[go: up one dir, main page]

JP4306744B2 - 生体認証装置 - Google Patents

生体認証装置 Download PDF

Info

Publication number
JP4306744B2
JP4306744B2 JP2007051032A JP2007051032A JP4306744B2 JP 4306744 B2 JP4306744 B2 JP 4306744B2 JP 2007051032 A JP2007051032 A JP 2007051032A JP 2007051032 A JP2007051032 A JP 2007051032A JP 4306744 B2 JP4306744 B2 JP 4306744B2
Authority
JP
Japan
Prior art keywords
living body
microlens array
imaging
unit
biometric authentication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007051032A
Other languages
English (en)
Other versions
JP2008217190A (ja
Inventor
学治 橋本
潔 大里
功 市村
俊夫 渡辺
敬 中尾
健二 山本
英雄 佐藤
淳志 梶原
健吾 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007051032A priority Critical patent/JP4306744B2/ja
Priority to US12/071,638 priority patent/US7550707B2/en
Publication of JP2008217190A publication Critical patent/JP2008217190A/ja
Application granted granted Critical
Publication of JP4306744B2 publication Critical patent/JP4306744B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/30Individual registration on entry or exit not involving the use of a pass
    • G07C9/32Individual registration on entry or exit not involving the use of a pass in combination with an identity check
    • G07C9/37Individual registration on entry or exit not involving the use of a pass in combination with an identity check using biometric data, e.g. fingerprints, iris scans or voice recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、マイクロレンズアレイを用いた生体認証装置に関する。
近年、特定エリアの入退出管理や銀行のATMなどにおいて、生体認証を用いた個人識別技術(バイオメトリックス)の導入が開始されている。このため、IDカードの偽造や成り済ましによる犯罪の増加が社会問題となってきており、偽造不可能な個人の認証方法の確立が望まれている。
このような生体の認証方法としては、顔、指紋、声紋、虹彩、静脈などを認証用データとして用いる方法が提案されている。例えば、顔を認証用データとする方式では、体調や化粧により、個人の特徴を精確に捉えることが難しく、また成長等により顔の特徴は変化し易いため、生涯同一のデータを使用することが難しい。このため、顔を用いた認証では、一般的に高い精度を実現することが困難とされている。また、指紋、声紋、虹彩等については、比較的変化の少ない個人情報ではあるが、樹脂をもちいた指紋の複製、録音装置を用いた声紋の録再生、高精細なプリンターを用いた虹彩パターンの複製などの偽造行為が問題視されている。
他方、指や手の平の皮膚下に存在する静脈の形状パターンは、2〜3歳頃からほとんど変化が無く、人間の生涯を通して安定した識別データとして利用することが可能である。また、表面より直接目視することが不可能であるため偽造されにくく、これまでにも様々な提案がなされている(例えば、特許文献1)。
ここで、図14(A)に、上記のような静脈認証方式を採用した従来の生体認証装置の例を示す。従来技術においては、認証対象となる指2を指定された場所にかざす事で、静脈のパターン認識を行うことが可能である。具体的には、指2の短手方向(または長手方向)に配置されたLED(Light Emitting Diode)等の光源100により近赤外光を照射することによって、静脈を流れる血液ヘモグロビンの光吸収を観察することが出来る。静脈での光吸収によるコントラスト変化は、1枚の屈折型集光レンズ101によりCCD(Charge Coupled Device:電荷結合素子)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子102へと結像され、図14(B)に示すような静脈形状を含んだ認証用データを取得することができる。
また、認証用データの精度(解像度)を高めるために、マイクロ(小径)レンズを複数用いたマイクロレンズアレイ等の複眼光学系を用いた技術が提案されている(例えば、特許文献2,3)。一般に、図14(A)に示したような構成において解像度を高めるためには、集光レンズ101と撮像素子102の画素数(同じ画素ピッチであれば大きさ)を増やす必要がある。このため、集光レンズ101としては、開口数(NA)の高いレンズを用いる必要がある。ところが、開口数の高いレンズは、収差が発生し易く、製造コストが高くなるため実用的ではない。これに対し、マイクロレンズアレイを用いた複眼光学系では、マイクロレンズごとに取得した複数のデータに基づいて画像処理を行うことにより、低コストで精度の高い画像を獲得することができる。従って、集光レンズ101の代わりにマイクロレンズアレイを用いることで、画像データの精度を高めることができる。
特開2006−68328号公報 特開2003−283932号公報 特開2005−69936号公報
ところが、上述した構成の生体認証装置では、指内部のある一つの面を認証対称としているため、認証用データとしては2次元のデータとなる。このため、例えば、指がガラス等の上に配置されて認証が行われる場合、ガラスと接している面については、認証用データが得られるものの、ガラスに接していない部分については、データが得られないため、指の配置により獲得データに差異が生じ、認証精度が不十分であるという問題がある。また、2次元の認証データでは、何らかの方法で認証データが搾取された場合、複製することも不可能ではないため、安全性の点においても問題がある。
本発明はかかる問題点に鑑みてなされたもので、その目的は、高精度かつ高安全性を実現することが可能な生体認証装置を提供することにある。
本発明の生体認証装置は、生体へ向けて光を照射する光源と、生体からの光を集光すると共に互いに異なる屈折力を有する複数のマイクロレンズ同士が周期的に配列してなるマイクロレンズアレイ部と、このマイクロレンズアレイ部で集光された光に基づいて生体の複数の層の撮像データを取得する撮像素子と、生体の複数層分の撮像データに基づいて生体の認証を行う認証部とを備えたものである。
本発明の生体認証装置では、光源から生体へ向けて光が照射されると、複数のマイクロレンズが異なる屈折力を有していることにより、それぞれの屈折力に応じて撮像が行われ、生体の複数層分の撮像データが得られる。そして、これら複数層分の撮像データが、例えばそれぞれの焦点位置情報と組み合わされて処理されることにより、生体の奥行き情報を含めた3次元的な形状情報の構築が可能となり、この3次元情報に基づいて生体の認証が行われる。また、マイクロレンズアレイにおいて、互いに異なる屈折力を有する複数のマイクロレンズ同士が周期的に配列されていることにより、生体がマイクロレンズアレイに対してどの位置に配置された場合であっても、3次元情報を得易くなる。
本発明の生体認証装置によれば、生体へ向けて光を照射する光源と、生体からの光を集光すると共に異なる屈折力を有する複数のマイクロレンズを含むマイクロレンズアレイ部と、このマイクロレンズアレイ部で集光された光に基づいて生体の複数の層の撮像データを取得する撮像素子と、生体の複数層分の撮像データに基づいて生体の認証を行う認証部とを備えるようにしたので、生体の複数層分の撮像データに基づいて生体の奥行き情報を含めた3次元的な形状情報の構築が可能となり、3次元情報に基づいた生体認証を行うことができる。従って、従来のように2次元情報に基づいて生体認証を行う場合に比べ、認証精度を高くすることができると共に、認証情報の複製が困難となるため、安全性を向上させることが可能となる。また、マイクロレンズアレイにおいて、互いに屈折力が異なる複数のマイクロレンズを周期的に配列したので、生体の位置を固定するための固定用カップ等が不要となるため、装置の薄型化を実現できる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る生体認証装置(生体認証装置1)の全体構成を表したものである。図2は、生体認証装置1の概要構成を表す斜視図である。この生体認証装置1は、撮像対象物である生体(例えば、指先)2を撮像して生体認証を行い、認証結果データDoutを出力するものであり、光源10と、固定用カップ11と、マイクロレンズアレイ12と、撮像素子13と、画像処理部14と、パターン保持部15と、認証部16と、電圧供給部17と、光源駆動部181と、撮像素子駆動部182と、制御部19とから構成されている。マイクロレンズアレイ12は、その屈折力が変化するように構成されている。
光源10は、撮像対象物である生体2へ向けて光を照射するものであり、例えば、LED等により構成される。この光源10は、近赤外の波長領域(700nm〜1200nm程度)の光を発するものである。そのような波長領域の光を用いた場合、生体に対する透過率と、生体内の還元ヘモグロビン(静脈)への吸収率との兼ね合いより、後述する生体2の静脈認証の際の光利用効率をより高めることができるからである。
固定用カップ11は、認証時に生体2を固定して保持するためのものであり、底面は開口部となっているか、あるいは光を透過させる構造、カバーガラス等の透明部材が設けられた構造であってもよい。
マイクロレンズアレイ12は、後述する複数のマイクロレンズがマトリクス状に配列してなり、固定用カップ11の下方(具体的には、固定用カップ11と撮像素子13との間)に配置されている。このマイクロレンズアレイ12内のマイクロレンズは、例えば、液体レンズや液晶レンズ等から構成され、任意の電圧が印加されることで焦点位置が変化する可変焦点レンズとなっている。このマイクロレンズは、撮像対象物である生体2の撮像レンズとして機能している。なお、マイクロレンズアレイ12の詳細については、後述する。
撮像素子13は、マイクロレンズアレイ12からの光を受光して撮像データを取得するものであり、後述する静脈認証時におけるマイクロレンズアレイ12の焦点面に配置されている。なお、この撮像素子13は、例えば、マトリクス状に配列された複数のCCD等により構成される。
画像処理部14は、制御部19からの制御に応じて、撮像素子13で得られた撮像データに所定の画像処理を施し、認証部16へ出力するものである。なお、この画像処理部14、ならびに後述する認証部16および制御部19は、例えばマイクロコンピュータなどにより構成される。
パターン保持部15は、生体認証の際に用いる生体認証パターン(認証の際に撮像して得られた撮像パターンに対する比較パターンであり、予め生体を撮像して得られたもの)が保持される部分であり、不揮発性の記録素子(例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)など)により構成される。認証部16は、制御部19からの制御に応じて、画像処理部14から出力される撮像パターンと、パターン保持部15に保持されている生体認証パターンとを比較することにより、撮像対象である生体2の認証を行う部分である。
電圧供給部17は、マイクロレンズアレイ12内のマイクロレンズに対して電圧を供給するものであり、詳細は後述するが、この供給電圧の大きさに応じて、マイクロレンズアレイ12の屈折力を変化させるようになっている。
光源駆動部181は、制御部19からの制御に応じて、光源10の発光駆動を行うものである。撮像素子駆動部182は、制御部19からの制御に応じて、撮像素子13の撮像駆動(受光駆動)を行うものである。制御部19は、画像処理部14、認証部16、電圧供給部17、光源駆動部181および撮像素子駆動部182の動作を制御するものである。
次に、図3を参照して、マイクロレンズアレイ12の構成について詳細に説明する。図3は、マイクロレンズアレイ12の断面構成を拡大して表したものである。
このマイクロレンズアレイ12では、対向する一対の基板121,125間に液晶層123が形成され、この液晶層123と基板121,125との間には、それぞれ、電極122,124が形成されている。
基板121,125は、それぞれ、例えばガラス基板などの透明基板により構成され、入射光線を透過可能となっている。電極122,124には、電圧供給部17から電圧が供給される。これら電極122,124は、それぞれ、例えばITO(Indium Tin Oxide;酸化インジウムスズ)などの透明電極により構成され、基板121,125と同様に、入射光線を透過可能となっている。電極122,124の表面S1,S2のうち、電極122側の表面S1には、凹状の複数の曲面がマトリクス状に形成され、これにより複数の液晶マイクロレンズを構成するようになっている。液晶層123は、例えばネマティック液晶などの液晶材料により構成され、電極122,124間に印加される電圧に応じて屈折率が変化するようになっている。
次に、図1〜図5を参照して、本実施の形態の生体認証装置1の動作(生体認証処理)について詳細に説明する。ここで、図4は、マイクロレンズアレイ12の作用を説明するための断面構成であり、図5は指の静脈パターン取得の際の光路を要部断面図で表したものである。
この生体認証装置1では、まず、固定用カップ11上に生体(例えば、指先)2が置かれると、光源駆動部181の駆動動作により光源10から光Lout が射出され、固定用カップ12の底面側より生体2へ照射される。そして、マイクロレンズアレイ12内のマイクロレンズ(具体的には、電極122,124間)には、制御部19の制御に応じて電圧供給部17から電圧が印加され、この状態で生体2の撮像がなされることにより、生体2の静脈パターンが取得される。このとき、マイクロレンズへの供給電圧が低いと、それに応じて液晶層123の屈折率も小さくなり、その結果、マイクロレンズへの入射光線は、例えば図4中の光線L1のように、比較的小さな屈折角となるような屈折方向へ屈折され、比較的長い焦点距離(例えば、図4に示した光軸L0上の焦点位置P1)で集光される。逆に、マイクロレンズへの供給電圧が高いと、それに応じて液晶層123の屈折率も大きくなり、その結果、マイクロレンズへの入射光線は、例えば図4中の光線L2のように、比較的大きな屈折角となるような屈折方向へ屈折され、比較的短い焦点距離(例えば、図4に示した光軸L0上の焦点位置P2)で集光される。
このように、供給電圧を変化させることにより、異なる屈折力を発現させて、マイクロレンズアレイ12の焦点距離を変化させることができる。従って、マイクロレンズアレイ12に対して、電圧を複数回、段階的に変化するように供給することにより、生体2の内部の異なる複数の層における静脈の撮像データ(静脈パターン)が、撮像素子13において、それぞれ得られる。例えば図5に示したように、マイクロレンズ12への供給電圧を、V1,V2,V3(V1<V2<V3)(図示せず)と変化させて、それぞれの状態で撮像データを得ることにより、生体2の内部の3つの層D11,D12,D13における静脈パターンが得られる。
ここで、実際に上記のような手法により3次元情報を得ようとした場合の具体例について説明する。まず、マイクロレンズアレイ12のレンズ中心から被写体までの距離をa、レンズ中心から撮像面までの距離をb、レンズの焦点距離をfとすると式(1)のような関係が成り立つ。また、仮に測定対象である生体2の厚みを10mm前後と想定し、固定用カップ11に生体2を置いた際に、a=4、b=4、光軸深さ方向(生体2の奥行き方向)に4mm(a=4±2mm)の3次元情報を得ようとした場合を仮定すると、式(1)よりf=1.3〜2.4の値をとり、レンズ直径D=0.2と仮定すると、式(2)よりNA換算で0.04〜0.08となる。この数値は、液体レンズや液晶レンズを用いた場合でも、十分実現可能な数値であると考えられる。また、単独で実現が困難な場合には、従来の屈折型レンズと組合せて構成することも可能であり、例えば屈折型レンズでNA=0.06のレンズを作成し、残りNA変化量±0.02をマイクロレンズで変化させれば良いこととなる。
1/a+1/b=1/f ……(1)
NA=D/2f ……(2)
また、写真用レンズにおけるフィルム上の許容錯乱円径をφとすると、光学系の焦点深度H(片側)は、式(3)により概算される。一般に、35ミリフィルムの光学系であればφ=40μm程度と考えられるので、焦点深度Hは、0.27mm(f=1.3)〜0.48mm(f=2.4)の値となる。よって、深さ方向に4mmの3次元画像を得ようとした場合には、マイクロレンズの焦点距離fを変化させて5〜8回の画像を取得すれば、許容錯乱円径φの条件を満しつつ、生体2内部の奥行き方向の連続した画像情報を取得することが可能となる。
H=φ・f/D ……(3)
ところで、本実施の形態では、焦点距離を順次変化させて、複数の撮像データを得るものであるため、認証に要する時間が、2次元情報で認証を行う場合に比べて長くなるという問題がある。しかしながら、一般的に、液体レンズや液晶レンズは、ズームレンズなどのメカ駆動方式の可変焦点レンズに比べ、非常に早い応答周波数(ステップ応答で数十ミリ秒)を実現することが可能である。このため、上記画像枚数を撮影するのに要する時間は、概ね1秒以内であることが予想される。従って、生体2が固定用カップ11に保持されている間に十分な認証が可能であると考えられ、実用上問題はない。
上記のようにして得られた複数層の静脈パターンは、画像処理部14に入力され、画像処理部14において、例えば図6に示したような3次元的な形状情報に構築される。具体的には、得られた複数の撮像データが、例えば特許文献2に記載の方式等により、高精細な2次元画像へと、それぞれ復元されたのち、この複数の2次元画像とレンズの焦点位置情報とが組み合わせられ、3次元情報に変換される。さらに、エッジ処理および二値化処理を行うことにより、図6のような3次元形状が作成される。そして、このようにして構築された3次元情報は、認証部16へ入力される。
次に、認証部16では、入力された静脈パターンと、パターン保持部15に保持されている静脈認証用の認証パターンとが比較され、これにより静脈認証がなされる。認証部16では、静脈認証の結果を考慮して、最終的な生体認証の結果(認証結果データDout)が出力され、これにより生体認証処理が終了となる。
以上説明したように、本実施の形態の生体認証装置1では、マイクロレンズへの供給電圧を変化させつつ生体2の撮像がなされることで、マイクロレンズの屈折力が変化し、生体2の内部の奥行き方向に対して、複数の静脈撮像データを得ることができる。これらの撮像データと焦点位置の情報を組み合わせることにより、生体2の静脈の3次元的な形状情報が構築される。このような3次元情報より抽出される生体2の静脈の特徴点は、2次元情報の場合よりも多くの情報量を有しているため、従来よりも高い精度で個人識別を行うことが可能となる。また、情報量が多い分、データの複製が困難となるため、高い安全性を確保することができる。
[第2の実施の形態]
図7は、本発明の第2の実施の形態に係る生体認証装置において、生体2の静脈パターン取得の際の光路を要部断面図で表したものである。なお、本実施の形態では、上記第1の実施の形態におけるマイクロレンズアレイ12の構成が異なること以外は、上記第1の実施の形態と同様の構成を有している。具体的には、第1の実施の形態では、マイクロレンズアレイ12に配置される複数のマイクロレンズは、供給される電圧に応じて屈折力を変化させるものであったが、本実施の形態では、マイクロレンズアレイ22を構成するマイクロレンズ同士が互いに異なる屈折力を有している。従って、以下では、このマイクロレンズアレイ22の構成について詳細に説明し、第1の実施の形態と同様の構成については、適宜説明を省略するものとする。
マイクロレンズアレイ22は、互いに異なるパワー(焦点距離)を有する複数のマイクロレンズにより構成されている。マイクロレンズとしては、固定焦点レンズであってもよく、液体レンズや液晶レンズ等から構成されていてもよい。マイクロレンズアレイ22では、複数のマイクロレンズは、図7に示したように、生体2の形状に沿って生体2の内部の層D11,D12,D13に焦点が合うように配置されている。
具体的には、図8および図9に示したように、複数のマイクロレンズを配置すればよい。図8では、対向する基板131A,135Aとの間に液晶層133Aが設けられ、この液晶層133Aと基板131A,135Aとの間には、それぞれ、電極132A,134Aが形成されている。基板131A,135Aは、例えばガラス基板などの透明基板により構成され、入射光線を透過可能となっている。電極132A,134Aは、電圧供給部17から電圧が供給されるようになっており、例えばITOなどの透明電極により構成され、入射光線を透過可能となっている。電極134Aの液晶層133A側の面には、凸状の複数の曲面がマトリクス状に形成されている。液晶層133Aは、電圧供給部17からの電圧に応じて、入射光線を透過あるいは遮断するようになっている。
このような構成において、電極134Aの凸状の複数の曲面は、その曲率半径が異なっており、例えば、アレイ中央部の曲面の曲率半径R3と、アレイ端部の曲面の曲率半径R1と、これらの中間にある曲面の曲率半径R2とが、R3>R2>R1となるように構成されている。すなわち、アレイ中央部から端部にいくに従って段階的にあるいは連続的に曲面の曲率半径が小さくなっている。このように、電極134Aを構成する各曲面の曲率半径を異ならせることにより、生体2の形状に沿って生体2の内部に焦点が合うように設定することができる。
また、図9では、対向する基板131B,135Bとの間に液晶層133Bが設けられ、この液晶層133Bと基板131B,135Bとの間には、それぞれ、電極132B,134Bが形成されている。基板131B,135Bは、基板131A,135Aと同様、入射光線を透過可能となっている。電極132B,134Bは、電圧供給部17から電圧が供給されるようになっており、入射光線を透過可能となっている。このうち電極134Bの表面は凸状の複数の曲面となっており、これにより複数のマイクロレンズを構成している。さらに、基板131B上には、互いに曲率半径の異なるマイクロレンズL1,L2,L3が配置されており、例えば、アレイ中央部に配置されたマイクロレンズL3の曲率半径R3と、アレイ端部に配置されたマイクロレンズL1の曲率半径R1と、これらの中間に配置されたマイクロレンズL2の曲率半径R2とが、R3>R2>R1となるように構成されている。このように、液晶レンズからなるマイクロレンズと、互いに異なる曲率半径を有する固定焦点のマイクロレンズを組み合わせて配置することにより、生体2の形状に沿って生体2の内部に焦点が合うように設定することができる。
この他にも、例えば、マイクロレンズごとに電極を分離して形成し、それぞれに対して異なる電圧を印加して個別駆動を行うような構成としてもよい。また、マイクロレンズとして液晶レンズを用いる場合について説明したが、本実施の形態では、これに限定されない。例えば、マイクロレンズアレイ22として、基板上に曲率半径が互いに異なる複数の固定焦点レンズを配置したものを用いるようにしてもよい。
このように、マイクロレンズアレイ22を用いた場合、生体2の形状に沿って生体2の内部の複数の層において、それぞれ2次元情報を一括して取得することができる。従って、生体2が光軸の深さ方向に丸み(奥行き)を有する場合であっても、この奥行き方向も含めた撮像データを正確に得ることができる。すなわち、生体2の形状に沿うようにして、3次元的な情報が一度に得られるため、効率的に認証を行うことができる。
(変形例)
次に、上記第2の実施の形態のマイクロレンズアレイ22に対する変形例について説明する。図10は、本変形例に係るマイクロレンズアレイ32を用いた場合において、生体2の静脈パターン取得の際の光路を要部断面図で表したものである。このマイクロレンズアレイ32では、異なる屈折力を有する複数のマイクロレンズ同士が周期的に配置されている。例えば、図10に示したように、3種類(3段階)の屈折力をそれぞれ有するマイクロレンズのグループG1,G2,G3を配置して構成されている。これにより、生体2の異なる3つの層D21,D22,D23において、それぞれ2次元情報を取得することができる。
このように、互いに異なる屈折力を有するマイクロレンズ同士を周期的に配置することにより、生体2が、マイクロレンズアレイ32に対してどの位置に配置されたとしても、生体2内部の奥行き方向における静脈の形状データを確実に得ることができる。従って、生体2の位置を固定する固定用カップ11を設ける必要がなくなり、装置全体の薄型化に有利となる。
[第3の実施の形態]
図11は、本発明の第3の実施の形態に係る生体認証装置において、生体2の静脈パターン取得の際の光路を要部断面図で表したものである。なお、本実施の形態では、上記第1の実施の形態におけるマイクロレンズアレイ12と生体2との間に、撮像レンズ41を備えており、さらに画像処理部14において撮像したデータを所定の手法を用いて処理すること以外は、上記第1の実施の形態と同様の構成を有している。従って、以下では、第1の実施の形態と同様の構成については同一の符号を付し、適宜説明を省略するものとする。
撮像レンズ41は、生体2を撮像するためのメインレンズとなるものであり、例えば、ビデオカメラやスチルカメラ等で使用される一般的な撮像レンズである。また、マイクロレンズアレイ12は、上記第1の実施の形態と、同様の構成を有する可変焦点型のマイクロレンズをマトリクス状配置したものであるが、本実施の形態では、撮像レンズ41の焦点面に配置され、この撮像レンズ41との組み合わせにより、装置全体の撮像レンズ系を構成する。
画像処理部14は、撮像素子13で得られた撮像データに対して所定の画像処理を施し、撮像データDoutとして出力するものである。具体的には、例えば「Light Field Photography」と呼ばれる手法を用いたリフォーカス(Refocusing)演算処理を行い、これにより任意の視点や方向からの観察画像を再構築できるようになっている。
ここで、図12(A),図12(B)を参照して、画像処理部14による画像処理の一例(上記リフォーカス演算処理)について詳細に説明する。
まず、図12(A)に示したように、撮像レンズ41の撮像レンズ面上において直交座標系(u,v)を、撮像素子13の撮像面上において直交座標系(x,y)をそれぞれ考え、撮像レンズ41の撮像レンズ面と撮像素子13の撮像面との距離をFとすると、図中に示したような撮像レンズ41および撮像素子13を通る光線は、4次元関数LF(x,y,u,v)で表されるため、光線の位置情報に加え、光線の進行方向が保持された状態で表される。
そしてこの場合、図12(B)に示したように、撮像レンズ面110、撮像面130およびリフォーカス面120間の位置関係を設定(F’=αFとなるようにリフォーカス面120を設定)した場合、リフォーカス面120上の座標(s,t)の撮像面130上における検出強度LF’は、以下の(1)式のように表される。また、リフォーカス面120で得られるイメージEF’(s,t)は、上記検出強度LF’をレンズ口径に関して積分したものとなるので、以下の(2)式のように表される。したがって、この(2)式からリフォーカス演算を行うことにより、画像処理後の撮像データDoutに基づいて、任意の視点や方向からの観察画像が再構築されるようになっている。
Figure 0004306744
上記のような構成において、撮像レンズ41による生体2の像は、まず、マイクロレンズアレイ12上に結像する。そして、マイクロレンズアレイ12への入射光線がこのマイクロレンズアレイ12を介して撮像素子13へ到達し、撮像素子駆動部16による駆動動作に従って、撮像素子13から撮像データが得られる。このとき、マイクロレンズアレイ12では、電圧供給部17から電極122,124間への電圧供給の有無に応じて液晶層123の屈折率が変化し、上述したように、マイクロレンズアレイ12への入射光線の進行方向が変化して、焦点位置が変化する。
具体的には、制御部19が、電圧供給部17による電圧供給がなされるように制御した場合、マイクロレンズアレイ12への入射光線は、撮像素子13上に集光される。例えば図13に示したように、マイクロレンズアレイ12への入射光線L1〜L3は、それぞれの入射方向に応じて、それぞれ撮像素子13上の異なる位置に集光される。
次に、撮像素子13で得られた撮像データは、画像処理部14へ入力する。そして画像処理部14では、制御部19の制御に応じて、これらの撮像データに対して所定の画像処理(例えば、前述のリフォーカス演算処理)を施し、これにより撮像データDoutが出力される。
このようにして本実施の形態では、電圧供給部17からマイクロレンズアレイ12内のマイクロレンズに電圧が印加されると、マイクロレンズへの入射光線が屈折され、撮像素子13上に集光する。これにより、生体2の内部の奥行き情報まで含めた3次元的な形状情報が得られる。さらに、静脈間距離情報等の距離情報や角度情報を取得することができ、また、より自由な視点や方向から画像を再構築することができる。これらを認証要素として用いることで、認証精度をより高めることができる。加えて、認証時の生体2の配置の自由度が高くなり、認証作業をより簡便化することができる。
以上、第1〜第3の実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されるものではなく、種々の変形が可能である。
例えば、上記実施の形態等では、マイクロレンズアレイ12,22,32,42において、電極122,124の表面S1,S2のうちの表面S1を曲面とした場合について説明したが、例えば、表面S2も曲面とし、液晶層123の両側が曲面となるようなマイクロレンズとしてもよい。
また、上記実施の形態等では、マイクロレンズが液晶マイクロレンズにより構成されている場合について説明したが、他の構成のマイクロレンズとしてもよく、例えば、2種類の異なる液体層を利用した液体マイクロレンズなどを用いてもよい。
さらに、光源10は撮像素子13側からの照射となっているが、光源10が撮像素子13とは生体2を挟んで対極側に配置された方式(透過方式)、または生体の長手方向に光源10を配置した場合に限らず、指の短手方向に光源10を配置した場合においても、本発明が示す3次元形状データの取得方式は有効である。
また、電圧供給部17からマイクロレンズアレイ12内のマイクロレンズへの供給する電圧が比較的大きい場合には、比較的短い焦点距離となる一方、供給する電圧が比較的小さい場合には、比較的長い焦点距離となる場合について説明したが、マイクロレンズアレイ12の液晶層123を構成する液晶材料の種類によっては、逆に、電圧が比較的大きい場合には、比較的長い焦点距離となる一方、供給する電圧が比較的小さい場合には、比較的に短い焦点距離となるような構成とすることも可能である。このように構成した場合でも、上記実施の形態と同様の効果を得ることが可能である。
さらに、上記第3の実施の形態では、画像処理部14における画像処理方法の一例として、「Light Field Photography」を利用したリフォーカス演算処理について説明したが、画像処理部14における画像処理方法としてはこれには限られず、他の画像処理方法としてもよい。
本発明の第1の実施の形態に係る生体認証装置の全体構成を表すブロック図である。 本発明の第1の実施の形態に係る生体認証装置の概略構成を表す斜視図である。 本発明の第1の実施の形態に係るマイクロレンズアレイの構成例を表す拡大断面図である。 本発明の第1の実施の形態に係るマイクロレンズアレイの作用を説明するための断面構成図である。 本発明の第1の実施の形態に係る生体の静脈パターン取得時の光路の要部断面図である。 本発明により得られる3次元形状情報を模式的に表した図である。 本発明の第2の実施の形態に係る生体の静脈パターン取得時の光路の要部断面図である。 本発明の第2の実施の形態に係るマイクロレンズアレイの構成例を表す拡大断面図である。 本発明の第2の実施の形態に係るマイクロレンズアレイの構成例を表す拡大断面図である。 本発明の変形例に係る生体の静脈パターン取得時の光路の要部断面図である。 本発明の第3の実施の形態に係る生体の画像処理モード時の光路の要部断面図である。 本発明の第3の実施の形態における画像処理の一例を説明するための図である。 本発明の第3の実施の形態における画像処理の一例を説明するための図である。 従来の生体認証装置の概略構成を表す断面模式図である。
符号の説明
1…生体認証装置、41…撮像レンズ、11A…入射瞳径、110…撮像レンズ面、12…マイクロレンズアレイ、13…撮像素子、14…画像処理部、15…パターン保持部、16…認証部、17…電圧供給部、19…制御部、181…光源駆動部、182…撮像素子駆動部、120…リフォーカス面、121,125,131A,131B,135A,135B…基板、122,124,132A,132B,134A,134B…電極、123,133A,133B…液晶層、Dout…撮像データ、2…生体(撮像対象物)。

Claims (6)

  1. 生体へ向けて光を照射する光源と、
    前記生体からの光を集光すると共に、互いに異なる屈折力を有する複数のマイクロレンズ同士が周期的に配列してなるマイクロレンズアレイ部と、
    前記マイクロレンズアレイ部で集光された光に基づいて前記生体の複数の層の撮像データを取得する撮像素子と、
    前記生体の複数層分の撮像データに基づいて生体の認証を行う認証部とを備えた
    体認証装置。
  2. 前記光源は、近赤外の波長領域の光を発する
    求項1に記載の生体認証装置。
  3. 前記マイクロレンズアレイ部に電圧を供給する電圧供給部をさらに備え、
    前記マイクロレンズは、前記電圧供給部から供給される電圧に応じて屈折力が変化するように構成されている
    求項1に記載の生体認証装置。
  4. 前記マイクロレンズアレイ部は、
    一対の基板と、
    前記基板上に形成され、前記電圧供給部からの電圧が印加される一対の電極と、
    前記一対の電極間に設けられた液晶層とを含んで構成され、
    前記一対の電極のうちの少なくとも一方が、前記マイクロレンズを構成するための曲面を有している
    求項3に記載の生体認証装置。
  5. 前記複数のマイクロレンズは、それぞれの焦点位置が前記生体の形状に沿うように屈折力が設定されている
    求項1に記載の生体認証装置。
  6. 前記生体と前記マイクロレンズアレイ部との間の光路上に配置された撮像レンズと、
    前記撮像素子により得られた前記生体の撮像データに対して所定の画像処理を施すための画像処理部とをさらに備え、
    前記認証部は、前記画像処理部による画像処理後の撮像データを利用して前記生体の認証を行う
    求項1に記載の生体認証装置。
JP2007051032A 2007-03-01 2007-03-01 生体認証装置 Expired - Fee Related JP4306744B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007051032A JP4306744B2 (ja) 2007-03-01 2007-03-01 生体認証装置
US12/071,638 US7550707B2 (en) 2007-03-01 2008-02-25 Biometrics authentication system with authentication based upon multiple layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007051032A JP4306744B2 (ja) 2007-03-01 2007-03-01 生体認証装置

Publications (2)

Publication Number Publication Date
JP2008217190A JP2008217190A (ja) 2008-09-18
JP4306744B2 true JP4306744B2 (ja) 2009-08-05

Family

ID=39732695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007051032A Expired - Fee Related JP4306744B2 (ja) 2007-03-01 2007-03-01 生体認証装置

Country Status (2)

Country Link
US (1) US7550707B2 (ja)
JP (1) JP4306744B2 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652797B (zh) * 2007-04-04 2013-04-03 索尼株式会社 生物学验证系统
JP4910923B2 (ja) * 2007-07-20 2012-04-04 ソニー株式会社 撮像装置、撮像方法及び撮像プログラム
JP2009129365A (ja) * 2007-11-27 2009-06-11 Sony Corp 撮像装置およびその方法
US7986178B2 (en) * 2007-12-14 2011-07-26 Supertex, Inc. Pulse width modulation driver for electroactive lens
JP4640415B2 (ja) * 2008-01-18 2011-03-02 ソニー株式会社 生体認証装置
JP2010186289A (ja) * 2009-02-12 2010-08-26 Sony Corp 情報処理装置
ES2377896B1 (es) * 2009-03-24 2013-02-13 Hanscan Ip B.V. Dispositivo detector de vida.
WO2010145669A1 (en) 2009-06-17 2010-12-23 3Shape A/S Focus scanning apparatus
US8971588B2 (en) * 2011-03-30 2015-03-03 General Electric Company Apparatus and method for contactless high resolution handprint capture
JP2012245083A (ja) * 2011-05-26 2012-12-13 Seiko Epson Corp 撮像装置、生体認証装置、電子機器
US20130050679A1 (en) * 2011-08-30 2013-02-28 International Currency Technologies Corp. Validation apparatus and light source module thereof
JP5459337B2 (ja) * 2012-03-21 2014-04-02 カシオ計算機株式会社 撮像装置、画像処理方法及びプログラム
JP5935498B2 (ja) * 2012-05-15 2016-06-15 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び情報処理システム
JP5527491B2 (ja) * 2014-01-10 2014-06-18 カシオ計算機株式会社 画像処理装置、画像処理方法及びプログラム
WO2015118120A1 (en) 2014-02-07 2015-08-13 3Shape A/S Detecting tooth shade
DE102016120775B4 (de) 2015-11-02 2025-02-20 Cognex Corporation System und Verfahren zum Erkennen von Linien in einem Bild mit einem Sichtsystem
US10937168B2 (en) 2015-11-02 2021-03-02 Cognex Corporation System and method for finding and classifying lines in an image with a vision system
KR102509018B1 (ko) 2016-01-11 2023-03-14 삼성디스플레이 주식회사 표시 장치 및 그의 구동방법
KR102468133B1 (ko) * 2016-02-29 2022-11-18 엘지전자 주식회사 발 정맥 인증 장치
EP3485312A4 (en) * 2016-07-15 2020-04-22 Light Field Lab, Inc. Energy propagation and transverse anderson localization with two-dimensional, light field and holographic relays
CN106203392B (zh) * 2016-07-25 2019-07-09 业成科技(成都)有限公司 电子装置
CH713061B1 (de) * 2016-10-19 2021-03-31 Smart Secure Id Ag System und Verfahren zur berührungslosen biometrischen Authentifizierung.
JP6931914B2 (ja) * 2017-03-22 2021-09-08 株式会社モフィリア 生体情報取得装置、生体情報取得方法、及び、プログラム
KR20180129133A (ko) * 2017-05-25 2018-12-05 전자부품연구원 3차원 msp 기반 생체인식 장치 및 방법
KR101882281B1 (ko) * 2017-09-15 2018-08-24 엘지전자 주식회사 디지털 디바이스 및 그의 생체 인증 방법
KR101882282B1 (ko) * 2017-09-22 2018-08-24 엘지전자 주식회사 디지털 디바이스 및 그의 생체 인증 방법
US11200401B2 (en) 2018-01-30 2021-12-14 Global Id Sa Method and device for biometric vascular recognition and/or identification
EP3540610B1 (en) * 2018-03-13 2024-05-01 Ivalua Sas Standardized form recognition method, associated computer program product, processing and learning systems
WO2019231042A1 (ko) * 2018-06-01 2019-12-05 엘지전자 주식회사 생체 인증 장치
EP3853760A4 (en) * 2018-09-17 2021-09-01 Fingerprint Cards AB BIOMETRIC IMAGING DEVICE
JP7279526B2 (ja) * 2019-05-31 2023-05-23 富士通株式会社 解析プログラム、解析装置及び解析方法
KR20210073930A (ko) * 2019-12-11 2021-06-21 엘지전자 주식회사 전자 장치를 제어하는 장치 및 그 방법
KR102430304B1 (ko) * 2020-05-22 2022-08-09 한국과학기술연구원 비접촉 지문 인식 장치 및 방법
JPWO2021261107A1 (ja) * 2020-06-25 2021-12-30
US20220335244A1 (en) * 2021-04-19 2022-10-20 Microsoft Technology Licensing, Llc Automatic profile picture updates
WO2023245332A1 (zh) * 2022-06-20 2023-12-28 北京小米移动软件有限公司 一种传感器模组、电子设备、感应识别方法及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092616A (ja) * 2000-09-20 2002-03-29 Hitachi Ltd 個人認証装置
JP2003006627A (ja) * 2001-06-18 2003-01-10 Nec Corp 指紋入力装置
JP4820033B2 (ja) 2001-09-10 2011-11-24 シチズン電子株式会社 密着イメージセンサー用複合液晶マイクロレンズ
JP4012752B2 (ja) 2002-03-25 2007-11-21 独立行政法人科学技術振興機構 複眼画像入力装置
WO2004090786A2 (en) * 2003-04-04 2004-10-21 Lumidigm, Inc. Multispectral biometric sensor
JP4205533B2 (ja) 2003-08-26 2009-01-07 独立行政法人科学技術振興機構 立体画像構成方法,立体対象の距離導出方法
US7119319B2 (en) * 2004-04-08 2006-10-10 Canon Kabushiki Kaisha Solid-state image sensing element and its design support method, and image sensing device
JP4626801B2 (ja) 2004-09-02 2011-02-09 ソニー株式会社 撮像装置
EP2398223B1 (en) 2004-10-01 2014-03-19 The Board Of Trustees Of The Leland Stanford Junior University Imaging arrangement and method therefor
FR2883154B1 (fr) * 2005-03-15 2008-02-08 Oreal Dispositif de mesure du teint
JP2006288872A (ja) 2005-04-13 2006-10-26 Canon Inc 血管画像入力装置、血管画像構成方法、およびこれらを用いた個人認証システム
US20070242859A1 (en) * 2006-04-17 2007-10-18 International Business Machines Corporation Brain shape as a biometric

Also Published As

Publication number Publication date
JP2008217190A (ja) 2008-09-18
US7550707B2 (en) 2009-06-23
US20080211628A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4306744B2 (ja) 生体認証装置
JP4389957B2 (ja) 生体認証装置
JP5397222B2 (ja) 撮像装置
JP2009017943A (ja) 生体撮像装置
JP2009028427A (ja) 生体撮像装置
KR20090079809A (ko) 생체 인증장치
JP4969206B2 (ja) 生体認証装置
JP4767915B2 (ja) 撮像装置及び生体認証装置
JP5811386B2 (ja) 認証装置、認証用プリズム体及び認証方法
JP5811385B2 (ja) 認証装置、認証用プリズム体及び認証方法
KR20160017419A (ko) 지문 인식 장치 및 이를 이용하는 지문 인식 방법
JP5024153B2 (ja) 生体撮像装置
JP4935637B2 (ja) 生体撮像装置および生体撮像方法
JP2008269534A (ja) 生体認証システム、認証用サーバ、端末装置および生体認証方法
US11151375B2 (en) Lens module and iris recognition camera module comprising same, and iris recognition camera system and terminal comprising same
KR100874688B1 (ko) 모조지문을 판별할 수 있는 모조지문판단장치 및 그판단방법
JP7246948B2 (ja) 固体撮像装置及び電子機器
US20240014238A1 (en) Light receiving apparatus and electronic appliance
JP4896552B2 (ja) 撮像装置および生体認証装置
JP3916639B2 (ja) 生体認証装置
JP4588015B2 (ja) 生体認証装置
JP2008113703A (ja) 生体認証装置
JP2010009157A (ja) 指静脈認証装置および情報処理装置
JP3916647B1 (ja) 生体認証装置
JP3987081B2 (ja) 生体認証装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees