[go: up one dir, main page]

JP4300351B2 - Denitration catalyst regeneration method - Google Patents

Denitration catalyst regeneration method Download PDF

Info

Publication number
JP4300351B2
JP4300351B2 JP2003325678A JP2003325678A JP4300351B2 JP 4300351 B2 JP4300351 B2 JP 4300351B2 JP 2003325678 A JP2003325678 A JP 2003325678A JP 2003325678 A JP2003325678 A JP 2003325678A JP 4300351 B2 JP4300351 B2 JP 4300351B2
Authority
JP
Japan
Prior art keywords
catalyst
performance
washing
exhaust gas
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325678A
Other languages
Japanese (ja)
Other versions
JP2005087902A (en
Inventor
厚 福寿
貞夫 荒木
正義 市来
和宏 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2003325678A priority Critical patent/JP4300351B2/en
Publication of JP2005087902A publication Critical patent/JP2005087902A/en
Application granted granted Critical
Publication of JP4300351B2 publication Critical patent/JP4300351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、ゴミ焼却炉排ガスなどのように硫黄酸化物が共存する排ガスを比較的低温(150℃〜300℃)で処理して排ガス中の窒素酸化物をアンモニア還元剤を用いて接触還元する脱硝触媒であって、硫黄酸化物、硫酸塩が触媒中に蓄積することによって被毒を受けた触媒の再生方法に関するものである。   The present invention treats exhaust gas in which sulfur oxides coexist, such as waste incinerator exhaust gas, at a relatively low temperature (150 ° C. to 300 ° C.) and catalytically reduces nitrogen oxides in the exhaust gas using an ammonia reducing agent. The present invention relates to a method for regenerating a denitration catalyst that has been poisoned by the accumulation of sulfur oxides and sulfates in the catalyst.

硫黄酸化物が共存する排ガスを温度150℃〜300℃の範囲で処理して排ガス中の窒素酸化物をアンモニア還元剤を用いて接触還元する脱硝触媒であって、硫黄酸化物、硫酸塩によって被毒を受けた触媒の再生方法は、多く提案されている(特許文献1〜4参照)。   A denitration catalyst that treats exhaust gas in which sulfur oxides coexist at a temperature in the range of 150 ° C. to 300 ° C. and catalytically reduces nitrogen oxides in the exhaust gas using an ammonia reducing agent. Many methods for regenerating a poisoned catalyst have been proposed (see Patent Documents 1 to 4).

これらの従来技術のうち、劣化触媒をアルカリ水溶液で洗浄して再生する方法、酸水溶液で洗浄して再生する方法、加熱により再生する方法、水洗により再生する方法がある。
特開2000−102737号公報 特開2000−107612号公報 特開2001−113131号公報 特開平8−229402号公報
Among these conventional techniques, there are a method in which a deteriorated catalyst is regenerated by washing with an alkaline aqueous solution, a method in which the deteriorated catalyst is regenerated by washing with an acid aqueous solution, a method of regenerating by heating, and a method of regenerating by water washing.
JP 2000-102737 A JP 2000-107612 A JP 2001-113131 A JP-A-8-229402

排ガス中に硫黄酸化物が共存すると、これが触媒に強く吸着して脱硝性能が低下する。特に、ゴミ焼却炉などの250℃以下の排ガスでこの現象が顕著に現れる。上記提案の再生法で、劣化触媒をアルカリ水溶液や酸水溶液で洗浄して再生する方法は、洗浄液の管理が複雑であり、洗浄液中に触媒成分やバインダー成分が溶出して触媒強度が低下したりする問題がある。また、劣化触媒を加熱により再生する方法は、硫黄酸化物を完全に脱離するのに500℃以上の高温を必要とし、加熱ガス中にNHを共存させるための設備が必要である。さらに、加熱温度が高いために触媒のシンタリングも懸念される。また、劣化触媒を水洗により再生する方法では、水洗のみでは硫黄酸化物、硫酸塩の洗浄が十分にできずに触媒中に残るため、初期性能は回復するものの使用時間とともに性能劣化する度合が大きくなる嫌いがある。 When sulfur oxides coexist in the exhaust gas, they are strongly adsorbed on the catalyst and the denitration performance is lowered. In particular, this phenomenon appears remarkably in exhaust gas of 250 ° C. or lower such as a garbage incinerator. In the proposed regeneration method, the deteriorated catalyst is regenerated by washing with an alkaline aqueous solution or an acid aqueous solution. The management of the cleaning solution is complicated, and the catalyst component and binder component are eluted in the cleaning solution, resulting in a decrease in catalyst strength. There is a problem to do. In addition, the method for regenerating the deteriorated catalyst by heating requires a high temperature of 500 ° C. or higher to completely desorb the sulfur oxide, and requires equipment for allowing NH 3 to coexist in the heated gas. Furthermore, since the heating temperature is high, there is a concern about catalyst sintering. In addition, in the method of regenerating a deteriorated catalyst by washing with water, the washing of sulfur oxides and sulfates cannot be sufficiently performed by washing alone, and remains in the catalyst. Therefore, although the initial performance is restored, the degree of performance deterioration with use time is large. I hate being.

ゴミ焼却炉排ガスなどのように硫黄酸化物が共存する排ガスを比較的低温で処理して排ガス中の窒素酸化物を接触還元する脱硝触媒であって、硫黄酸化物、硫酸塩によって劣化した触媒を再生するには、初期性能および耐久性の面から触媒中に蓄積した硫黄酸化物、硫酸塩を完全に除去することが肝要である。   A denitration catalyst that treats exhaust gas in which sulfur oxides coexist, such as waste incinerator exhaust gas, at a relatively low temperature to catalytically reduce nitrogen oxides in the exhaust gas. In order to regenerate, it is important to completely remove sulfur oxides and sulfates accumulated in the catalyst from the viewpoint of initial performance and durability.

本発明は、このような点に鑑み、簡便かつ単純な方法で、硫黄酸化物、硫酸塩が触媒中に蓄積することによって被毒を受けた触媒を効果的に再生する方法を提供する。   In view of the above, the present invention provides a method for effectively regenerating a poisoned catalyst by accumulating sulfur oxide and sulfate in the catalyst by a simple and simple method.

温度250℃以下で排ガス中に硫黄酸化物が共存すると脱硝性能が低下する原因は、一般的には硫黄酸化物(SOx)と湿分(HO)、それに還元剤であるアンモニア(NH)との反応によって生成する硫安・酸性硫安などが触媒表面に析出するためと考えられている。 When sulfur oxides coexist in the exhaust gas at a temperature of 250 ° C. or lower, the NOx removal performance is generally reduced by sulfur oxide (SOx), moisture (H 2 O), and ammonia (NH 3 ) as a reducing agent. This is thought to be due to precipitation of ammonium sulfate, acidic ammonium sulfate, etc. produced by the reaction with the catalyst surface.

本発明者らは上記問題を解決するために以下のことに着目した。   In order to solve the above problems, the present inventors have paid attention to the following.

(1) 硫安・酸性硫安・硫黄酸化物は水溶性の化合物であるが、水洗のみでは完全に触媒中から除去できない。 (1) Ammonium sulfate, acidic ammonium sulfate, and sulfur oxide are water-soluble compounds, but cannot be completely removed from the catalyst by washing with water alone.

(2) 触媒中に蓄積した硫黄化合物を水洗によって除去するには、水洗液のpHは高いほどよい。 (2) In order to remove sulfur compounds accumulated in the catalyst by washing with water, the pH of the washing solution is preferably as high as possible.

(3) 洗浄のみの再生方法では触媒成分も溶出するため性能は低下する。 (3) In the regeneration method with only washing, the catalyst components are also eluted, so the performance is lowered.

この知見に着目して、アンモニア根を含み、バナジウムおよび/またはタングステンを含む水溶液で洗浄することにより、触媒中に蓄積している硫黄酸化物、硫酸塩を完全に溶出除去できることができ、同時に活性成分の再担持もできる再生方法を完成するに至った。   Focusing on this knowledge, it is possible to completely dissolve and remove sulfur oxides and sulfates accumulated in the catalyst by washing with an aqueous solution containing ammonia roots and containing vanadium and / or tungsten. A recycling method that can also re-support the components has been completed.

すなわち、本発明は、黄酸化物が共存する排ガス中の窒素酸化物を温度150℃〜300℃の範囲でアンモニア還元剤を用いて接触還元する脱硝触媒の再生方法であって、アンモニア根を含み、バナジウムおよび/またはタングステンを含む水溶液で洗浄することにより、主として、触媒中の蓄積した硫黄酸化物、硫酸塩を溶出除去した後、焼成することを特徴とする脱硝触媒の再生方法である。
That is, the present invention is a playback method of denitration catalyst for catalytic reduction with ammonia reducing agent of nitrogen oxides in an exhaust gas sulfur oxides coexist at a temperature ranging from 0.99 ° C. to 300 ° C., ammonia roots This is a method for regenerating a denitration catalyst, characterized in that, by washing with an aqueous solution containing vanadium and / or tungsten, sulfur oxides and sulfate accumulated in the catalyst are mainly removed by elution and then calcined.

発明において、アンモニア根は、水溶液中のpHを比較的高く保つために機能し、触媒中に蓄積した硫黄化合物の溶出を比較的容易に進行させ、さらに水溶液中に共存するバナジウムおよび/またはタングステンと硫黄化合物との交換反応を促進して硫黄化合物の溶出をより完全なものにできる。このとき同時に触媒成分であるバナジウムとタングステンの溶出が一部起こり性能低下を招く要因となるが、水溶液中にバナジウムおよび/またはタングステンが共存しているので、溶出が起こったところには水溶液中のバナジウムおよび/またはタングステンが再担持できることになり、性能低下の懸念がなくなる。 In the present invention, ammonia roots serves to keep relatively high pH in an aqueous solution, vanadium and / or tungsten elution of the sulfur compounds that have accumulated in the catalyst relatively easily allowed to proceed further coexist in the aqueous solution The sulfur compound can be more completely eluted by promoting the exchange reaction between the sulfur compound and the sulfur compound. At the same time, elution of the catalyst components vanadium and tungsten is partly caused, leading to performance degradation. However, since vanadium and / or tungsten coexist in the aqueous solution, the elution occurs in the aqueous solution. Vanadium and / or tungsten can be re-supported, and there is no fear of performance degradation.

本発明の再生方法により、触媒中に蓄積している硫黄酸化物、硫酸塩を完全に溶出除去することができ、再生触媒は初期性能、耐久性能ともに新鮮触媒と同程度の性能を示す。   By the regeneration method of the present invention, sulfur oxides and sulfates accumulated in the catalyst can be completely eluted and removed, and the regenerated catalyst exhibits the same performance as the fresh catalyst in both initial performance and durability performance.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。ただし、実施例2は本発明に属しないものであり、参考例として示すものである。
Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given. However, Example 2 does not belong to the present invention and is shown as a reference example.

実施例1
(1)触媒の調製
セラミック繊維で構成されるセラミックペーパー(0.5mm厚さ)に、硝酸塩加水分解法で得られたチタニアコロイド溶液(固形分32重量%)を含浸担持し、セラミックペーパーを110℃で乾燥した後、400℃で3時間焼成して、アナターゼ型チタニアを120g/m保持した板状担体を得た。
Example 1
(1) Preparation of catalyst Ceramic paper composed of ceramic fibers (thickness: 0.5 mm) was impregnated with a titania colloid solution (solid content: 32% by weight) obtained by the nitrate hydrolysis method. After drying at 0 ° C., it was calcined at 400 ° C. for 3 hours to obtain a plate-like carrier holding anatase-type titania at 120 g / m 2 .

この板状担体を、メタバナジン酸アンモニウム飽和水溶液に常温で浸漬し、250℃で1時間焼成した。次いで、これを0.5mol/lのWO水溶液に浸漬し、400℃で1時間焼成し、脱硝触媒を得た。この触媒の初期性能を測定した。 This plate-like carrier was immersed in a saturated aqueous solution of ammonium metavanadate at room temperature and baked at 250 ° C. for 1 hour. Next, this was immersed in a 0.5 mol / l aqueous solution of WO 3 and calcined at 400 ° C. for 1 hour to obtain a denitration catalyst. The initial performance of this catalyst was measured.

(2)脱硝性能
触媒の性能は、脱硝反応がNOxの一次反応と仮定し、NOx/NH比=1.0における反応速度定数“K”(K=−(AV)ln(1−x)、AVは触媒の幾何表面積あたりの排ガス量、x:脱硝率)と、劣化処置を講じていない初期の反応速度定数“K”との比“K/K”として定義する。従って、初期状態ではK/K=1である。
(2) Denitration performance The performance of the catalyst is based on the assumption that the denitration reaction is the primary reaction of NOx, and the reaction rate constant “K” (K = − (AV) ln (1-x) when NOx / NH 3 ratio = 1.0. , AV is defined as the ratio “K / K 0 ” of the amount of exhaust gas per geometric surface area of the catalyst, x: denitration rate) and the initial reaction rate constant “K 0 ” without any deterioration treatment. Therefore, K / K 0 = 1 in the initial state.

(3)劣化触媒の調製
まず、触媒床での面積速度AVが50Nm/時間となるように前述の脱硝触媒を反応器に充填した。ここで、
次に、触媒床上での排ガス温度180℃、排ガス中のSO 20ppm、O 15%、HO 10%、NO 80ppm、NH 80ppmとなるように、これらのガスを反応器に注入し、脱硝反応を長時間行った。この条件下では触媒上に硫安が析出しつつあると思われ、脱硝性能は経時的に低下していき、ある一定時間で性能測定を行った。そのときの性能とSO蓄積量を表1に示す。
(3) Preparation of deteriorated catalyst First, the reactor was charged with the above-mentioned denitration catalyst so that the area velocity AV in the catalyst bed was 50 Nm / hour. here,
Next, these gases are injected into the reactor so that the exhaust gas temperature on the catalyst bed is 180 ° C., SO 3 20 ppm in the exhaust gas, O 2 15%, H 2 O 10%, NO X 80 ppm, NH 3 80 ppm. The denitration reaction was performed for a long time. Under these conditions, ammonium sulfate seems to be depositing on the catalyst, and the denitration performance gradually decreases with time, and the performance was measured for a certain period of time. Performance and SO 3 storage amount at that time is shown in Table 1.

(4)触媒再生
性能測定後、劣化触媒を反応器から取り出し、メタバナジン酸アンモニウム(4.5g/l)を含む水溶液で1時間洗浄し、乾燥・焼成して、これを再生した。この再生触媒の性能を測定した。この結果を同表1に示す(初期)。初期再生触媒の性能はほとんど回復し、SO蓄積もほとんど認めらなかった。
(4) Catalyst regeneration After measuring the performance, the deteriorated catalyst was removed from the reactor, washed with an aqueous solution containing ammonium metavanadate (4.5 g / l) for 1 hour, dried and calcined, and regenerated. The performance of this regenerated catalyst was measured. The results are shown in Table 1 (initial). The performance of the initial regeneration catalyst almost recovered, and almost no SO 3 accumulation was observed.

さらに、この再生触媒を用いて、上記工程(3) 「劣化触媒の調製」と同条件にて脱硝反応を行い、一定時間後に上記と同様に性能測定を行った。この結果を同表1に示す(耐久)。

Figure 0004300351
Further, using this regenerated catalyst, a denitration reaction was performed under the same conditions as in the above step (3) “Preparation of deteriorated catalyst”, and performance was measured in the same manner as described above after a certain period of time. The results are shown in Table 1 (endurance).
Figure 0004300351

表1から分かるように、この耐久再生触媒の性能およびSO蓄積量は、初期再生触媒の性能およびSO蓄積量と同程度を示し、再生触媒は初期性能・耐久性能ともに新鮮触媒と同程度の性能を示した。 As can be seen from Table 1, the performance of the durable regenerated catalyst and the accumulated amount of SO 3 are similar to the performance of the initially regenerated catalyst and the accumulated amount of SO 3 , and the regenerated catalyst has the same initial performance and durability as the fresh catalyst. Showed the performance.

実施例2
触媒再生
実施例1の工程(4)触媒再生において、工程(3) 「劣化触媒の調製」で調製した劣化触媒を、まず水で洗浄し、その後、メタバナジン酸アンモニウム(4.5g/l)を含む水溶液で1時間洗浄し、乾燥・焼成した以外、実施例1の工程(4) と同様の方法で操作を行った。結果を表2に示す。

Figure 0004300351
Example 2
Catalyst regeneration In step (4) catalyst regeneration in Example 1, the degraded catalyst prepared in step (3) “Preparation of degraded catalyst” was first washed with water, and then ammonium metavanadate (4.5 g / l) was added. The operation was performed in the same manner as in step (4) of Example 1, except that the aqueous solution was washed for 1 hour, dried and fired. The results are shown in Table 2.
Figure 0004300351

表2より、再生触媒は初期性能・耐久性能ともに新鮮触媒と同程度の性能を示すことが確認された。   From Table 2, it was confirmed that the regenerated catalyst showed the same performance as the fresh catalyst in both initial performance and durability performance.

比較例1
触媒再生
実施例1の工程(4)触媒再生において、工程(3) 「劣化触媒の調製」で調製した劣化触媒を、水で洗浄し、その後、メタバナジン酸アンモニウム(4.5g/l)を含む水溶液での洗浄を行わないで、乾燥した以外、実施例1の工程(4) と同様の方法で操作を行った。結果を表3に示す。

Figure 0004300351
Comparative Example 1
Catalyst regeneration In step (4) catalyst regeneration of Example 1, the degraded catalyst prepared in step (3) “Preparation of degraded catalyst” is washed with water and then contains ammonium metavanadate (4.5 g / l). The operation was carried out in the same manner as in step (4) of Example 1 except that it was dried without washing with an aqueous solution. The results are shown in Table 3.
Figure 0004300351

表3より、再生触媒は初期性能、耐久性能ともに新鮮触媒に比較し性能が低いことがわかった。この要因としては、水で洗浄するのみでは、触媒中に蓄積しているS0を完全に溶出できないためと考えられ、特に耐久性能に差が大きい。 From Table 3, it was found that the regenerated catalyst had lower performance than the fresh catalyst in both initial performance and durability performance. As this factor, only washing with water is considered to be due to not fully eluted S0 3 which has accumulated in the catalyst, it is a large difference in the particular durability.

圧縮強度
実施例1の工程(4)「触媒再生」に示した触媒再生前後における圧縮強度比を表4に示す。表4から、触媒再生により圧縮強度の低下が認められないことがわかる。表4中、圧縮強度比=再生後の圧縮強度/再生前の圧縮強度。

Figure 0004300351
Compressive strength Table 4 shows the compressive strength ratio before and after catalyst regeneration shown in step (4) “Catalyst regeneration” in Example 1. From Table 4, it can be seen that no decrease in compressive strength is observed due to catalyst regeneration. In Table 4, compression strength ratio = compression strength after reproduction / compression strength before reproduction.
Figure 0004300351

Claims (1)

黄酸化物が共存する排ガス中の窒素酸化物を温度150℃〜300℃の範囲でアンモニア還元剤を用いて接触還元する脱硝触媒の再生方法であって、アンモニア根を含み、バナジウムおよび/またはタングステンを含む水溶液で洗浄することにより、主として、触媒中の蓄積した硫黄酸化物、硫酸塩を溶出除去した後、焼成することを特徴とする脱硝触媒の再生方法。 A reproducing method of denitration catalyst sulfur oxide is catalytically reduced with ammonia reducing agent in a range of nitrogen oxides temperature 0.99 ° C. to 300 ° C. in an exhaust gas coexisting include ammonia roots, vanadium and / or A method for regenerating a denitration catalyst, characterized in that the sulfur oxide and sulfate accumulated in the catalyst are eluted and removed mainly by washing with an aqueous solution containing tungsten, followed by calcination.
JP2003325678A 2003-09-18 2003-09-18 Denitration catalyst regeneration method Expired - Fee Related JP4300351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325678A JP4300351B2 (en) 2003-09-18 2003-09-18 Denitration catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325678A JP4300351B2 (en) 2003-09-18 2003-09-18 Denitration catalyst regeneration method

Publications (2)

Publication Number Publication Date
JP2005087902A JP2005087902A (en) 2005-04-07
JP4300351B2 true JP4300351B2 (en) 2009-07-22

Family

ID=34456061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325678A Expired - Fee Related JP4300351B2 (en) 2003-09-18 2003-09-18 Denitration catalyst regeneration method

Country Status (1)

Country Link
JP (1) JP4300351B2 (en)

Also Published As

Publication number Publication date
JP2005087902A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4757027B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP4740217B2 (en) Method for catalytic reduction of nitrogen oxides
JP3377715B2 (en) Regeneration method of denitration catalyst
JP5701185B2 (en) Method for reducing SO2 oxidation rate increase of denitration catalyst
JP4264643B2 (en) Regeneration method of deteriorated catalyst
CN101972652A (en) Preparation method of compound SCR catalyst with zero-valent mercury conversion function
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
JP5636577B2 (en) Method for purifying exhaust gas containing metallic mercury and oxidation catalyst for metallic mercury in exhaust gas
JP2014522305A (en) Catalyst with improved poison resistance
JP4436124B2 (en) Denitration catalyst regeneration method
KR101717319B1 (en) Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
CN106179327B (en) Activated coke support type manganese cerium titanium zirconium mixed oxide low-temperature SCR catalyst and preparation method thereof
JP4300351B2 (en) Denitration catalyst regeneration method
CN112138714A (en) A kind of rolling yuanxiao type forming sulfur-resistant low-temperature denitration catalyst and its preparation method and application
KR20210049215A (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JPS58247A (en) Regenerating method for denitrating catalyst
JP3150519B2 (en) Regeneration method of denitration catalyst
JP2004074106A (en) Catalyst regeneration method
JP3785296B2 (en) Catalyst regeneration method
JP2004267968A (en) Method for regenerating denitration catalyst
JP2012245480A (en) Reproduction method for used denitration catalyst
JPH06182202A (en) Low temperature denitration catalyst
JPS60209252A (en) Regeneration method of denitration catalyst
JPH0363432B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4300351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees