JP4294798B2 - 超音波トランスデューサ - Google Patents
超音波トランスデューサ Download PDFInfo
- Publication number
- JP4294798B2 JP4294798B2 JP19638299A JP19638299A JP4294798B2 JP 4294798 B2 JP4294798 B2 JP 4294798B2 JP 19638299 A JP19638299 A JP 19638299A JP 19638299 A JP19638299 A JP 19638299A JP 4294798 B2 JP4294798 B2 JP 4294798B2
- Authority
- JP
- Japan
- Prior art keywords
- transducer
- spacer
- membrane
- resonant
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0688—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/0292—Electrostatic transducers, e.g. electret-type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0611—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
- B06B1/0614—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile for generating several frequencies
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
【発明の属する技術分野】
本発明は、音波信号の伝送に関連し、より詳しくは、かかる信号を空気中を伝送させるためのトランスデューサに関連する。
【0002】
【従来の技術】
超音波信号は、可聴範囲(通常20kHz)を超える周波数の音波である。ほとんどではないにしても、超音波を伴う多くの用途では、明確に規定されたビームを生成することが必要である。従って、電気信号を対応する音響信号に変換する超音波トランスデューサは、高い変換効率に加えて、指向性が極めて良好な伝送特性を有していなければならない。さらに、トランスデューサの機械的インピーダンスは、伝達媒体のインピーダンスに可能な限り近いものでなければならない。
【0003】
空中伝送に関する超音波トランスデューサは、静電性結晶デバイスと圧電性結晶デバイスの2つの重要な分類に分けられる。静電性トランスデューサでは、薄膜が、電界の容量効果によって振動することにより、一方、圧電性トランスデューサでは、印加された電位によってピエゾセラミック材料の形状が変化することにより、音響信号がそれぞれ生成される。いずれのタイプのトランスデューサにも、種々の動作上の制限があり、それによって、いくつかの用途ではそれらの有用性が大きく制限されてしまう。特に、これらの動作上の制限によって、パラメトリックスピーカー(すなわち、超音波の非線形相互作用によって非常に良好な指向性を有する可聴音を発生する装置)の開発が妨げられてきた。パラメトリックシステムにおいては、オーディオ信号で変調された高強度の超音波信号は、それが大気(すなわち、非線形伝達媒体)中を通過するときに復調され、それによって、指向性が極めて良好な可聴音が生成される。
【0004】
【発明が解決しようとする課題】
圧電トランスデューサは、通常、限定された帯域幅について高い効率で動作する。パラメトリックアプリケーションでは、可聴信号に現れる歪みの度合いは、トランスデューサの利用可能な帯域幅に直接関連し、その結果、狭帯域のトランスデューサ(例えば、圧電性トランスデューサ)を使用した場合には、音質の悪い音が発生することになるであろう。さらに、圧電性トランスデューサは、高い音響インピーダンスを有する傾向があり、その結果、インピーダンスが低い大気内では放射効率が悪くなる。この不整合のために、トランスデューサに加えられるエネルギーの大部分が、反射して増幅器(または、トランスデューサ自体)に戻り、熱を発生してエネルギーを浪費する。最後に、従来の圧電性トランスデューサは、壊れやすく、高価で、さらに、電気的に接続することが困難であるという傾向がある。
【0005】
従来の静電性トランスデューサは、直流(DC)バイアスによって導電性のバックプレートに保持された金属被膜された重合体膜を使用する。バックプレートは、所望の動作周波数で音響−機械共振を生成するくぼみ(depression)を備えている。直流バイアス源に加えられる交流(AC)電圧が、そのバイアスを交互に増加させたり減少させたりし、それによって、前記膜をバックプレートに引き込む力を増加させたり、減少させたりする。この変化は、表面が接触している箇所には全く影響しないが、膜をくぼみの上で振動させることになる。十分なダンピングがない場合には、静電性トランスデューサの共振ピークは、非常にシャープであり、限定された帯域幅を犠牲にして、効率的な動作を行うことになる。(例えば、空気と接触する膜の表面を粗くして)ダンピングを行うことによって、帯域幅は幾分広がるであろうが、効率は悪くなるであろう。
【0006】
Mattila他による、Sensors and Actuators A,45,203-208(1994)に記載されているように、静電性トランスデューサの帯域幅を広げるための他の技法は、トランスデューサの表面を横断するくぼみの深さを変えて、足し合わせると広い帯域幅になる異なる共振を生成することである。
【0007】
トランスデューサの最大駆動電力(及び最大直流バイアス)は、膜が耐えることができる電界の強度、ならびに、エアギャップが耐えることができる電圧の大きさによって制限される。最大の電界は、膜がバックプレートに(すなわち、くぼみの外側で)実際に接触するところで発生する。膜は一般的には、非常に薄い重合体膜(高分子膜)なので、十分な耐電圧を有する材料でさえも、非常に高い電圧が与えられると、充電またはパンチスルー(つきぬけ)による破損を起こしてしまう。同様に、薄膜を使用すると、薄膜の金属被膜された表面がバックプレートに非常に近づくので、薄膜を横断する電界、従って、デバイスの容量が、極めて高くなり、その結果、大きな駆動電流が必要となる。
【0008】
圧電薄膜トランスデューサは、印加される電位に応答して形状を変えるポリフッ化ビニリデン(PVDF)薄膜のような、軽量で、可撓性の膜材料を利用する。この薄膜は、それの空気に対する音響インピーダンス整合を改善するために非常に軽く作成することができ、その結果、効率の良い超音波伝送が得られる。1つの既知の構成では、PVDF薄膜は、その両面を導電性材料でコーティングされ、孔の開いた金属プレートの上に置かれる。プレートは、他の方法で閉じられた空間の最上部であり、その空間に加えられる真空によって、その膜が孔の中に引き込まれる。膜の2つの金属被膜された表面(これは、誘電体によって分離された電極として動作する)間に接続された交流電圧源によって、PVDF材料が伸び縮みし、孔の中に入るくぼみの度合いが変化し、それによって音波が発生する。関連する構成(これも既知である)では、膜は、孔の開いたプレートの上ではなくて、それ下に置かれ、さらに、圧力源が真空に取って代わる。このバージョンでは、交流源によって、膜が孔の中に突き出す、あるいは、孔を通って突き出る度合いが変化し、同様にして音が発生する。
【0009】
これらのトランスデューサの電気−音響特性によって、それらはパラメトリックアプリケーションに適したものとなるが、その実用性には疑問が残る。商品化という観点からみた実際の環境において、真空または圧力を、長期間十分に維持することができるということは非常に可能性の低いことであり、わずかな漏れによって、トランスデューサは感度を失い、結局は故障してしまうであろう。
【0010】
【課題を解決するための手段】
本発明の第1の態様によれば、超音波トランスデューサの最大出力電力は、トランスデューサの膜の耐電圧によっては制限されない。従来の装置のように、導体の表面に膜を直接配置する(これによって、膜の両端の電界が非常に大きくなる)のではなくて、誘電性のスペーサに膜を保持する。超音波の伝送は、強力な電界の存在には依存しない。従って、故障の危険をおかすことなく、比較的大きなバイアス及び駆動電圧を、膜とスペーサの両端に加えることができる。なぜなら、スペーサが、膜が受ける電界を大きく低減するからである。さらに、スペーサによって、トランスデューサの容量も減少するので、必要な駆動電流がそれに応じて減少し、電力増幅器の設計が単純なものとなる。
【0011】
本発明のこの態様に従う音波トランスデューサは、導電性の膜、少なくとも1つの電極を備えるバックプレート、及び、膜とバックプレートの間に配置され、あるパターンで配列された一連のくぼみを有する誘電性のスペーサを備えることができ、前記くぼみは、予め決められた周波数でそれぞれが共振するキャビティを形成する。くぼみは、例えば、同心円状に配列した環状の溝、円筒状のくぼみの分布パターン等の適切な任意の形態をとることができ、誘電性のスペーサを部分的に、または完全に通過して延びることができる。さらに、くぼみは、異なる周波数で共振するキャビティを形成するために、スペーサを通る深さを変えることができる。すなわち、1つの深さを形成するくぼみの各組毎に、異なる電極を割り当てることができる。
【0012】
第2の態様では、本発明は、圧電性の動作モードと静電性の動作モードを組み合わせる。本発明のこの態様に従う音波トランスデューサは、1対の対向して配置された導電性表面を有する実質的に非導電性の圧電性膜、少なくとも1つの電極を備えるバックプレート、及び、膜と電極(または複数の電極)との間に共振するキャビティまたは構造を作成するための手段を備えることができる。例えば、キャビティを、くぼみ(円筒状の凹部または開口部、溝など)を有する誘電性のスペーサによって形成して、膜と電極(または複数の電極)の間に配置することができる。直流バイアスが、共振するキャビティ内に膜を押し込み、膜の両端に接続された交流源が、駆動信号を供給する。
【0013】
トランスデューサは、容量性のトランスデューサが、該トランスデューサの音響−機械共振周波数で、回路のインダクタンスと共振するところの該回路で駆動されるのが好ましい。こうすることによって、電気エネルギーをトランスデューサに非常に効率良く伝送することができ、従って、比較的高いキャリア(搬送波)周波数を容易に使用することができるようになる。本明細書に記載されたトランスデューサの高い効率と汎用性により、これらのトランスデューサは、パラメトリックアプリケーションだけでなく、測距、流れ検出(flow detection)、及び非破壊試験のような他の超音波アプリケーションにも適合するものとなる。パラメトリックアプリケーションでは、複数のトランスデューサをトランスデューサモジュールに組み込みことができ、実質的に、大きな放射表面と大きな非線形相互作用領域を形成するように、このモジュールを配列し、及び/または電気的に駆動する。
【0014】
【発明の実施の形態】
添付の図面を参照して本発明について以下に説明する。図1に示すように、本発明を組み込んだ静電性トランスデューサモジュール29は、円錐形のスプリング30を備えることができ、このスプリング30は、順に、導電性の電極ユニット32、多くの開口36を備えた誘電性スペーサ34、及び金属被膜重合体膜(metalized polymer membrane)38を支持している。コンポーネント32〜38は、フィルム(薄膜)38を担持し、スプリング30を支持するベース部材41に挿通可能に係合する上部のリング21によって、スプリング30に対して押しつけられる。モジュール29は、誘電性スペーサ34の各開口36に対応する、複数の静電性トランスデューサから構成される。具体的には、各開口上部のフィルム38の一部と、開口下部の電極ユニット32の一部が、単一のトランスデューサとして機能し、それは、とりわけ、フィルム38の張力及び面密度、開口の直径、及び重合体層34の厚さの関数である共振(共鳴)特性を有している。薄膜38の各部分と電極ユニット32との間の変化する電界によって、その薄膜の部分が、電極ユニット32に向かう方向、またはそれから離れる方向にたわむ。そして、その移動の周波数は、加えられる電界の周波数に一致する。
【0015】
図示のように、電極ユニット32を、適切なエッチング技法によって、各開口36の下部の個別の電極32aに分割することができる。これらの電極は、後述するように、これらの電極から1つまたは複数の駆動ユニットに延びる個別のリード線を有している。モジュール29は、従来のフレキシブルな回路材料を使用して簡単に製造することができ、それゆえ低コストである。例えば、スペーサ34は、デュポン社(duPont)によって販売されているPYRALUX材料のようなポリマーとすることができ、膜38は、金属被膜されたMYLAR薄膜(これもデュポン社によって販売されている)とすることができる。所望であれば、駆動ユニットコンポーネントを、同じ基板、例えば、タブ部分32bに直接配置することができる。この構造は、軽量であり、簡単な配置、アレイ構成における中心合わせ(focusing)及び/または配向のためにフレキシブルなものとすることができる。
【0016】
幾何学的形状、特に、開口36の深さを、モジュール29の個々のトランスデューサの共振特性が、所望の周波数範囲をカバーするように変更することができ、それによって、単一の音響−機械共振周波数を有する単一のトランスデューサ、またはトランスデューサの配列の場合に比べて、モジュールの全体的な応答を広げることができるということが理解されよう。これは、図2に示すように、2つ(または2つより多く)の層34aと34bとからなる誘電性スペーサ34を使用することによって実現できる。上部の層34aは、十分な数の開口36aを有している。他方、下部の層34bは、層34aの開口36aの中から選択された開口だけと位置が合う開口36bの組を有している。従って、2つの開口36aと36bの位置が合うところでは、その開口の深さは、層34bの開口がない部分の上部にある、層34aの開口の深さよりも深い。電極ユニット32は、層34bの開口の下に電極32bを有しており、層34aの開口のみがある部分(すなわち、層34bの開口がある部分を除く)の下部に電極32cを有している。これによって、より高い共振周波数(浅い方の開口)を有する第1のトランスデューサの組と、より低い共振周波数(深い方の開口)を有する第2のトランスデューサの組が提供される。スクリーン印刷やエッチングなどの他のプロセスによっても、これらの幾何学的形状及び構成を作成することができる。
【0017】
モジュール29の構成及び動作の異なる態様を図3と図4に示す。図3では、モジュール29は、1つの電極32を有しており、層34a、34bによって形成されるキャビティは、開口36aが開口36bと位置が合っているかどうかによって決まる、異なる深さd、d’を有している。図3には、膜38をスペーサ34に押し込む構造は示していない。交流源42(これは、送信のための被変調信号を生成する)に付加された直流バイアス源40は、モジュール29の両端、すなわち、電極32と膜38の金属被膜された表面38mに接続される。同じ信号がすべてのキャビティ36に加えられるが、それらの異なる共振ピークによって、モジュール29の帯域幅は全体として広がる。
【0018】
代替的には、図4に示すように、異なる電極の組32b、32cを、異なる交流駆動信号源42b、42aにそれぞれ接続することができる。各信号源42a、42bは、それが駆動するキャビティの機械共振周波数f1、f2で電気的に共振する。この「分離された多重共振」配列は、共振キャビティのそれぞれの組をそれに同調された増幅器と対にすることによって、応答を最適化し、電力転送を最大にする。抵抗器43a、43bは、電極32bと32cを分離するが、直流はそれらを通過することができる(インダクタを代わりに使用することができる)。
【0019】
上述したように、単にトランスデューサの音響−機械共振特性を変化させるだけでなく、電気共振特性もまた変化させることもできる。例えば、トランスデューサ29の異なる領域の容量を変化させて(例えば、スペーサ34a、34bの異なる領域に対して異なる誘電率を有する材料を使用することによって)、複数の電気共振回路を作成することができる。この電気共振は、増幅器からの電力転送の効率に影響し(すなわち、トランスデューサのインピーダンスが、増幅器のインピーダンスにより厳密に一致するにつれて、より多くの出力電力がトランスデューサの中で結合し、付随する電流引き込みが減少する)、そのため、異なる増幅器構成に対するトランスデューサの耐性を広げるために、単一のトランスデューサ内の変化する電気共振を、機械共振もまた変化されるかどうかに関係なく使用することができる。
【0020】
信号源42a、42bは、図5に示すように実現することができる。変調された出力信号(被変調出力信号)は、一対のフィルタ44a、44bに送られる。これらのフィルタは、その信号を異なる周波数帯域に分割して、それらを一対の同調増幅器46a、46bに送る。増幅器46aはf1に同調される。すなわち、増幅器46aが接続されているキャビティの両端の測定された容量に直列に入っている増幅器46aのインダクタンスによって、電気共振周波数が、それらのキャビティの機械共振周波数に等しくされる。増幅器46bはf2に同調される。フィルタ44a、44bは、f1とf2の間で被変調信号を分割するバンドパスフィルタ、または、ローパスフィルタ及びハイパスフィルタとすることができる。
【0021】
モジュール29の共振キャビティは、その断面が、図示のような円形の断面である必要はない。代わりに、これとは違った断面(例えば、正方形、長方形、または他の多角形状)とすることができ、スペーサ34に同心円状に配列された環状の溝(正方形、V型、円形状など)の形態をとることもできる。あるいは、選択された用途(または、所望の製造方法)に適した他の容積形状を有することもできる。同心円状に溝をつけられたトランスデューサの配列を駆動するためのバックプレートの電極を図6及び図7に示す。ここでは、電極ユニット52の導電性のパターンは、リング53、55及び57から構成されており、それによって、異なる深さの溝を個別に駆動できるようになっている。リングの間隔、及び加えられる信号の相対位相を、トランスデューサモジュールから放射される超音波ビームを成形するために選択することができる。
【0022】
所望の動作周波数に対する適正な溝の深さは、必要以上の実験を行うことなく容易に得られる。綿密度σ(kg/m2)の薄膜、及び深さh(m)の正方形の溝の場合には、共振周波数f0は、以下の値になることが予測される。
【0023】
【数1】
【0024】
ここで、cは、空気中の音の速度であり、ρ0は、空気の密度である。(正方形でない溝についての式は、上記式と類似している)。共振周波数は、膜の張力、溝の幅、及び直流バイアスによっても影響を受ける。従って、面密度がσ=0.0113kg/m2である薄膜を基材として65kHzの共振周波数を有するトランスデューサにつては、孔/構造の深さhは、74μm(3ミル)である。このキャビティの深さによって、例えば、500pFの容量が生成される場合には、12mHのインダクタンス(通常、トランスの2次側)が、65kHzの共振を実現するために選択される。
【0025】
このトランスデューサの場合、効率的な駆動のために適度な帯域幅は、10kHz(すなわち、60〜70kHz)である。従って、有効な出力帯域幅を広げるためには、75kHzの共振周波数を有する第2の組のトランスデューサを利用することが望ましいであろう。同じ設計アプローチを使用した場合、75kHzの共振を実現するためには、56μm(2ミル)の構造の深さが必要である。
【0026】
図8及び図9に、代替構成のトランスデューサモジュールの配列を示す。図8では、各モジュールは、その外形が六角形であり、これによって、モジュールが密に詰め込まれている。図9では、モジュールは正方形構造であり、この場合もモジュールが密に詰め込まれている。この配列は、多重ビームの生成、及びフェーズドアレイビーム(phased-array beam)の配向に対して十分適している。これまでの全てのトランスデューサの実現例において、電極間の電気的なクロストークは、電極間にいわゆる「ガードトラック」を配置することによって低減することができるということに留意すべきである。多重電気共鳴(必ずしも音響−機械共振ではない)を有するトランスデューサを、広帯域にわたって増幅効率を高めるために使用することができるということも理解されるべきである。
【0027】
以上のトランスデューサの実現例は、本質的に静電性である。図10に示すように、誘電性スペーサのアプローチを圧電性膜と共に使用することができる。この場合には、トランスデューサモジュール60は、圧電性(例えば、PVDF)の膜62、導電性のバックプレート64、及び開口部68を有する誘電性スペーサ66を備えており、開口部68を通って共振キャビティが形成される。この場合も、キャビティ68は、単一の深さを有するものではなくて、その深さが変化するものとすることができ、バックプレート64は、キャビティ68のそれぞれのキャビティに整合する一連の電極から構成することができる。
【0028】
膜62は、本質的に誘電性であり、かつ、その上面及び底面が金属被膜されていることが好ましい。回路70によって供給される直流バイアスが、バックプレート64と膜62の導電性の上面との間に接続されており、これによって、膜をキャビティ68の中に押し込む。これは、膜62に対して信頼性のある機械的(力学的)バイアスを提供するものであり、これによって、膜は、従来の圧電トランスデューサ駆動手法で膜62の両端に接続された駆動回路72の電気的出力に応答して音響信号を生成するために、線形的に作用することができる。従って、膜は静電(静電気)力によって所定の位置に保持されるが、圧電的に駆動される。上述したように、直流バイアス回路70は、それを交流駆動回路72から分離するコンポーネントを備えることができる。
【0029】
代替的には、代用として、または直流バイアスを増加させるために膜変位の機械的形状を利用することができる。例えば、膜がキャビティ68の中に引き込まれるように、膜を形成するか、または膜に機械的に張力を加えることができる。圧電的に引き起こされた収縮と膨張によって、バイアスされた薄膜が変位して、音波信号が発生する。
【0030】
図11に示すように、個別の圧電ドライバ、及び静電ドライバを利用することができる。従って、上述のように圧電ドライバ72aは膜62の両端に接続されるが、静電ドライバ72bは、直流バイアス回路70と同様に、膜62の金属被膜された上面とバックプレート64の間に接続される。この結果、圧電による力と静電による力(静電力)が、膜62を駆動するために共に使用される。膜62の向きに依存して、ドライバ72a、72bを、同相または違相で駆動することができる(これによって、これらの力は互いに弱め合うのではなくて強め合う)。従って、交流源72aによって生成される駆動電圧が正方向に振れると、静電力が、膜62をバックプレート64の方に引き寄せ(これは、図に示すように、高い直流バイアス電圧で維持されるのが好ましい)、同時に、圧電ドライバ72bが、膜62を膨張させたり収縮(薄く)させたりする。ドライバ72aによって生成される電圧が負方向に振れると、この引き寄せる静電力が弱まり、圧電ドライバ72bが、膜62を収縮させたり、膨張(厚く)させたりすることによってこの処理を補助する。
【0031】
これとは逆に、これらの力が互いに強め合うのではなくて、例えば、信号の向きを変えるためにトランスデューサの選択された部分を動作させないようにして、わざと弱め合うように、圧電ドライバ及び静電ドライバを動作させることができる。
【0032】
図12に示すように、他の実施態様では、電界を使用することによって、孔を通して膜をバックプレートの方に引き込むために従来技術の装置で利用される真空を置き換える。図12のトランスデューサモジュール80は、上面と底面が金属被膜された圧電性膜62を備えており、この膜は、さらに、孔を開けられた上部プレート82(これは、導電性でも非導電性でもよい)に接触している。従来のトランスデューサモジュールと同様に、上部プレート82は、側壁84によってバックプレート64の上部に隔置されている。回路70によって供給される直流バイアスは、バックプレート64と膜62の導電性の表面の間に接続され、これによって、膜62をプレート82の開口部86の中に引き込む。これは、膜62に対して信頼性のある機械的バイアスを提供し、これによって、膜は、圧電駆動回路72の電気的出力に応答して、音響信号を生成するために線形的に作用することができる。
【0033】
図10に示す構造を、図示のスペーサとバックプレートの代わりに、導電性の、溝(例えばV字状の溝)をつけられた金属製のバックプレートを使用することによってさらに単純なものにすることができる。この場合には、溝は、スペーサのギャップと同じ役目を果たし、直流バイアスされたバックプレート(または、上述したような機械的構成)が、膜62を溝の中に引き込む。
【0034】
以上のトランスデューサの実施態様はすべて、送信用だけでなく受信用にも使用することができ、また、駆動回路及び関連する回路を、トランスデューサの基板上に直接実装することがしばしば可能であるということを強調しておく。
【0035】
従って、本発明者は、従来技術に認められた制限を除去する改良された超音波トランスデューサを開発したということが理解されよう。本明細書で用いた用語及び表現は、説明の用語として使用したものであって、それらに限定するものではなく、そのような用語及び表現を使用することにおいて、図示し説明した等価な特徴、またはその一部分のいずれをも排除することを意図したものではない。しかし、本発明の特許請求の範囲内において種々の変更が可能であるということは明らかである。
【図面の簡単な説明】
【図1】本発明を組み込んだ静電性トランスデューサモジュールの組立分解図である。
【図2】多重共振周波数動作用に構成された、図1のトランスデューサモジュールの変形を示す。
【図3】図1又は図2に示したトランスデューサモジュールの構成及び動作モードを示す部分略側面図である。
【図4】図2に示したトランスデューサモジュールの図3とは異なる構成及び動作モードを示す部分略側面図である。
【図5】図4に示した実施態様に用いる駆動回路の概略図である。
【図6】代表的な電極構成を示す。
【図7】別の代表的な電極構成を示す。
【図8】代表的なトランスデューサモジュールの配列を示す。
【図9】別の代表的なトランスデューサモジュールの配列を示す。
【図10】直流バイアスを備えた圧電性ドライブと共振を利用するハイブリッドトランスデューサの部分略側面図である。
【図11】静電及び圧電の両方で駆動されるハイブリッドトランスデューサの部分略側面図である。
【図12】改良した圧電性トランスデューサの構成を示す。
【符号の説明】
29 トランスデューサモジュール
32 電極
34 誘電性スペーサ
36、68 開口部(キャビティ)
38 膜
40、70 直流バイアス源(直流バイアス回路)
42、72 交流源(交流駆動回路)
64 バックプレート
Claims (21)
- 音波トランスデューサであって、
(a)導電性の膜と、
(b)少なくとも1つの電極からなるバックプレートと、
(c)前記膜とバックプレートとの間に配置され、あるパターンで配列された一連のくぼみからなる誘電性のスペーサであって、それぞれのくぼみが、共振周波数を有するキャビティを形成するために前記誘電性のスペーサを通るある深さを有し、該共振周波数が前記深さによって決まることからなる、誘電性のスペーサ
を備える音波トランスデューサ。 - 前記バックプレートが複数の電極から構成され、前記スペーサを通る前記くぼみの深さが変化することからなる請求項1のトランスデューサであって、異なる深さのくぼみが、異なる周波数で共振するキャビティを形成し、前記電極のそれぞれが、一定の深さを有するくぼみに位置合わせされていることからなる、トランスデューサ。
- 前記くぼみの少なくともいくつかが、前記スペーサを完全に通過して延びることからなる、請求項1のトランスデューサ。
- 前記くぼみが、同心円状に配置された環状の溝である、請求項1のトランスデューサ。
- 前記くぼみが、円形、または、多角形の断面を有する、請求項1のトランスデューサ。
- 前記スペーサが、少なくとも第1及び第2の隣接する層からなり、前記くぼみが、前記第1の層を完全に通過して延び、前記第2の層が、前記第1の層のくぼみの数より少ない第2の一連のくぼみを含み、前記第2の層のくぼみと前記第1の層のくぼみの位置合わせを行うことによって、第1の一連の共振キャビティを形成し、前記第2の層のくぼみと位置が合っていない前記第1の層のくぼみによって、第2の一連の共振キャビティを形成し、前記第1及び第2の一連のキャビティが、異なる共振周波数を有することからなる、請求項2のトランスデューサ。
- 前記バックプレート、前記スペーサ、及び前記導電性の膜を密着させるための手段をさらに備える請求項1のトランスデューサ。
- 前記導電性の膜が、少なくともその1つの面が金属被膜された重合体薄膜である、請求項1のトランスデューサ。
- 前記導電性の膜が、第1及び第2の対向して配置された表面を有し、前記第1の表面が金属被膜されずに、前記スペーサに接触しており、前記第2の表面が金属被膜されていることからなる、請求項8のトランスデューサ。
- 前記導電性の膜が、第1及び第2の対向して配置された表面を有し、前記第1の表面が金属被膜されて、前記スペーサに接触しており、前記スペーサを完全に通過して延びる前記くぼみがないことからなる、請求項8のトランスデューサ。
- 前記導電性の膜が、第1と第2の金属被膜された表面の間に挟まれた非導電性の圧電性材料からなる、請求項1のトランスデューサ。
- 前記第1の金属被膜された表面が、前記スペーサに接触しており、さらに、
(a)前記膜の前記第2の金属被膜された表面と、前記少なくとも1つのバックプレートの電極とに接続された直流源と、
(b)前記膜を圧電的に駆動するために、該膜の前記第1及び第2の金属被膜された表面に接続された交流源
を備える請求項11のトランスデューサ。 - 前記膜の前記第2の金属被膜された表面と、前記少なくとも1つのバックプレートの電極とに接続されて、前記圧電性の交流源に関連して互いに強め合って、前記膜を静電気的に駆動するための交流源をさらに備える請求項12のトランスデューサ。
- 異なる深さのくぼみが、異なる機械共振周波数を有するキャビティを形成することからなり、さらに、異なるくぼみの深さのそれぞれについて、前記機械共振周波数に相応する周波数に同調された個別の共振駆動回路を備える請求項2のトランスデューサ。
- 前記トランスデューサが容量を有し、各駆動回路が、前記機械共振周波数に相応する電気共振を提供するために、前記トランスデューサの容量に結合されたインダクタを備えることからなる、請求項14のトランスデューサ。
- 音波トランスデューサであって、
(a)対向して配置された1対の表面と、それらを通って延び、あるパターンで配置された一連の開口とを有する誘電性のスペーサと、
(b)前記開口のパターンに一致する少なくとも1つの電極と、交流信号を前記少なくとも1つの電極に結合するための手段とを有し、前記スペーサの第1の表面に配置されるバックプレートと、
(c)前記スペーサの第2の表面に配置された導電性の膜と、
(d)前記バックプレート及び前記導電性の膜を、前記スペーサの前記第1及び第2の表面に密着させるための手段であって、それぞれの開口が、共振周波数を有するキャビティを形成するために前記誘電性のスペーサを通るある深さを有し、該共振周波数が前記深さによって決まることからなる、手段
を備える音波トランスデューサ。 - 音波トランスデューサであって、
(a)対向して配置された1対の導電性の表面を有する、実質的に非導電性の圧電性膜と、
(b)少なくとも1つの電極からなるバックプレートと、
(c)前記膜と前記少なくとも1つの電極の間に、複数の共振キャビティを作成するための手段と、
(d)前記膜を前記共振キャビティの中に押し込むための手段と、
(e)前記膜の両端に接続された交流源
を備え、
複数の共振キャビティを作成するための前記手段が、前記膜と前記少なくとも1つの電極との間に誘電性のスペーサを有し、該スペーサはくぼみを有し、それぞれのくぼみは、前記共振キャビティのうちの1つを形成するために前記誘電性のスペーサを通るある深さを有し、それぞれの共振キャビティは前記深さによって決まる共振周波数を有することからなる、音波トランスデューサ。 - 複数の共振キャビティを作成するための前記手段が、前記少なくとも1つの電極の上部に隔置された、穿孔されたプレートを含むことからなる、請求項17のトランスデューサ。
- 請求項2のトランスデューサを駆動する方法であって、異なる深さのくぼみが、異なる機械共振周波数を有するキャビティを形成し、
(a)異なるくぼみの深さのそれぞれについて、前記機械共振周波数に相応する周波数に同調された個別の共振駆動回路を設けるステップと、
(b)前記キャビティを、それに同調された前記それぞれの駆動回路で駆動するステップ
を含む方法。 - 前記トランスデューサが容量を有し、各駆動回路が、前記機械共振周波数に相応する電気共振を提供するために、前記トランスデューサの容量に結合されたインダクタを備えることからなる、請求項19の方法。
- 対向して配置された1対の導電性の表面を有する、実質的に非導電性の圧電性膜、少なくとも1つの電極からなるバックプレート、及び、前記膜と前記少なくとも1つの電極の間に複数の共振キャビティを作成するための手段とを含む音波トランスデューサを動作させる方法であって、
(a)前記膜を前記共振キャビティの中に押し込むステップと、
(b)前記膜の両端に交流信号を加えるステップ
を含み、
複数の共振キャビティを作成するための前記手段が、前記膜と前記少なくとも1つの電極との間に誘電性のスペーサを有し、該スペーサはくぼみを有し、それぞれのくぼみは、前記共振キャビティのうちの1つを形成するために前記誘電性のスペーサを通るある深さを有し、それぞれの共振キャビティは前記深さによって決まる共振周波数を有することからなる、方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11627198A | 1998-07-16 | 1998-07-16 | |
US116271 | 1998-07-16 | ||
US09/300,200 US6775388B1 (en) | 1998-07-16 | 1999-04-27 | Ultrasonic transducers |
US300200 | 1999-04-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000050392A JP2000050392A (ja) | 2000-02-18 |
JP4294798B2 true JP4294798B2 (ja) | 2009-07-15 |
Family
ID=26814068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19638299A Expired - Lifetime JP4294798B2 (ja) | 1998-07-16 | 1999-07-09 | 超音波トランスデューサ |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0973149A3 (ja) |
JP (1) | JP4294798B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9426579B2 (en) | 2014-01-29 | 2016-08-23 | Samsung Electronics Co., Ltd. | Electro-acoustic transducer |
US9678201B2 (en) | 2013-10-23 | 2017-06-13 | Samsung Electronics Co., Ltd. | Ultrasonic transducer and ultrasonic diagnostic apparatus employing the same |
KR20210057286A (ko) * | 2019-11-11 | 2021-05-21 | 재단법인 파동에너지 극한제어 연구단 | 초음파 전달 구조체 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000050387A (ja) | 1998-07-16 | 2000-02-18 | Massachusetts Inst Of Technol <Mit> | パラメトリックオ―ディオシステム |
US7391872B2 (en) | 1999-04-27 | 2008-06-24 | Frank Joseph Pompei | Parametric audio system |
US7319763B2 (en) | 2001-07-11 | 2008-01-15 | American Technology Corporation | Power amplification for parametric loudspeakers |
AU2002353793A1 (en) | 2001-10-09 | 2003-04-22 | Frank Joseph Pompei | Ultrasonic transducer for parametric array |
KR100512960B1 (ko) * | 2002-09-26 | 2005-09-07 | 삼성전자주식회사 | 플렉서블 mems 트랜스듀서와 그 제조방법 및 이를채용한 플렉서블 mems 무선 마이크로폰 |
JP4123192B2 (ja) | 2004-06-03 | 2008-07-23 | セイコーエプソン株式会社 | 超音波トランスデューサ、および超音波トランスデューサの製造方法 |
EP1779784B1 (en) * | 2004-06-07 | 2015-10-14 | Olympus Corporation | Electrostatic capacity type ultrasonic transducer |
JP3873990B2 (ja) | 2004-06-11 | 2007-01-31 | セイコーエプソン株式会社 | 超音波トランスデューサ及びこれを用いた超音波スピーカ |
JP4706578B2 (ja) | 2005-09-27 | 2011-06-22 | セイコーエプソン株式会社 | 静電型超音波トランスデューサ、静電型超音波トランスデューサの設計方法、静電型超音波トランスデューサの設計装置、静電型超音波トランスデューサの設計プログラム、製造方法及び表示装置 |
JP4682927B2 (ja) | 2005-08-03 | 2011-05-11 | セイコーエプソン株式会社 | 静電型超音波トランスデューサ、超音波スピーカ、音声信号再生方法、超音波トランスデューサの電極の製造方法、超音波トランスデューサの製造方法、超指向性音響システム、および表示装置 |
JP2009507446A (ja) | 2005-09-09 | 2009-02-19 | エヌエックスピー ビー ヴィ | Memsキャパシタマイクロフォンを製造する方法、このようなmemsキャパシタマイクロフォン、このようなmemsキャパシタマイクロフォンを備えたフォイルの積層体、このようなmemsキャパシタマイクロフォンを備えた電子デバイスおよび電子デバイスの使用 |
JP5103873B2 (ja) | 2005-12-07 | 2012-12-19 | セイコーエプソン株式会社 | 静電型超音波トランスデューサの駆動制御方法、静電型超音波トランスデューサ、これを用いた超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置 |
JP4802998B2 (ja) | 2005-12-19 | 2011-10-26 | セイコーエプソン株式会社 | 静電型超音波トランスデューサの駆動制御方法、静電型超音波トランスデューサ、これを用いた超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置 |
JP4844411B2 (ja) | 2006-02-21 | 2011-12-28 | セイコーエプソン株式会社 | 静電型超音波トランスデューサ、静電型超音波トランスデューサの製造方法、超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置 |
KR100781467B1 (ko) * | 2006-07-13 | 2007-12-03 | 학교법인 포항공과대학교 | 공기중 파라메트릭 트랜스미팅 어레이를 이용한 초지향성초음파 거리측정을 위한 멤스 기반의 다공진 초음파트랜스듀서 |
EP2114085A1 (en) * | 2008-04-28 | 2009-11-04 | Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO | Composite microphone, microphone assembly and method of manufacturing those |
US20130278111A1 (en) * | 2012-04-19 | 2013-10-24 | Masdar Institute Of Science And Technology | Piezoelectric micromachined ultrasound transducer with patterned electrodes |
EP2858829B1 (en) | 2012-06-12 | 2021-05-19 | Frank Joseph Pompei | Ultrasonic transducer |
DE202012010508U1 (de) * | 2012-10-25 | 2012-11-12 | BANDELIN patent GmbH & Co. KG | Vorrichtung zur Beaufschlagung flüssiger Medien mitUltraschall durch eine Membran sowie Ultraschallsystem |
DE102013211612A1 (de) * | 2013-06-20 | 2014-12-24 | Robert Bosch Gmbh | Ultraschallwandleranordnung und Kraftfahrzeug mit einer Ultraschallwandleranordnung |
KR102163729B1 (ko) | 2013-11-20 | 2020-10-08 | 삼성전자주식회사 | 전기 음향 변환기 |
KR101529814B1 (ko) * | 2014-01-09 | 2015-06-17 | 성균관대학교산학협력단 | 하이브리드 발전소자 |
KR102075790B1 (ko) * | 2018-06-29 | 2020-02-10 | 한국기계연구원 | 비접촉 초음파 트랜스듀서 |
CN110460941B (zh) * | 2019-07-23 | 2020-12-18 | 武汉理工大学 | 收发一体式石墨烯声传感器 |
KR102267074B1 (ko) * | 2019-11-11 | 2021-06-21 | 재단법인 파동에너지 극한제어 연구단 | 초음파 트랜스듀서의 음향 초투과형 커버 유닛 |
KR102267073B1 (ko) * | 2019-11-11 | 2021-06-21 | 재단법인 파동에너지 극한제어 연구단 | 능동형 초음파 전달 구조체 |
CN112073884A (zh) * | 2020-08-27 | 2020-12-11 | 西北工业大学 | 一种基于pvdf的夹持式发射换能器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1234767A (en) * | 1967-09-18 | 1971-06-09 | Decca Ltd | Improvements in or relating to electro-acoustic transducers |
US3816671A (en) * | 1972-04-06 | 1974-06-11 | Thermo Electron Corp | Electret transducer cartridge and case |
JPS59171300A (ja) * | 1983-03-17 | 1984-09-27 | Matsushita Electric Ind Co Ltd | コンデンサ型マイクロホン |
-
1999
- 1999-07-09 JP JP19638299A patent/JP4294798B2/ja not_active Expired - Lifetime
- 1999-07-15 EP EP99305633A patent/EP0973149A3/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9678201B2 (en) | 2013-10-23 | 2017-06-13 | Samsung Electronics Co., Ltd. | Ultrasonic transducer and ultrasonic diagnostic apparatus employing the same |
US9426579B2 (en) | 2014-01-29 | 2016-08-23 | Samsung Electronics Co., Ltd. | Electro-acoustic transducer |
KR20210057286A (ko) * | 2019-11-11 | 2021-05-21 | 재단법인 파동에너지 극한제어 연구단 | 초음파 전달 구조체 |
KR102267072B1 (ko) * | 2019-11-11 | 2021-06-21 | 재단법인 파동에너지 극한제어 연구단 | 초음파 전달 구조체 |
Also Published As
Publication number | Publication date |
---|---|
EP0973149A3 (en) | 2000-12-27 |
EP0973149A2 (en) | 2000-01-19 |
JP2000050392A (ja) | 2000-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4294798B2 (ja) | 超音波トランスデューサ | |
US6775388B1 (en) | Ultrasonic transducers | |
JP4802998B2 (ja) | 静電型超音波トランスデューサの駆動制御方法、静電型超音波トランスデューサ、これを用いた超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置 | |
JP4588321B2 (ja) | パラメトリックアレイのための超音波トランスデューサ | |
JP5103873B2 (ja) | 静電型超音波トランスデューサの駆動制御方法、静電型超音波トランスデューサ、これを用いた超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置 | |
US20070029899A1 (en) | Electrostatic ultrasonic transducer, ultrasonic speaker, audio signal reproduction method, electrode manufacturing method for use in ultrasonic transducer, ultrasonic transducer manufacturing method, superdirective acoustic system, and display device | |
EP1123634A1 (en) | Parametric loudspeaker with electro-acoustical diaphragm transducer | |
US20050244016A1 (en) | Parametric loudspeaker with electro-acoustical diaphragm transducer | |
EP1665873A2 (en) | Parametric tranducer having an emitter film | |
JP3873990B2 (ja) | 超音波トランスデューサ及びこれを用いた超音波スピーカ | |
US20080212807A1 (en) | Micromachined Acoustic Transducers | |
US20220417669A1 (en) | Graphene transducers | |
KR101765000B1 (ko) | 지향성 스피커용 압전 트랜스듀서 및 이를 포함하는 지향성 스피커 | |
US8085957B2 (en) | Method for converting electric signals into acoustic oscillations and an electric gas-kinetic transducer | |
US11837213B2 (en) | Ultrasonic transducer with perforated baseplate | |
JP4352922B2 (ja) | 超音波トランスデューサ | |
CN115156017A (zh) | 一种半固定的微机械超声换能器 | |
CN115365101A (zh) | 一种可调节谐振腔的静电容式超声换能器 | |
JP2007228472A (ja) | 静電型超音波トランスデューサ、静電型超音波トランスデューサの構成方法、および超音波スピーカ | |
JP4508030B2 (ja) | 静電型超音波トランスデューサ及びこれを用いた超音波スピーカ | |
JP4508040B2 (ja) | 静電型超音波トランスデューサ及びこれを用いた超音波スピーカ | |
WO2005022595A2 (en) | A parametric transducer | |
JP2005354473A5 (ja) | ||
JP2005354473A (ja) | 超音波トランスデューサ及びこれを用いた超音波スピーカ | |
JP4706586B2 (ja) | 静電型超音波トランスデューサ、静電型超音波トランスデューサの製造方法及び超音波スピーカ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060501 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060501 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080902 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20081202 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20081205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090331 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090409 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4294798 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140417 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |