JP3785296B2 - Catalyst regeneration method - Google Patents
Catalyst regeneration method Download PDFInfo
- Publication number
- JP3785296B2 JP3785296B2 JP2000031022A JP2000031022A JP3785296B2 JP 3785296 B2 JP3785296 B2 JP 3785296B2 JP 2000031022 A JP2000031022 A JP 2000031022A JP 2000031022 A JP2000031022 A JP 2000031022A JP 3785296 B2 JP3785296 B2 JP 3785296B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- volume
- regeneration
- less
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 109
- 238000011069 regeneration method Methods 0.000 title claims description 71
- 239000007789 gas Substances 0.000 claims description 84
- 230000008929 regeneration Effects 0.000 claims description 68
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000000126 substance Substances 0.000 claims description 25
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 24
- 239000000428 dust Substances 0.000 claims description 20
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 18
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 230000001172 regenerating effect Effects 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- 150000002896 organic halogen compounds Chemical class 0.000 claims description 6
- 231100000572 poisoning Toxicity 0.000 claims description 5
- 230000000607 poisoning effect Effects 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 230000009849 deactivation Effects 0.000 claims 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 27
- 239000000203 mixture Substances 0.000 description 20
- 231100000614 poison Toxicity 0.000 description 17
- 230000007096 poisonous effect Effects 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 10
- 229910052717 sulfur Inorganic materials 0.000 description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 9
- 150000003464 sulfur compounds Chemical class 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Chemical compound O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 4
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000002013 dioxins Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- -1 bag filters Substances 0.000 description 2
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- BIGPRXCJEDHCLP-UHFFFAOYSA-N ammonium bisulfate Chemical compound [NH4+].OS([O-])(=O)=O BIGPRXCJEDHCLP-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、触媒の再生方法に関する。さらに詳しくは、排ガス中に含まれる被毒物質により被毒を受け活性劣化した触媒を再生する方法に関する。
【0002】
【従来の技術】
一般に、ゴミ焼却炉等からの燃焼排ガスは、電気集塵機やバグフィルター、セラミックフィルター等の除塵装置で除塵された後、排ガス中に含まれる窒素酸化物および/またはダイオキシン類等の有機ハロゲン化合物等の有害物質に対して、150〜350℃程度の比較的低温度領域にて触媒を用いた排ガス処理が行われている。
このような触媒としては、チタン酸化物および/またはシリコン酸化物と、バナジウム、タングステンおよびモリブデンからなる群より選ばれる少なくとも1種類の金属の酸化物とを含有するものが好適に用いられている。
【0003】
ゴミ焼却炉からの燃焼排ガスには、アンモニアガスと、二酸化硫黄、三酸化硫黄および酸性硫安等の硫黄化合物、カリウム、ナトリウム等のアルカリ金属化合物、カルシウム、マグネシウム等のアルカリ土類化合物、水銀、リン、ヒ素、鉛、アンチモン等の金属化合物などの被毒物質が少量ながら含まれており、150〜350℃程度の比較的低温度で上記の触媒を使用すると、特に硫黄化合物により五酸化バナジウムが硫酸塩に変化し、また触媒の表面に酸性硫酸アンモニウムや硫酸アンモニウムの蓄積が生じ、触媒の細孔を閉塞するため経時的に性能劣化を起こす。
【0004】
このような排ガス中に含まれる被毒物質により被毒を受け活性劣化した触媒を再生する方法としては、(1)触媒を水または添加剤入りの水によって洗浄再生する方法、(2)装置から触媒を取り出し、加熱炉で高温再生する方法、等が知られている。ところが、これらの再生方法はそれぞれ次のような問題点があった。
(1)の洗浄再生方法では、水および添加剤による触媒成分の流出、廃水処理の困難さに加えて、再生効率が低いという欠点を有する。(2)の加熱炉で高温再生する方法では、温度が低すぎると再生効率が低下し、温度が高すぎると、触媒成分のシンタリングや、触媒組成として含有している硫黄分までもが除去され、物理的なダメージを受けるという欠点を有する。
【0005】
再生効率が低い触媒を用いて、再度ゴミ焼却炉等の窒素酸化物および/またはダイオキシン類等の有機ハロゲン化合物等の有害物質に対して、排ガス処理を行うと、ある程度短期間に活性が劣化するため好ましくない。
【0006】
【発明が解決しようとする課題】
本発明は、上記従来技術のうち(2)の加熱炉で高温再生する方法について、さらに改良を加えることによって触媒成分のシンタリング等の物理的なダメージを生じさせず、効率良く、排ガス中の被毒物質により被毒を受け活性劣化した触媒を再生することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは、排ガス中の被毒物質、特に硫黄化合物により被毒を受け活性劣化した触媒の、再生時の温度、再生する触媒重量に対する再生ガスの流量、再生する触媒に使用する再生ガスの組成等の種々の条件について、鋭意検討を行った。その結果、これらの中でも特に再生時の温度を最適な範囲とすることが重要であることを見出し、本発明を完成させた。さらに、再生する触媒重量に対する再生ガスの流量および再生ガスの組成についても最適な条件を選択することで、触媒成分のシンタリング等の物理的なダメージを生じさせず、効率良く、経済的に触媒を再生することができることを見出した。
【0008】
すなわち、本発明の触媒の再生方法は、排ガス中の被毒物質により被毒を受け活性劣化した触媒を再生する方法であって、流通系においては350〜450℃において、非流通系においては400〜500℃において、下記 (1) 〜 (5) の全ての条件を満足する再生ガスの存在下に加熱することを特徴とする。
(1) O 2 が5容量%以上、 (2) H 2 Oが40容量%以下、 (3) 硫黄酸化物が5000容量ppm以下、 (4) NH 3 が5000容量ppm以下、および、 (5) ダストが0.1g/m 3 ( Normal )以下。
【0009】
【発明の実施の形態】
本発明の触媒の再生方法では、加熱温度が重要である。流通系においては350〜450℃であり、370〜420℃が好ましい。非流通系においては400〜500℃であり、430〜480℃が好ましい。前記範囲よりも加熱温度が低いと再生効率が低く、前記範囲よりも加熱温度が高くなると、触媒組成として含有している硫黄分までもが除去され、性能の回復が悪くなるため好ましくない。また、経済的にもコストが高くなり好ましくない。特に、非流通系で再生する場合には、物理的ダメージを生じやすい。
【0010】
再生する触媒1kgに対する再生ガスの流量は、0.5〜30m3 /h(Normal)の範囲に調整することが重要であり、好ましくは1.0〜20m3 /h(Normal)の範囲である。前記範囲よりも再生ガスの流量が少ないと再生効率が低く、前記範囲よりも再生ガスの流量が多くなると、触媒組成として含有している硫黄分までもが除去され、性能の回復が悪くなるため好ましくない。また、触媒での圧力損失も大きくなり、高い能力の吸気ブロアや排気ブロア等が必要となったり、エネルギー消費も多くなるため好ましくない。
再生ガスの組成としては、O2 が好ましくは5容量%以上、より好ましくは7容量%以上21容量%以下、H2 Oが好ましくは40容量%以下、硫黄酸化物が好ましくは5000容量ppm以下、より好ましくは3000容量ppm以下、NH3 が好ましくは5000容量ppm以下、より好ましくは3000容量ppm以下、ダストが好ましくは0.1g/m3 (Normal)以下であることが好適である。これらの範囲を外れると、再生効率は低くなる。特に、ダストが0.1g/m3 (Normal)よりも多いと、ダスト成分による触媒の性能劣化も生じ、再生効率が低くなる。非流通系で再生を行う場合には、触媒に付着した硫黄化合物が分解し、アンモニアガスと二酸化硫黄や三酸化硫黄等の硫黄酸化物が生成するため、吸気ブロアまたは排気ブロアを設置し系内のガスを排気し、系内に外気を取り入れ、前記したガス組成となるように調整する。
【0011】
本発明において流通系とは、反応器等の触媒に直接強制的にガスを流通させる場合を指す。一方、非流通系とは、触媒に直接強制的にガスを流通させない場合を指す。非流通系の代表例として循環炉やマッフル炉が挙げられる。非流通系における再生ガスの流量とは、循環炉の場合は循環しているガス量を指し、マッフル炉の場合は吸気ブロアまたは排気ブロアの流量を指す。
流通系で再生を行う場合、現地の焼却設備に再生システムを組み込んでも良いし、既存の高温排ガスを伴う設備(例えば、発電設備の排ガス、ボイラ排ガス、焼却炉排ガス、焼成炉排ガス等)に再生装置を設置しても良い。触媒が被毒物質により活性劣化した場合に、これらの排ガスを導入して再生を行う。流通系で再生を行う利点として、熱源が有効利用できるため、加熱に要するコストが安いことが上げられる。
【0012】
非流通系で再生を行う場合、循環炉やマッフル炉等の一般に触媒の焼成に用いられているような装置を用いれば良い。非流通系で再生を行うと、流通系で再生を行う場合よりも再生のための加熱温度が高く、再生に要する時間も長くなるが、現有装置が使用可能であり、新たな設備投資が不要であるという利点を有する。
本発明により再生する触媒は、排ガス中の被毒物質、特に硫黄化合物により被毒を受け活性劣化した触媒であれば、特に限定されるものではなく、例えば、窒素酸化物および/または有機ハロゲン化合物(ダイオキシン類等)を含む排ガスの処理に使用される触媒が好ましいものとして挙げられる。特に、触媒が比較的低温度で使用された場合には、経時的な性能劣化が著しいため、ゴミ焼却炉の電気集塵機やバグフィルター、セラミックフィルター等の除塵装置後流で、好ましくは、セラミックフィルターおよび/またはバグフィルター後流で、温度350℃以下で、好ましくは150〜300℃で、窒素酸化物および/または有機ハロゲン化合物を含有する排ガスの処理に使用される触媒が好適である。
【0013】
本発明により再生する触媒の組成としては、目的の排ガス処理に適した組成であればよい。例えば、窒素酸化物および/または有機ハロゲン化合物を含有する排ガスの処理に使用される触媒であれば、チタン酸化物および/またはシリコン酸化物と、バナジウム、タングステンおよびモリブデンからなる群より選ばれる少なくとも1種類の金属の酸化物とを含有することが好ましい。
本発明により再生する触媒の形状としては、粉体を使用してもよい。また、板状、波板状、網状、ハニカム状、円柱状、円筒状等の形状の一体成形体でも良いし、アルミナ、シリカ、コーディライト、チタニア、ステンレス金属等よりなる板状、波板状、網状、ハニカム状、円柱状、円筒状等の形状の担体に担持して使用しても良い。
【0014】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。なお、以下に説明する実施例1〜14のうち、実施例6、8は、請求項1で規定する条件(1)を満たさない参考技術である。
[参考例1]
排ガスに曝露される前の新品触媒(1)を参考例1とする。この新品触媒(1)は、チタン酸化物を70重量%、シリコン酸化物を9.5重量%、バナジウム酸化物を10重量%、モリブデン酸化物を10重量%、硫黄分を0.5重量%含有するハニカム状の触媒である。
【0015】
[参考例2]
排ガスに曝露される前の新品触媒(2)を参考例2とする。この新品触媒(2)は、チタン酸化物を70重量%、シリコン酸化物を9.5重量%、バナジウム酸化物を10重量%、タングステン酸化物を10重量%、硫黄分を0.5重量%含有する粉体状の触媒である。
[比較例1]
参考例1の新品触媒(1)を、ゴミ焼却炉のバグフィルター後流で、温度200℃で、硫黄酸化物を20容量ppm、NH3 を80容量ppm、窒素酸化物を100容量ppm、ダイオキシン類を2ng−TEQ/m3 (Normal)、O2 を10容量%、H2 Oを15容量%含有する排ガスの処理に使用した。この排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を比較例1とする。
【0016】
[比較例2]
参考例2の新品触媒(2)を、ゴミ焼却炉のバグフィルター後流で、温度200℃で、硫黄酸化物を20容量ppm、NH3 を80容量ppm、窒素酸化物を100容量ppm、ダイオキシン類を2ng−TEQ/m3 (Normal)、O2 を10容量%、H2 Oを15容量%含有する排ガスの処理に使用した。この排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(2)を比較例2とする。
[実施例1〜2]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)の条件下にて、温度350〜450℃の範囲で、流通系にて、熱処理再生を10時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、温度は、実施例1:350℃、実施例2:450℃とした。
【0017】
[実施例3〜5]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)の条件下にて、温度400〜500℃の範囲で、非流通系にて、熱処理再生を20時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、温度は、実施例3:400℃、実施例4:450℃、実施例5:500℃とした。
【0018】
[実施例6〜7]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)、温度350℃の条件下にて、酸素濃度3〜7容量%の範囲で、流通系にて、熱処理再生を10時間行った。なお、再生ガスの組成は、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、酸素濃度は、実施例6:3容量%、実施例7:7容量%とした。
[実施例8〜9]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)、温度450℃の条件下にて、酸素濃度3〜7容量%の範囲で、非流通系にて、熱処理再生を20時間行った。なお、再生ガスの組成は、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、酸素濃度は、実施例8:3容量%、実施例9:7容量%とした。
【0019】
[実施例10〜11]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、温度350℃の条件下にて、触媒1kgあたりの再生ガスの流量0.5〜37.5m3 /h(Normal)の範囲で、流通系にて、熱処理再生を10時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、触媒1kgあたりの再生ガスの流量は、実施例10:0.5m3 /h(Normal)、実施例11:37.5m3 /h(Normal)とした。
【0020】
[実施例12]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)、温度は350℃の条件下にて、流通系にて、熱処理再生を10時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は5000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であった。
[実施例13]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)、温度は450℃の条件下にて、非流通系にて、熱処理再生を20時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は5000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であった。
【0021】
[実施例14]
比較例2の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(2)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)、温度は450℃の条件下にて、非流通系にて、熱処理再生を20時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であった。
[比較例3〜4]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)の条件下にて、温度300℃および500℃で、流通系にて、熱処理再生を10時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、温度は、比較例3:300℃、比較例4:500℃とした。
【0022】
[比較例5〜6]
比較例1の排ガス曝露にて被毒物質により被毒を受け活性劣化した触媒(1)を、触媒1kgあたりの再生ガスの流量は3.5m3 /h(Normal)の条件下にて、温度350℃および550℃で、非流通系にて、熱処理再生を20時間行った。なお、再生ガスの組成は、酸素濃度は5容量%、硫黄酸化物及びNH3 濃度は3000容量ppm以下、H2 O濃度は5容量%以下、ダスト濃度は0g/m3 (Normal)であり、温度は、比較例5:350℃、比較例6:550℃とした。
【0023】
[試験例1]
実施例1〜14にて熱処理再生を行った触媒、参考例1〜2の新品触媒、及び比較例1〜2の活性劣化した触媒、比較例3〜6にて熱処理再生を行った触媒の各触媒の一部を切り出し、粉砕後圧縮成形したものを分析サンプルとして、蛍光X線測定装置にて各触媒中の硫黄分を定量した。
以下の式にしたがい、再生効率(%)を求めた。結果を表1に示す。
再生効率(%)={再生前の触媒中の硫黄分(重量%)−再生後の触媒中の硫黄分(重量%)}/{再生前の触媒中の硫黄分(重量%)−新品の触媒中の硫黄分(重量%)}×100
[試験例2]
実施例1〜14にて熱処理再生を行った触媒、参考例1〜2の新品触媒、及び比較例1〜2の活性劣化した触媒、比較例3〜6にて熱処理再生を行った触媒の各触媒を、以下に示す反応条件にて試験し脱硝率を求めた。結果を表1に示す。
【0024】
−試験条件−
空間速度 11,300h-1
ガス線速度 2.79m/s(Normal)
ガス温度 200℃
NH3 /NOモル比 1.0
ガス組成 NO 200volppm(Dry)
SO2 50volppm(Dry)
O2 10vol%(Dry)
H2 O 15vol%
N2 バランスガス
[試験例3]
実施例1〜11、14にて熱処理再生を行った触媒、参考例1〜2の新品触媒、及び比較例1〜2の活性劣化した触媒、比較例3〜6にて熱処理再生を行った触媒の各触媒の各触媒について、ダイオキシン類分解性能確認のため、代替物質としてクロロトルエンを用いて、以下に示す反応条件にて試験しクロロトルエン分解率を求めた。結果を表1に示す。
【0025】
[試験例4]
実施例3及び比較例5にて熱処理再生を行った触媒を、それぞれ、ガス温度200℃で、O2 濃度が10容量%、H2 O濃度が15容量%、硫黄酸化物及びNH3 濃度が500容量ppmである排ガス条件にて曝露を行った。曝露後の触媒について、試験例2に示す反応条件にて試験し、脱硝率を求めた。結果を表2に示す。
【0026】
【表1】
【0027】
【表2】
【0028】
【発明の効果】
本発明によると、触媒成分のシンタリング等の物理的なダメージを生じさせず、効率良く、経済的に触媒を再生することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a catalyst. More specifically, the present invention relates to a method for regenerating a catalyst that has been poisoned and poisoned by poisonous substances contained in exhaust gas.
[0002]
[Prior art]
In general, combustion exhaust gas from refuse incinerators is removed by dust collectors such as electrostatic precipitators, bag filters, ceramic filters, etc., and then nitrogen oxides and / or organic halogen compounds such as dioxins contained in the exhaust gas Exhaust gas treatment using a catalyst is performed on harmful substances in a relatively low temperature range of about 150 to 350 ° C.
As such a catalyst, a catalyst containing titanium oxide and / or silicon oxide and at least one metal oxide selected from the group consisting of vanadium, tungsten and molybdenum is suitably used.
[0003]
Combustion exhaust gas from refuse incinerators includes ammonia gas, sulfur compounds such as sulfur dioxide, sulfur trioxide and acidic ammonium sulfate, alkali metal compounds such as potassium and sodium, alkaline earth compounds such as calcium and magnesium, mercury, phosphorus It contains a small amount of poisonous substances such as metal compounds such as arsenic, lead and antimony. When the above catalyst is used at a relatively low temperature of about 150 to 350 ° C., vanadium pentoxide is sulfated especially by sulfur compounds. It changes into a salt, and acid ammonium sulfate and ammonium sulfate accumulate on the surface of the catalyst, and the pores of the catalyst are blocked, resulting in deterioration of performance over time.
[0004]
As a method of regenerating a catalyst that has been poisoned by the poisonous substance contained in the exhaust gas and has been activated and deteriorated, (1) a method of cleaning and regenerating the catalyst with water or water containing an additive, and (2) from an apparatus A method of taking out the catalyst and regenerating it at a high temperature in a heating furnace is known. However, each of these reproduction methods has the following problems.
The washing and regenerating method (1) has the disadvantage that the regeneration efficiency is low in addition to the outflow of catalyst components by water and additives and the difficulty of wastewater treatment. In the method of regenerating at a high temperature in the heating furnace of (2), if the temperature is too low, the regeneration efficiency is lowered, and if the temperature is too high, the sintering of the catalyst components and even the sulfur content contained in the catalyst composition are removed. And has the disadvantage of being physically damaged.
[0005]
Using a catalyst with low regeneration efficiency, if exhaust gas treatment is performed again on harmful substances such as nitrogen oxides and / or organic halogen compounds such as dioxins in a garbage incinerator, the activity deteriorates in a short period of time. Therefore, it is not preferable.
[0006]
[Problems to be solved by the invention]
The present invention improves the method of regenerating at a high temperature in the heating furnace of (2) among the prior arts described above, without further causing physical damage such as sintering of the catalyst component by adding further improvements, and efficiently in the exhaust gas. It is an object to regenerate a catalyst that has been poisoned by a poisoning substance and whose activity has deteriorated.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors of the present invention have developed a catalyst that has been poisoned by a poisonous substance in exhaust gas, particularly a sulfur compound, and has deteriorated its activity. The inventors studied diligently on various conditions such as the composition of the regeneration gas used in the catalyst. As a result, the present inventors have found that it is important to set the temperature during regeneration to an optimum range, and completed the present invention. Furthermore, by selecting the optimum conditions for the regeneration gas flow rate and regeneration gas composition relative to the catalyst weight to be regenerated, physical damage such as sintering of catalyst components does not occur and the catalyst is efficiently and economically produced. Found that you can play.
[0008]
That is, the catalyst regeneration method of the present invention is a method for regenerating a catalyst that has been poisoned and deteriorated by poisoning substances in exhaust gas, and is 350 to 450 ° C. in a circulation system and 400 in a non-circulation system. in to 500 ° C., characterized by heating in the presence of a regeneration gas that satisfies all of the following conditions (1) to (5).
(1) O 2 5 volume% or more, (2) H 2 O 40 volume% or less, (3) sulfur oxide 5000 volume ppm or less, (4) NH 3 Is 5000 ppm by volume or less, and (5) Dust is 0.1 g / m 3 ( Normal ) or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the catalyst regeneration method of the present invention, the heating temperature is important. In a distribution system, it is 350-450 degreeC, and 370-420 degreeC is preferable. In a non-circulation system, it is 400-500 degreeC, and 430-480 degreeC is preferable. When the heating temperature is lower than the above range, the regeneration efficiency is low, and when the heating temperature is higher than the above range, even the sulfur content contained as the catalyst composition is removed, and the performance recovery is deteriorated. In addition, this is not preferable because of high cost. In particular, when reproducing in a non-distribution system, physical damage is likely to occur.
[0010]
The flow rate of the regeneration gas to the catalyst 1kg to play, it is important to adjust the range of 0.5~30m 3 / h (Normal), in the range of preferably 1.0~20m 3 / h (Normal) . If the regeneration gas flow rate is lower than the above range, the regeneration efficiency is low, and if the regeneration gas flow rate is higher than the above range, even the sulfur content contained as the catalyst composition is removed, resulting in poor performance recovery. It is not preferable. Further, the pressure loss in the catalyst is increased, and a high-capacity intake blower or exhaust blower is required, and energy consumption increases, which is not preferable.
As the composition of the regeneration gas, O 2 is preferably 5% by volume or more, more preferably 7% by volume or more and 21% by volume or less, H 2 O is preferably 40% by volume or less, and sulfur oxide is preferably 5000% by volume or less. More preferably, it is 3000 ppm by volume or less, NH 3 is preferably 5000 ppm by volume or less, more preferably 3000 ppm by volume or less, and dust is preferably 0.1 g / m 3 (Normal) or less. Beyond these ranges, the playback efficiency will be low. In particular, when the amount of dust is more than 0.1 g / m 3 (Normal), the catalyst performance deteriorates due to dust components, and the regeneration efficiency is lowered. When regeneration is performed in a non-circulation system, sulfur compounds adhering to the catalyst are decomposed to produce ammonia gas and sulfur oxides such as sulfur dioxide and sulfur trioxide. Therefore, an intake blower or exhaust blower is installed in the system. The gas is exhausted, outside air is taken into the system, and the gas composition described above is adjusted.
[0011]
In the present invention, the flow system refers to a case where gas is forced to flow directly through a catalyst such as a reactor. On the other hand, the non-circulating system refers to a case where gas is not forced to flow directly through the catalyst. A typical example of a non-circulation system is a circulation furnace or a muffle furnace. The flow rate of the regenerative gas in the non-circulating system refers to the amount of gas circulating in the case of a circulating furnace, and refers to the flow rate of an intake blower or an exhaust blower in the case of a muffle furnace.
When regenerating in the distribution system, the regenerative system may be incorporated into the local incineration equipment, or regenerated into equipment with existing high-temperature exhaust gas (for example, exhaust gas from power generation equipment, boiler exhaust gas, incinerator exhaust gas, firing furnace exhaust gas, etc.) A device may be installed. When the catalyst is activated and deteriorated by poisonous substances, these exhaust gases are introduced and regenerated. As an advantage of performing regeneration in a distribution system, the cost of heating can be reduced because the heat source can be used effectively.
[0012]
When regeneration is performed in a non-circulation system, an apparatus such as a circulation furnace or a muffle furnace that is generally used for catalyst firing may be used. When regeneration is performed in a non-distribution system, the heating temperature for regeneration is higher and the time required for regeneration is longer than in the case of regeneration in a distribution system, but the existing equipment can be used and no new capital investment is required. It has the advantage of being.
The catalyst regenerated according to the present invention is not particularly limited as long as it is poisoned by poisonous substances in exhaust gas, particularly sulfur compounds, and is deteriorated in activity. For example, nitrogen oxides and / or organic halogen compounds A catalyst used for treatment of exhaust gas containing (dioxins and the like) is preferable. In particular, when the catalyst is used at a relatively low temperature, the performance deterioration with time is remarkable, so it is preferable to use the ceramic filter in the downstream of the dust collector such as the electric dust collector, bag filter, ceramic filter, etc. A catalyst used for the treatment of exhaust gas containing nitrogen oxides and / or organic halogen compounds at a temperature of 350 ° C. or less, preferably 150 to 300 ° C., in the downstream of the bag filter is suitable.
[0013]
The composition of the catalyst regenerated by the present invention may be any composition suitable for the target exhaust gas treatment. For example, if it is a catalyst used for the treatment of exhaust gas containing nitrogen oxides and / or organic halogen compounds, at least one selected from the group consisting of titanium oxide and / or silicon oxide and vanadium, tungsten and molybdenum. It is preferable to contain the oxide of a kind of metal.
As the shape of the catalyst regenerated by the present invention, powder may be used. Also, it may be an integrally formed body such as a plate shape, corrugated shape, net shape, honeycomb shape, columnar shape, cylindrical shape, or a plate shape, corrugated plate shape made of alumina, silica, cordierite, titania, stainless steel, or the like. Alternatively, it may be used by being supported on a carrier having a net shape, honeycomb shape, columnar shape, cylindrical shape or the like.
[0014]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Of Examples 1 to 14 described below, Examples 6 and 8 are reference technologies that do not satisfy the condition (1) defined in claim 1.
[Reference Example 1]
The new catalyst (1) before being exposed to the exhaust gas is referred to as Reference Example 1. This new catalyst (1) is composed of 70% by weight of titanium oxide, 9.5% by weight of silicon oxide, 10% by weight of vanadium oxide, 10% by weight of molybdenum oxide, and 0.5% by weight of sulfur content. A honeycomb-shaped catalyst is contained.
[0015]
[Reference Example 2]
The new catalyst (2) before being exposed to the exhaust gas is referred to as Reference Example 2. This new catalyst (2) is composed of 70% by weight of titanium oxide, 9.5% by weight of silicon oxide, 10% by weight of vanadium oxide, 10% by weight of tungsten oxide, and 0.5% by weight of sulfur content. It is a powdery catalyst to be contained.
[Comparative Example 1]
The new catalyst (1) of Reference Example 1 was placed behind the bag filter of a garbage incinerator at a temperature of 200 ° C., 20 ppm by volume of sulfur oxide, 80 ppm by volume of NH 3 , 100 ppm by volume of nitrogen oxide, and dioxin. Was used for treatment of exhaust gas containing 2 ng-TEQ / m 3 (Normal), 10% by volume of O 2 and 15% by volume of H 2 O. The catalyst (1) that has been poisoned by the poisoning substance due to this exhaust gas exposure and whose activity has deteriorated is referred to as Comparative Example 1.
[0016]
[Comparative Example 2]
The new catalyst (2) of Reference Example 2 was placed behind the bag filter of a garbage incinerator, at a temperature of 200 ° C., 20 ppm by volume of sulfur oxide, 80 ppm by volume of NH 3 , 100 ppm by volume of nitrogen oxide, dioxin Was used for treatment of exhaust gas containing 2 ng-TEQ / m 3 (Normal), 10% by volume of O 2 and 15% by volume of H 2 O. The catalyst (2) that has been poisoned by poisonous substances due to this exhaust gas exposure and has been activated and deteriorated is referred to as Comparative Example 2.
[Examples 1-2]
The catalyst (1), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 1 and deteriorated in activity, was subjected to a temperature of 3.5 m 3 / h (Normal) at a regeneration gas flow rate per 1 kg of catalyst. Heat treatment regeneration was performed for 10 hours in a flow system in the range of 350 to 450 ° C. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was set to Example 1: 350 ° C. and Example 2: 450 ° C.
[0017]
[Examples 3 to 5]
The catalyst (1), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 1 and deteriorated in activity, was subjected to a temperature of 3.5 m 3 / h (Normal) at a regeneration gas flow rate per 1 kg of catalyst. Heat treatment regeneration was performed for 20 hours in a non-circulating system in the range of 400 to 500 ° C. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was set to Example 3: 400 ° C, Example 4: 450 ° C, and Example 5: 500 ° C.
[0018]
[Examples 6 to 7]
The catalyst (1) that was poisoned by the poisonous substance by the exhaust gas exposure of Comparative Example 1 and deteriorated its activity, the regeneration gas flow rate per 1 kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was 350 ° C. Then, heat treatment regeneration was performed for 10 hours in the flow system in an oxygen concentration range of 3 to 7% by volume. The composition of the regeneration gas is as follows: the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, the dust concentration is 0 g / m 3 (Normal), and the oxygen concentration is 6: 3% by volume, Example 7: 7% by volume.
[Examples 8 to 9]
The catalyst (1) which was poisoned by poisonous substances due to the exhaust gas exposure of Comparative Example 1 and was activated and deteriorated, the flow rate of the regeneration gas per kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was 450 ° C. Then, heat treatment regeneration was performed for 20 hours in a non-circulating system in an oxygen concentration range of 3 to 7% by volume. The composition of the regeneration gas is as follows: the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, the dust concentration is 0 g / m 3 (Normal), and the oxygen concentration is 8: 3% by volume, Example 9: 7% by volume.
[0019]
[Examples 10 to 11]
The catalyst (1), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 1 and was activated and deteriorated, was subjected to a regeneration gas flow rate of 0.5 to 37.5 m 3 per kg of the catalyst under the condition of a temperature of 350 ° C. Heat treatment regeneration was performed for 10 hours in the flow system in the range of / h (Normal). The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The flow rate of the regeneration gas per 1 kg of the catalyst was set to Example 10: 0.5 m 3 / h (Normal) and Example 11: 37.5 m 3 / h (Normal).
[0020]
[Example 12]
The catalyst (1) which was poisoned by the poisonous substance in the exhaust gas exposure of Comparative Example 1 and was activated and deteriorated, the regeneration gas flow rate per 1 kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was 350 ° C. Under the distribution system, heat treatment regeneration was performed for 10 hours. The composition of the regeneration gas was such that the oxygen concentration was 5% by volume, the sulfur oxide and NH 3 concentrations were 5000 ppm by volume or less, the H 2 O concentration was 5% by volume or less, and the dust concentration was 0 g / m 3 (Normal). It was.
[Example 13]
The catalyst (1) that was poisoned by the poisonous substance in the exhaust gas exposure of Comparative Example 1 and was activated and deteriorated, the regeneration gas flow rate per 1 kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was 450 ° C. Below, heat processing reproduction | regeneration was performed for 20 hours by the non-distribution type | system | group. The composition of the regeneration gas was such that the oxygen concentration was 5% by volume, the sulfur oxide and NH 3 concentrations were 5000 ppm by volume or less, the H 2 O concentration was 5% by volume or less, and the dust concentration was 0 g / m 3 (Normal). It was.
[0021]
[Example 14]
The catalyst (2), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 2 and was activated and deteriorated, the flow rate of the regeneration gas per kg of the catalyst was 3.5 m 3 / h (Normal), and the temperature was 450 ° C. Below, heat processing reproduction | regeneration was performed for 20 hours by the non-distribution type | system | group. The composition of the regeneration gas was 5% by volume of oxygen, 3000 ppm by volume of sulfur oxide and NH 3 , 5% by volume of H 2 O, and 0 g / m 3 (Normal) of dust. It was.
[Comparative Examples 3 to 4]
The catalyst (1), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 1 and deteriorated in activity, was subjected to a temperature of 3.5 m 3 / h (Normal) at a regeneration gas flow rate per 1 kg of catalyst. Heat treatment regeneration was performed for 10 hours at 300 ° C. and 500 ° C. in a flow system. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was set to Comparative Example 3: 300 ° C and Comparative Example 4: 500 ° C.
[0022]
[Comparative Examples 5-6]
The catalyst (1), which was poisoned by poisonous substances in the exhaust gas exposure of Comparative Example 1 and deteriorated in activity, was subjected to a temperature of 3.5 m 3 / h (Normal) at a regeneration gas flow rate per 1 kg of catalyst. Heat treatment regeneration was performed for 20 hours at 350 ° C. and 550 ° C. in a non-circulating system. The composition of the regeneration gas is such that the oxygen concentration is 5% by volume, the sulfur oxide and NH 3 concentrations are 3000 ppm by volume or less, the H 2 O concentration is 5% by volume or less, and the dust concentration is 0 g / m 3 (Normal). The temperature was set to Comparative Example 5: 350 ° C. and Comparative Example 6: 550 ° C.
[0023]
[Test Example 1]
Each of the catalyst which performed heat treatment regeneration in Examples 1-14, the new catalyst of Reference Examples 1-2, the catalyst whose activity deteriorated in Comparative Examples 1-2, and the catalyst which performed heat treatment regeneration in Comparative Examples 3-6 A part of the catalyst was cut out, pulverized and compression-molded, and an analysis sample was used, and the sulfur content in each catalyst was quantified with a fluorescent X-ray measurement device.
The regeneration efficiency (%) was determined according to the following formula. The results are shown in Table 1.
Regeneration efficiency (%) = {Sulfur content in catalyst before regeneration (% by weight) −Sulfur content in catalyst after regeneration (% by weight)} / {Sulfur content in catalyst before regeneration (% by weight) −New Sulfur content in catalyst (% by weight)} × 100
[Test Example 2]
Each of the catalyst regenerated by heat treatment in Examples 1 to 14, the new catalyst of Reference Examples 1 and 2, the catalyst having deteriorated activity in Comparative Examples 1 and 2, and the catalyst regenerated by heat treatment in Comparative Examples 3 to 6 The catalyst was tested under the following reaction conditions to determine the denitration rate. The results are shown in Table 1.
[0024]
-Test conditions-
Space velocity 11,300h -1
Gas linear velocity 2.79m / s (Normal)
Gas temperature 200 ℃
NH 3 / NO molar ratio 1.0
Gas composition NO 200volppm (Dry)
SO 2 50 volppm (Dry)
O 2 10 vol% (Dry)
H 2 O 15vol%
N 2 balance gas [Test Example 3]
Catalysts subjected to heat treatment regeneration in Examples 1 to 11 and 14 , New catalysts of Reference Examples 1 to 2, catalysts with degraded activity of Comparative Examples 1 to 2, Catalysts subjected to heat treatment regeneration of Comparative Examples 3 to 6 In order to confirm the dioxin decomposition performance, each catalyst of the above was tested under the reaction conditions shown below using chlorotoluene as an alternative substance, and the chlorotoluene decomposition rate was determined. The results are shown in Table 1.
[0025]
[Test Example 4]
The catalysts subjected to the heat treatment regeneration in Example 3 and Comparative Example 5 were, respectively, at a gas temperature of 200 ° C., an O 2 concentration of 10% by volume, an H 2 O concentration of 15% by volume, and a sulfur oxide and NH 3 concentration of The exposure was performed under the exhaust gas conditions of 500 ppm by volume. The exposed catalyst was tested under the reaction conditions shown in Test Example 2 to determine the denitration rate. The results are shown in Table 2.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
【The invention's effect】
According to the present invention, the catalyst can be regenerated efficiently and economically without causing physical damage such as sintering of the catalyst component.
Claims (5)
(1) O 2 が5容量%以上、 (2) H 2 Oが40容量%以下、 (3) 硫黄酸化物が5000容量ppm以下、 (4) NH 3 が5000容量ppm以下、および、 (5) ダストが0.1g/m 3 ( Normal )以下。 The poisoning substance in exhaust gas A method of reproducing a catalyst deactivation poisoned, at 350 to 450 ° C. in the distribution system, the regeneration gas that satisfies all of the following conditions (1) to (5) A method for regenerating a catalyst, comprising heating in the presence.
(1) O 2 5 volume% or more, (2) H 2 O 40 volume% or less, (3) sulfur oxide 5000 volume ppm or less, (4) NH 3 Is 5000 ppm by volume or less, and (5) Dust is 0.1 g / m 3 ( Normal ) or less.
(1) O 2 が5容量%以上、 (2) H 2 Oが40容量%以下、 (3) 硫黄酸化物が5000容量ppm以下、 (4) NH 3 が5000容量ppm以下、および、 (5) ダストが0.1g/m 3 ( Normal )以下。 The poisoning substance in exhaust gas A method of reproducing a catalyst deactivation poisoned, at 400 to 500 ° C. in a non-flow system, the regeneration gas that satisfies all of the following conditions (1) to (5) A method for regenerating a catalyst, comprising heating in the presence of
(1) O 2 5 volume% or more, (2) H 2 O 40 volume% or less, (3) sulfur oxide 5000 volume ppm or less, (4) NH 3 Is 5000 ppm by volume or less, and (5) Dust is 0.1 g / m 3 ( Normal ) or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031022A JP3785296B2 (en) | 2000-02-08 | 2000-02-08 | Catalyst regeneration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031022A JP3785296B2 (en) | 2000-02-08 | 2000-02-08 | Catalyst regeneration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001219078A JP2001219078A (en) | 2001-08-14 |
JP3785296B2 true JP3785296B2 (en) | 2006-06-14 |
Family
ID=18555947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000031022A Expired - Lifetime JP3785296B2 (en) | 2000-02-08 | 2000-02-08 | Catalyst regeneration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3785296B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4840990B2 (en) * | 2006-09-25 | 2011-12-21 | 株式会社タクマ | Catalyst regeneration method and catalyst regeneration facility |
JP5121637B2 (en) * | 2008-09-04 | 2013-01-16 | 株式会社タクマ | Denitration catalyst regeneration method, denitration catalyst regeneration apparatus, and exhaust gas treatment apparatus using the same |
JP6103957B2 (en) * | 2013-01-25 | 2017-03-29 | 日立造船株式会社 | Exhaust gas treatment equipment |
KR101525302B1 (en) * | 2013-05-29 | 2015-06-02 | 두산엔진주식회사 | Selective catalytic reuction system and method of regenerating catalyst for selective catalytic reuction |
JP2021534961A (en) * | 2018-08-22 | 2021-12-16 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Offline catalytic regeneration of the selective catalytic reduction process and the inactivation catalyst of that process |
-
2000
- 2000-02-08 JP JP2000031022A patent/JP3785296B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001219078A (en) | 2001-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3589529B2 (en) | Method and apparatus for treating flue gas | |
JP3480596B2 (en) | Dry desulfurization denitrification process | |
CN102202767B (en) | Method for removing mercury from combustion gas, and combustion gas cleaner | |
KR101298305B1 (en) | Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same | |
CN109482052A (en) | CO and NO in a kind of purifying sintering flue gasxDevice and method | |
JP5961514B2 (en) | Fly ash circulation type exhaust gas treatment method | |
JP2004237244A (en) | Method and system for removing mercury in exhaust gas | |
JP5051977B2 (en) | Device for removing trace harmful substances in exhaust gas and operation method thereof | |
KR101199477B1 (en) | Method of regenerating SCR catalyst | |
KR20120028049A (en) | A catalyst for selective catalytic reduction of nitrogen oxides and method for regeneration thereof | |
JP2014065031A (en) | Exhaust gas treatment catalyst and method of regenerating the same | |
JP3785296B2 (en) | Catalyst regeneration method | |
JP2015104725A (en) | Method for oxidation treatment of metallic mercury in gas by using used denitration catalyst | |
JPH067639A (en) | Method for denitrifying waste combustion gas | |
JP2008030017A (en) | Removal apparatus of trace harmful substance in exhaust gas and its operation method | |
JP3779889B2 (en) | Catalyst regeneration method | |
JP2003340282A (en) | Low temperature denitration catalyst, and low temperature denitration method for exhaust gas | |
JP6400379B2 (en) | Denitration method for combustion exhaust gas | |
JP6703924B2 (en) | Mercury oxidation catalyst and method for manufacturing mercury oxidation treatment apparatus equipped with mercury oxidation catalyst | |
CN109174097A (en) | A kind of catalyst and preparation method thereof for metallurgy sintering smoke desulphurization denitration | |
JP2001079346A (en) | Method and device for treating gas and method for regenerating honeycomb activated carbon | |
JPH08155300A (en) | Sulfur oxide-containing low temperature exhaust gas dry denitration method and desulfurization / denitration catalyst | |
JP5709438B2 (en) | Exhaust gas treatment equipment | |
JP2002316051A (en) | Method and apparatus for regenerating denitration catalyst or dioxin decomposition catalyst | |
KR20210077018A (en) | Method for treating exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060317 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3785296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |