from an electronic control unit (hereinafter referred to as an ECU: Electronic Control Unit) 20. That is, the fuel injection timing and the injection amount in the fuel injection valve 3 and the fuel addition valve 30 are controlled for each fuel injection valve in accordance with a command from the ECU 20.
[0038]
Further, an accelerator opening sensor 19 is electrically connected to the ECU 20, and the ECU 20 receives a signal corresponding to the accelerator opening and calculates an engine output required for the internal combustion engine 1 based on the signal. The crank position sensor 34 is electrically connected to the ECU 20. The ECU 20 receives a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1, and the engine rotational speed of the internal combustion engine 1, the cycle state in the cylinder 2, etc. Is calculated.
[0039]
Further, the exhaust pipe 13 between the front-stage exhaust purification catalyst 16a and the NOx catalyst 16b has an upstream side for detecting the temperature of the exhaust gas flowing through the section, that is, the exhaust gas flowing out from the front-stage exhaust purification catalyst 16a and flowing into the NOx catalyst 16b. An exhaust gas temperature sensor 31 is provided in the exhaust pipe 13 downstream of the NOx catalyst 16b, and a downstream exhaust gas temperature sensor 32 for detecting the temperature of the exhaust gas flowing out from the NOx catalyst 16b. Further, an exhaust air / fuel ratio sensor 33 for detecting the air / fuel ratio of the exhaust gas flowing out from the NOx catalyst 16b is provided in the vicinity of the downstream side exhaust temperature sensor 32 in the exhaust pipe 13 downstream of the NOx catalyst 16b.
[0040]
The upstream exhaust gas temperature sensor 31, the downstream exhaust gas temperature sensor 32, and the exhaust air / fuel ratio sensor 33 are electrically connected to the ECU 20, respectively. Exhaust gas purification is performed by the exhaust gas purification system including these sensors, the front-stage exhaust gas purification catalyst 16a, the NOx catalyst 16b, and the like. Therefore, the ECU 20 regenerates the exhaust purification ability of the NOx catalyst 16 based on the exhaust temperature detected by the upstream exhaust temperature sensor 31 and the air-fuel ratio value detected by the exhaust air-fuel ratio sensor 33. The temperature of the exhaust gas flowing into the exhaust gas and the air-fuel ratio of the exhaust gas are controlled.
[0041]
For example, in order to reduce NOx stored in the NOx catalyst 16b, the temperature of the exhaust gas flowing into the NOx catalyst 16b is raised and the air-fuel ratio of the exhaust gas is made rich, and the NOx catalyst 16b stores the NOx catalyst. So-called SOx poisoning regeneration control that raises the temperature of the exhaust gas flowing into the NOx catalyst 16b in order to separate the SOx, and alternately switches the air-fuel ratio of the exhaust gas to a rich-side air-fuel ratio and a lean-side air-fuel ratio, When a filter carrying a NOx catalyst is provided instead of the NOx catalyst 16b, the temperature of the exhaust gas flowing into the filter is raised in order to oxidize and remove the particulate matter collected by the filter. And filter regeneration control for controlling the air-fuel ratio of the exhaust gas to an appropriate air-fuel ratio.
[0042]
At this time, the ECU 20 issues an injection command to the fuel addition valve 30 to adjust the exhaust temperature and the air-fuel ratio of the exhaust. Part of the fuel injected into the exhaust gas from the fuel addition valve 30 is oxidized by the oxidation function of the front-stage exhaust purification catalyst 16a, so that the temperature of the exhaust gas flowing into the NOx catalyst 16b rises. Further, the remaining fuel is supplied to the NOx catalyst 16b, so that an air-fuel ratio of exhaust necessary for each regeneration control is formed.
[0043]
The control relating to the exhaust temperature and the exhaust air-fuel ratio is performed based on the exhaust temperature detected by the upstream exhaust temperature sensor 31 and the air-fuel ratio detected by the exhaust air-fuel ratio sensor 33, and the temperature of the exhaust flowing into the NOx catalyst 16b. The air-fuel ratio is estimated, and the amount of fuel added by the fuel addition valve 30 is controlled so that the estimated air-fuel ratio becomes a predetermined exhaust temperature and exhaust air-fuel ratio. The relationship between the exhaust temperature in the NOx catalyst 16b and the exhaust temperature detected by the upstream side exhaust temperature sensor 31, and the relationship between the air-fuel ratio of the exhaust in the NOx catalyst 16b and the air-fuel ratio detected by the exhaust air-fuel ratio sensor 33 are as follows. What is necessary is just to obtain | require by experiment etc. and to store in ROM in ECU20 as a map.
[0044]
Here, in order to increase the temperature of the inflowing exhaust gas flowing into the NOx catalyst 16b, the ECU 20 adds the amount of fuel to the exhaust gas by the fuel addition valve 30 based on the exhaust gas temperature detected by the upstream exhaust gas temperature sensor 31. However, if the exhaust gas temperature does not rise to an appropriate level even though fuel is added to the exhaust gas, the exhaust gas purification system is configured as a malfunction of the exhaust gas purification system. It is considered that an inaccurate amount of fuel is added due to deterioration of the oxidation function of the pre-stage exhaust purification catalyst 16a or a clogging of the fuel addition valve 30 due to a large increase in the exhaust temperature. Further, in the state where such a problem occurs, it becomes difficult to accurately control the temperature of the exhaust gas supplied to the NOx catalyst 16b as a result, and the above-described NOx reduction control or the like cannot be performed reliably. In addition, when the excessive fuel is supplied to the NOx catalyst 16b, the NOx catalyst 16b is excessively heated, and the NOx catalyst 16b may be thermally deteriorated or melted.
[0045]
Therefore, control for determining the malfunction of the front-stage exhaust purification catalyst 16a or the fuel addition valve 30 when controlling the temperature of the exhaust gas flowing into the NOx catalyst 16b will be described with reference to FIG. FIG. 2 is a flowchart of control for determining a malfunction of the exhaust purification system at the time of temperature control of the exhaust gas flowing into the NOx catalyst 16b. In addition, the malfunction determination control is performed when the temperature of the exhaust gas flowing into the NOx catalyst 16b needs to be controlled based on the exhaust gas temperature detected by the upstream exhaust gas temperature sensor 31, for example, the above-described NOx reduction control, SOx poisoning, etc. It is executed by the ECU 20 when regeneration control or the like is performed.
[0046]
First, in S100, it is determined whether or not the amount of fuel to be added by the fuel addition valve 30 is greater than a predetermined addition amount. Here, the amount of fuel to be added is calculated by the ECU 20 based on the exhaust gas temperature detected by the upstream exhaust gas temperature sensor 31 in order to set the temperature of the exhaust gas flowing into the NOx catalyst 16b to a predetermined temperature. The amount of fuel The predetermined addition amount is, for example, a fuel addition amount that is essentially required to raise the exhaust temperature by T1 degree, and is a value that is measured in advance through experiments or the like and stored in the ROM in the ECU 20. It is.
[0047]
That is, in S100, it is determined whether or not the ECU 20 requires a larger amount of fuel than the amount of fuel that is originally required for raising the exhaust gas temperature. Therefore, if any problem occurs in the exhaust purification system including the front-stage exhaust purification catalyst 16a, the NOx catalyst 16b, the fuel addition valve 30 and the like, the exhaust temperature is not increased properly, so it is originally necessary. Therefore, it is determined that it is necessary to add more fuel than the addition amount. Therefore, when the amount of fuel to be added by the fuel addition valve 30 is larger than the predetermined addition amount in S100, it is considered that some problem has occurred in the exhaust purification system, and the process proceeds to S101. On the other hand, when the amount of fuel to be added by the fuel addition valve 30 is equal to or less than the predetermined addition amount in S100, it is considered that no problem has occurred in the exhaust purification system, and thus this control is terminated. .
[0048]
In S101, it is determined whether or not an exhaust temperature difference between the temperature of the exhaust gas flowing into the NOx catalyst 16b and the temperature of the exhaust gas flowing out of the NOx catalyst 16b is ΔT or more. Here, in the exhaust purification system of the present embodiment, when the exhaust temperature is controlled by adjusting the amount of fuel added by the fuel addition valve 30 based on the exhaust temperature detected by the upstream exhaust temperature sensor 31, the exhaust temperature It can be considered that the malfunction in the control is caused by (1) deterioration of the oxidation function by the front-stage exhaust purification catalyst 16a and (2) the fact that the addition by the fuel addition valve 30 is not performed accurately.
[0049]
In the problem (1), because the oxidation function of the front-stage exhaust purification catalyst 16a has deteriorated, the amount of fuel required from the ECU 20 to further increase the exhaust temperature has increased. , The amount of fuel actually added from the fuel addition valve 30 is less than the command from the ECU 20 due to clogging of the fuel addition valve 30 or the like, and as a result, the fuel required from the ECU 20 It is thought that the amount of addition increases.
[0050]
Therefore, in the exhaust purification system of the present embodiment, when the problem (1) occurs, the fuel added to the exhaust by the fuel addition valve 30 is less likely to be oxidized by the upstream exhaust purification catalyst 16a. The rise in exhaust temperature slows down. Accordingly, since the rise in the exhaust temperature detected by the upstream side exhaust temperature sensor 31 is also reduced, a command is issued from the ECU 20 to the fuel addition valve 30 to add fuel to the exhaust. As a result, a large amount of fuel is contained in the exhaust gas, and the exhaust gas flows into the NOx catalyst 16b. The fuel contained in the exhaust gas is oxidized by the oxidation function of the NOx catalyst 16b to generate heat, and the temperature of the exhaust gas flowing out from the NOx catalyst 16b rapidly increases.
[0051]
Therefore, the temperature difference between the exhaust temperature detected by the downstream exhaust temperature sensor 32 located downstream of the NOx catalyst 16b and the exhaust temperature detected by the upstream exhaust temperature sensor 31 located upstream of the NOx catalyst 16b is large. Will be opened. Therefore, by setting ΔT to a temperature difference between the temperature of the exhaust gas flowing into the NOx catalyst 16b and the temperature of the exhaust gas flowing out of the NOx catalyst 16b due to the deterioration of the oxidation function of the upstream exhaust gas purification catalyst 16a, the upstream exhaust gas purification is performed. The deterioration of the oxidation function of the catalyst 16a is determined. If it is determined in S101 that the exhaust gas temperature difference is equal to or greater than ΔT, the process proceeds to S102, and if it is determined that the exhaust gas temperature difference is smaller than ΔT, the process proceeds to S103.
[0052]
In S102, since it is determined that the exhaust gas temperature difference described above in S101 is equal to or greater than ΔT, it is determined that a problem has occurred in the front exhaust purification catalyst 16a, that is, the oxidation function of the front exhaust purification catalyst 16a has deteriorated. When the process of S102 ends, this control ends.
[0053]
In S103, since it is determined that the exhaust gas temperature difference described above in S101 is smaller than ΔT, the pre-exhaust exhaust purification catalyst 16a has no malfunction, and the fuel addition valve 30 is another malfunction of the exhaust purification system. It is determined that the fuel addition valve 30 is in a state in which an accurate amount of fuel cannot be added due to clogging or the like. When the process of S103 ends, this control ends.
[0054]
In the above-described embodiment, the temperature of the exhaust gas flowing out from the NOx catalyst 16b is detected by the downstream exhaust temperature sensor 32. Instead, the exhaust temperature detected by the upstream exhaust temperature sensor 31 and the exhaust gas are detected. It may be estimated from the air-fuel ratio of the exhaust gas flowing downstream of the NOx catalyst 16b detected by the air-fuel ratio sensor 33. From the air-fuel ratio of the exhaust, it is possible to estimate how much of the fuel added to the exhaust by the fuel addition valve 30 is oxidized in the NOx catalyst 16b and is caused by the rise in the exhaust temperature. The temperature of the exhaust gas flowing out from the NOx catalyst 16b is estimated. By doing so, it is not necessary to provide the downstream side exhaust temperature sensor 32.
[0055]
In the above embodiment, the upstream side exhaust temperature sensor 31 provided in the exhaust pipe between the front stage exhaust purification catalyst 16a and the NOx catalyst 16b serves as a reference for fuel addition to the exhaust by the fuel addition valve 30. Although the exhaust temperature and the temperature of the exhaust gas flowing into the NOx catalyst 16b are measured, another exhaust temperature sensor is further provided between the upstream exhaust purification catalyst 16a and the NOx catalyst 16b, and the respective exhaust temperatures are measured. You may make it detect with a different exhaust temperature sensor.
[0056]
According to this control, the temperature of the exhaust gas flowing into the NOx catalyst and the temperature of the exhaust gas flowing out of the NOx catalyst are changed, so that the original catalyst of the catalyst having an oxidation function located upstream of the NOx catalyst constituting the exhaust gas purification system. If it is judged more accurately whether or not the function of the fuel addition valve that adds the fuel into the exhaust is deteriorated or not, the function of each is deteriorated. It can be determined that the catalyst or the fuel addition valve is defective. Further, for the catalyst or the fuel addition valve determined to be defective, by performing a process for regenerating the function or notifying the driver or the like, the catalyst or the fuel addition valve is determined to be defective. It is possible to promote repair or replacement of the catalyst or the fuel addition valve.
[0057]
【The invention's effect】
In the failure determination method for an exhaust gas purification system for an internal combustion engine according to the present invention, a catalyst having an oxidation function is provided upstream of a NOx catalyst that occludes and reduces NOx in the exhaust, and fuel is supplied to the exhaust according to the exhaust temperature. In the exhaust gas purification system of the internal combustion engine that performs the control to be added, the temperature difference between the temperature of the exhaust gas flowing into the NOx catalyst and the temperature of the exhaust gas flowing out from the NOx catalyst is positioned upstream of the NOx catalyst constituting the exhaust gas purification system. Therefore, it is possible to more accurately determine the deterioration of the original function of the catalyst having the oxidation function.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an exhaust purification system in which an exhaust purification system malfunction determination method according to an embodiment of the present invention is executed, an internal combustion engine including the exhaust purification system, and a control system thereof.
FIG. 2 is a flowchart showing a failure determination control for determining a failure of a component of the exhaust purification system in the exhaust purification system in which the failure determination method of the exhaust purification system according to the embodiment of the present invention is executed.
[Explanation of symbols]
1 ... Internal combustion engine
3. Fuel injection valve
16a ... Pre-stage exhaust purification catalyst
16b ... NOx catalyst
20 .... ECU
30 ... Fuel addition valve
31... Upstream exhaust temperature sensor
32... Downstream exhaust temperature sensor
33 ... Exhaust air / fuel ratio sensor

Claims (4)

排気通路に設けられ、排気に含まれる物質を酸化する機能を有する前段排気浄化触媒と、
前記前段排気浄化触媒の下流側の排気通路に設けられ、排気中のNOxを吸蔵、還元するNOx触媒と、
前記前段排気浄化触媒と前記NOx触媒の間の排気通路を流れる排気の温度を検出する排気温度検出手段と、
少なくとも前記排気温度検出手段によって検出された排気温度に基づいて、前記前段排気浄化触媒の上流側の排気通路を流れる排気に燃料を添加する燃料添加手段と、を備える内燃機関の排気浄化システムにおいて、
前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差を検出又は推定し、
前記排気温度検出手段によって検出される排気の温度が所定の排気温度となるべく前記燃料添加手段によって排気に燃料の添加が行われる際に前記燃料添加手段によって添加されるべき燃料の量が所定の添加量を越えるとき、検出又は推定された前記排気温度差が所定温度差以上である場合には前記前段排気浄化触媒の酸化機能が劣化していると判定する排気浄化システムの不具合判定方法。
A pre-stage exhaust purification catalyst provided in the exhaust passage and having a function of oxidizing a substance contained in the exhaust;
A NOx catalyst provided in an exhaust passage on the downstream side of the upstream exhaust purification catalyst, for storing and reducing NOx in the exhaust;
Exhaust temperature detection means for detecting the temperature of the exhaust gas flowing through the exhaust passage between the front stage exhaust purification catalyst and the NOx catalyst;
An exhaust gas purification system for an internal combustion engine, comprising: fuel addition means for adding fuel to the exhaust gas flowing through the exhaust passage upstream of the preceding exhaust gas purification catalyst based on at least the exhaust gas temperature detected by the exhaust gas temperature detection means;
Detecting or estimating an exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst;
The amount of fuel to be added by the fuel addition means when the fuel addition means adds fuel to the exhaust gas so that the exhaust temperature detected by the exhaust temperature detection means reaches a predetermined exhaust temperature. The exhaust gas purification system malfunction determination method for determining that the oxidation function of the front exhaust gas purification catalyst is deteriorated when the detected or estimated exhaust gas temperature difference is greater than or equal to a predetermined temperature difference when exceeding the amount.
前記排気温度検出手段を第一排気温度検出手段とし、
前記排気浄化システムは、更に前記NOx触媒の下流の排気通路を流れる排気の温度を検出する第二排気温度検出手段を備え、
前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差は、前記第二排気温度検出手段によって検出された排気温度と前記第一排気温度検出手段によって検出された排気温度との差より算出されることを特徴とする請求項1に記載の排気浄化システムの不具合判定方法。
The exhaust temperature detection means is a first exhaust temperature detection means,
The exhaust purification system further includes second exhaust temperature detection means for detecting the temperature of exhaust flowing through the exhaust passage downstream of the NOx catalyst,
An exhaust temperature difference between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst is detected by the exhaust temperature detected by the second exhaust temperature detection means and the first exhaust temperature detection means. The malfunction determination method for an exhaust purification system according to claim 1, wherein the malfunction determination method is calculated from a difference from the exhaust temperature.
前記排気浄化システムは、更に前記NOx触媒の下流の排気通路を流れる排気の空燃比を検出する排気空燃比検出手段を備え、
前記NOx触媒から流出する排気の温度と該NOx触媒に流入する排気の温度との排気温度差は、前記排気温度検出手段によって検出される排気温度と前記排気空燃比検出手段によって検出される排気の空燃比とから推定されることを特徴とする請求項1に記載の排気浄化システムの不具合判定方法。
The exhaust purification system further includes an exhaust air / fuel ratio detecting means for detecting an air / fuel ratio of exhaust flowing in an exhaust passage downstream of the NOx catalyst,
The difference in exhaust temperature between the temperature of the exhaust gas flowing out from the NOx catalyst and the temperature of the exhaust gas flowing into the NOx catalyst is the exhaust temperature detected by the exhaust gas temperature detecting means and the exhaust gas temperature detected by the exhaust air / fuel ratio detecting means. 2. The exhaust gas purification system malfunction determination method according to claim 1, wherein the malfunction determination method is estimated from an air-fuel ratio.
前記排気浄化システムにおいて、更に前記排気温度検出手段によって検出される排気の温度が所定の排気温度となるべく前記燃料添加手段によって排気に燃料の添加が行われる際に前記燃料添加手段によって添加されるべき燃料の量が所定の添加量を越えるとき、検出された前記排気温度差が所定温度差より小さい場合には前記燃料添加手段の燃料添加機能が劣化していると判定することを特徴とする請求項1から請求項3の何れかに記載の排気浄化システムの不具合判定方法。In the exhaust purification system, when the fuel is added to the exhaust gas by the fuel addition unit so that the temperature of the exhaust gas detected by the exhaust temperature detection unit becomes a predetermined exhaust temperature, it should be added by the fuel addition unit. When the amount of fuel exceeds a predetermined addition amount, if the detected exhaust gas temperature difference is smaller than the predetermined temperature difference, it is determined that the fuel addition function of the fuel addition means is deteriorated. The malfunction determination method of the exhaust gas purification system according to any one of claims 1 to 3.
JP2003117904A 2003-04-23 2003-04-23 Defect determination method of exhaust purification system Expired - Fee Related JP4311071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117904A JP4311071B2 (en) 2003-04-23 2003-04-23 Defect determination method of exhaust purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117904A JP4311071B2 (en) 2003-04-23 2003-04-23 Defect determination method of exhaust purification system

Publications (2)

Publication Number Publication Date
JP2004324477A JP2004324477A (en) 2004-11-18
JP4311071B2 true JP4311071B2 (en) 2009-08-12

Family

ID=33497611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117904A Expired - Fee Related JP4311071B2 (en) 2003-04-23 2003-04-23 Defect determination method of exhaust purification system

Country Status (1)

Country Link
JP (1) JP4311071B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148229B2 (en) 2005-01-28 2012-04-03 Nec Corporation Method for manufacturing a semiconductor light-receiving device
CN103016119A (en) * 2011-09-26 2013-04-03 通用汽车环球科技运作有限责任公司 On-board diagnostic method for NO2 formation in an oxidation catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161718A (en) * 2004-12-08 2006-06-22 Toyota Motor Corp Exhaust gas purification system for internal combustion engine
JP4510709B2 (en) * 2005-07-05 2010-07-28 本田技研工業株式会社 Catalyst deterioration judgment device
JP4706404B2 (en) * 2005-09-13 2011-06-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4710564B2 (en) * 2005-11-22 2011-06-29 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP4428361B2 (en) * 2006-05-24 2010-03-10 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP4650370B2 (en) * 2006-08-04 2011-03-16 トヨタ自動車株式会社 Catalyst deterioration detector
JP4530081B2 (en) 2008-07-25 2010-08-25 トヨタ自動車株式会社 Catalyst deterioration diagnosis apparatus and catalyst deterioration diagnosis method for internal combustion engine
US8407985B2 (en) * 2009-07-28 2013-04-02 International Engine Intellectual Property Company, Llc Method of monitoring hydrocarbon levels in a diesel particulate filter
US8806928B2 (en) * 2010-04-30 2014-08-19 Toyota Jidosha Kabushiki Kaisha Catalyst deterioration detection apparatus and catalyst deterioration detection method for internal combustion engine
CN104729837A (en) * 2013-12-20 2015-06-24 北汽福田汽车股份有限公司 Performance testing method and system for diesel oxidation catalyst (DOC)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148229B2 (en) 2005-01-28 2012-04-03 Nec Corporation Method for manufacturing a semiconductor light-receiving device
CN103016119A (en) * 2011-09-26 2013-04-03 通用汽车环球科技运作有限责任公司 On-board diagnostic method for NO2 formation in an oxidation catalyst
CN103016119B (en) * 2011-09-26 2015-09-30 通用汽车环球科技运作有限责任公司 The on-board diagnostic method that NO2 in oxidation catalyst is formed

Also Published As

Publication number Publication date
JP2004324477A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP3933172B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP3979437B1 (en) Exhaust gas purification system control method and exhaust gas purification system
US8596062B2 (en) Exhaust gas control apparatus and exhaust gas control method for internal combustion engine
KR101030861B1 (en) Exhaust purification system of internal combustion engine
JP4311071B2 (en) Defect determination method of exhaust purification system
JP2006161718A (en) Exhaust gas purification system for internal combustion engine
JP4506060B2 (en) Particulate filter regeneration control device
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP4760671B2 (en) Fault detection system for differential pressure sensor
JP4276472B2 (en) Catalyst deterioration determination device for internal combustion engine
JP2012122336A (en) Clogging determination device of air filter for internal combustion engine
JP4969225B2 (en) Engine exhaust system with DPF device
JP4811333B2 (en) Exhaust gas purification system for internal combustion engine
JP4345344B2 (en) Exhaust gas purification system for internal combustion engine
JP4269927B2 (en) Exhaust gas purification system for internal combustion engine
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
JP4333230B2 (en) Exhaust gas purification system for internal combustion engine
JP4305402B2 (en) Exhaust gas purification device for internal combustion engine
JP3979099B2 (en) Exhaust gas purification device for internal combustion engine
JP2004285947A (en) Exhaust purification device for internal combustion engine
JP4179332B2 (en) Exhaust gas purification system for internal combustion engine
JP4248415B2 (en) Exhaust gas purification system for internal combustion engine
JP3911408B2 (en) Exhaust gas purification device for internal combustion engine
JP2005163652A (en) Emission control device
JP2004162612A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090504

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees