JP4291769B2 - Contact detection method - Google Patents
Contact detection method Download PDFInfo
- Publication number
- JP4291769B2 JP4291769B2 JP2004347534A JP2004347534A JP4291769B2 JP 4291769 B2 JP4291769 B2 JP 4291769B2 JP 2004347534 A JP2004347534 A JP 2004347534A JP 2004347534 A JP2004347534 A JP 2004347534A JP 4291769 B2 JP4291769 B2 JP 4291769B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- electromotive force
- capacitor
- contact
- detection method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Fuel Cell (AREA)
Description
本発明は、特に、起電力を有するものを対象にした接点間などの電気的な接触検知の方法に関する。 In particular, the present invention relates to a method for detecting an electrical contact between contacts having an electromotive force.
燃料電池は、燃料ガスと酸素とを電気化学的に反応させて起電力を得る装置であり、各個別セルの起電力はせいぜい1V程度に過ぎないため、一般的に数十から数百セルを積層した燃料電池スタックで使用される。 A fuel cell is a device that obtains an electromotive force by electrochemically reacting fuel gas and oxygen. Since the electromotive force of each individual cell is only about 1 V at most, it generally has several tens to several hundreds of cells. Used in stacked fuel cell stacks.
燃料電池スタックを構成する各セルが正常な状態にあるかどうか知るを手段として各セル電圧の測定が行われる。燃料電池の運転中に、一つのセルに異常が生じた場合、そのセルの電圧が顕著に低下するため、個別のセルの電圧を測定していれば異常が発生したことが分かり、直ちに発電量を制限し電池の運転を停止させることによって、異常の拡大を防止することができる。 Each cell voltage is measured by means of knowing whether or not each cell constituting the fuel cell stack is in a normal state. If an abnormality occurs in one cell during the operation of the fuel cell, the voltage of that cell will drop significantly. Can be prevented by stopping the battery operation.
燃料電池の各セルから電圧を検出するため、例えば、図7に示すように燃料電池スタック2を構成する各セル102を分離するセパレータに突起状の電圧測定用端子101を設けるようにして、セパレータに挟まれた個別セル102の電圧を測定する例が報告されている(特許文献1参照)。このようにすると、セパレータの端面に穴を開ける必要がないため、燃料電池が小型になってセル102やセパレータの厚さが薄くなっても電圧測定用の端子を取り付け、これにリード線のソケットを接続でき、個別セルの電圧の測定を容易にすることができる。
しかしながら、実際の測定では、リード線で引き出した端子電圧を電圧測定器に接続するという次の作業がさらに必要になる。また、端子にリード線を接続するには、例えば、燃料電池のセパレータの側面に接触する複数の針状電圧測定素子とこの針状電圧測定素子に弾性力を付与する付勢手段を設けた例が報告されている(特許文献2参照)。
However, in actual measurement, the following work of connecting the terminal voltage drawn by the lead wire to the voltage measuring device is further required. Further, in order to connect the lead wire to the terminal, for example, a plurality of needle voltage measuring elements that contact the side surface of the separator of the fuel cell and an urging means for applying an elastic force to the needle voltage measuring elements are provided. Has been reported (see Patent Document 2).
しかしながら、燃料電池のようにセル数が多い場合に、使用環境によっては、例えば電気自動車で利用されるとき、振動などによって接触不良の恐れが依然として存在し、測定点と電圧測定器の端子との接続が確実に行われているかどうかの検証が必要になる。
燃料電池のセル電圧の測定のように多数の測定点の電圧を測定する場合には、多入力の電圧測定装置の入力端子と測定点との接続が確実に行われているかどうかを検知することになるが、しかしながら、従来には正確で効果的な接触検知方法が報告された例はなかった。
本発明は、比較的簡単な方法で、多数の測定点から入力が正常に接続されているかどうかを同時に効率よく検知する、接触検知方法を提供することを課題とする。
However, when there are a large number of cells such as a fuel cell, depending on the usage environment, for example, when used in an electric vehicle, there is still a risk of contact failure due to vibration or the like. It is necessary to verify whether or not the connection is made securely.
When measuring the voltage at multiple measurement points, such as when measuring the cell voltage of a fuel cell, detect whether the connection between the input terminal of the multi-input voltage measurement device and the measurement point is securely performed. However, there have been no examples of accurate and effective contact detection methods reported in the past.
An object of the present invention is to provide a contact detection method for efficiently detecting simultaneously whether or not an input is normally connected from a large number of measurement points by a relatively simple method.
前記課題を解決するため、請求項1に記載の発明は、直列に接続された複数の起電力素子の隣り合う接続点間の電位差をコネクタ端子を介して測定する電圧測定装置での前記コネクタ端子と前記接続点との接触検知方法において、前記コネクタ端子と接地との間に設けられた複数の蓄電素子と、前記複数の蓄電素子を所定の電圧に充電させる充電手段とを設け、前記充電手段は、前記起電力素子の起電力に対して極性が反転した電圧で、直列接続方向に隣接する前記起電力素子の高電圧側の起電力素子に接続される前記蓄電素子については、当該蓄電素子の電圧の絶対値が、所定の電圧幅だけ低電圧側の前記起電力素子に接続される蓄電素子の電圧より高くなるように、前記蓄電素子ごとに異なる前記所定の電圧で予め充電し、前記コネクタ端子と前記接続点とが接触した後に生じる前記蓄電素子の端子電圧を検出して複数の前記コネクタ端子と前記接続点との接触を同時に検知するものとした。
In order to solve the above-mentioned problem, the invention according to
請求項2に記載の発明は、前記所定の電圧はマイナスの電圧範囲であり、前記起電力素子の起電力はプラスの電圧範囲であるとした。
According to a second aspect of the present invention, the predetermined voltage is in a negative voltage range, and the electromotive force of the electromotive force element is in a positive voltage range .
請求項3に記載の発明は、前記蓄電素子は低域ろ波フィルタのコンデンサであるものとした。 According to a third aspect of the present invention, the storage element is a capacitor of a low-pass filter.
請求項4に記載の発明は、前記直列に接続された複数の起電力素子は燃料電池のセルであるものとした。 According to a fourth aspect of the present invention, the plurality of electromotive force elements connected in series are fuel cell cells.
このようにすることにより、例えば電圧測定装置の入力回路に備えられた蓄電素子としてのコンデンサに対して充電し、そしてスイッチ手段をオンにして起電力素子の電圧の測定するとき、コンデンサの電圧の変化で起電力素子と入力回路との接触状態を検知可能になり容易に検知できる効果が得られる。 By doing so, for example, when charging the capacitor as the storage element provided in the input circuit of the voltage measuring device, and measuring the voltage of the electromotive force element by turning on the switch means, the voltage of the capacitor As a result of the change, the contact state between the electromotive force element and the input circuit can be detected, and an effect of being easily detected can be obtained.
次に、本発明の実施の形態について添付図面にそって説明する。
図1は、本発明の接触検知方法を実行する基本回路とその動作の説明図である。図2は図1の回路での各部の動作と波形を示すタイムチャートである。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an explanatory diagram of a basic circuit for executing the contact detection method of the present invention and its operation. FIG. 2 is a time chart showing the operation and waveform of each part in the circuit of FIG.
図1において、符号Cは電圧測定対象の電池セル、符号Cfはプリチャージ用のコンデンサ、符号EはコンデンサCfを充電する充電回路の出力電圧、符号SW1a、SW1b、SW2a、SW2bはスイッチ、符号R1、R2は抵抗、符号Vは電圧測定器、符号GNDは接地である。この基本回路は図1(a)、図1(b)、図1(c)の順に動作して電圧測定対象の電池セルCの電極端子である測定点と電圧測定回路との接触を検知する。また、図2(a)はスイッチSW1aおよびSW1bのオンオフを、図2(b)はスイッチSW2aおよびSW2bのオンオフを示し、図2(c)は測定点の接触が正常な場合のコンデンサCfの端子電圧の変化を示す波形、図2(d)は測定点の接触がない(不良な)場合のコンデンサCfの端子電圧の変化を示す波形である。 In FIG. 1, symbol C is a battery cell for voltage measurement, symbol Cf is a precharging capacitor, symbol E is an output voltage of a charging circuit for charging the capacitor Cf, symbols SW1a, SW1b, SW2a, and SW2b are switches, symbol R1. , R2 is a resistor, symbol V is a voltage measuring instrument, and symbol GND is ground. This basic circuit operates in the order of FIG. 1A, FIG. 1B, and FIG. 1C to detect contact between a measurement point that is an electrode terminal of a battery cell C that is a voltage measurement target and the voltage measurement circuit. . 2 (a) shows the on / off of the switches SW1a and SW1b, FIG. 2 (b) shows the on / off of the switches SW2a and SW2b, and FIG. 2 (c) shows the terminals of the capacitor Cf when the measurement point contact is normal. FIG. 2D is a waveform showing a change in the terminal voltage of the capacitor Cf when there is no measurement point contact (defective).
図1および図2にそって本発明の接触検知方法の基本動作を説明する。
まず、スイッチSW1a、SW1b、SW2aおよびSW2bがすべてオープンの状態から、図1(a)のようにスイッチSW1aおよびSW1bをオンにする。これは図2(a)での時刻t1に当たる。これによって出力電圧Eの電気がスイッチSW1aおよびSW1bを介してコンデンサCfに電流として流れ、図2(c)、(d)に示すようにコンデンサCfは徐々に充電され、最終的にコンデンサCfの端子電圧は出力電圧E(V)になる。充電が終わると、図1(b)のようにスイッチSW1aおよびSW1bをオフにする。これは図2(a)での時刻t2に当たる。この状態では、コンデンサCfから電流は流れないので、スイッチSW1aおよびSW1bをオフにしても図2(c)または図2(d)に示すコンデンサCfの端子電圧はE(V)に保たれる。
The basic operation of the contact detection method of the present invention will be described with reference to FIGS.
First, the switches SW1a, SW1b, SW2a, and SW2b are all opened, and the switches SW1a and SW1b are turned on as shown in FIG. This corresponds to time t1 in FIG. As a result, electricity of the output voltage E flows as a current to the capacitor Cf via the switches SW1a and SW1b, and the capacitor Cf is gradually charged as shown in FIGS. 2 (c) and 2 (d), and finally the terminal of the capacitor Cf. The voltage becomes the output voltage E (V). When charging is completed, the switches SW1a and SW1b are turned off as shown in FIG. This corresponds to time t2 in FIG. In this state, no current flows from the capacitor Cf. Therefore, even if the switches SW1a and SW1b are turned off, the terminal voltage of the capacitor Cf shown in FIG. 2C or 2D is maintained at E (V).
次に、図1(c)のようにスイッチSW2aおよびSW2bをオンにする。これは図2(b)での時刻t3に当たる。これによって、電池セルCの測定点での接触すなわち、電池セルCとコンデンサCfとの接続が正常である場合には、電池セルCからスイッチSW2aおよびSW2bを介してコンデンサCfに電流が流れ、図2(c)に示すようにコンデンサCfは徐々に充電され、最終的にコンデンサCfの端子電圧は電池セルCの発電電圧Vc(V)になる。このように、スイッチSW2aおよびSW2bをオンにすることによって、コンデンサCfの端子電圧が変化した場合には、電池セルCから測定点の接続とスイッチSW2aおよびSW2bを経てコンデンサCfに電流が流れたことが確かめられるので、測定点での接触とスイッチSW2aおよびSW2bの動作がいずれも正常であることが立証できる。 Next, the switches SW2a and SW2b are turned on as shown in FIG. This corresponds to time t3 in FIG. Thereby, when the contact at the measurement point of the battery cell C, that is, the connection between the battery cell C and the capacitor Cf is normal, a current flows from the battery cell C to the capacitor Cf via the switches SW2a and SW2b. As shown in FIG. 2 (c), the capacitor Cf is gradually charged, and finally the terminal voltage of the capacitor Cf becomes the power generation voltage Vc (V) of the battery cell C. As described above, when the terminal voltage of the capacitor Cf is changed by turning on the switches SW2a and SW2b, the current flows from the battery cell C to the capacitor Cf via the connection of the measurement point and the switches SW2a and SW2b. Therefore, it can be proved that the contact at the measurement point and the operation of the switches SW2a and SW2b are both normal.
一方、測定点での接触あるいはスイッチSW2aおよびSW2bの動作のうちのいずれかが正常でなく、電池セルCからスイッチSW2aおよびSW2bを介してコンデンサCfに電流が流れなかった場合には、図2(d)に示すようにコンデンサCfの端子電圧は変化せず、E(V)のままに保たれる。このように、スイッチSW2aおよびSW2bをオンにしてもコンデンサCfの端子電圧が変化しなかった場合には、電池セルCからコンデンサCfに電流が流れなかったと考えられるので、測定点での接触不良かスイッチSW2aおよびSW2bのいずれかの動作が正常でないと考えられる。 On the other hand, when either the contact at the measurement point or the operation of the switches SW2a and SW2b is not normal and the current does not flow from the battery cell C to the capacitor Cf via the switches SW2a and SW2b, FIG. As shown in d), the terminal voltage of the capacitor Cf does not change and is kept at E (V). Thus, if the terminal voltage of the capacitor Cf does not change even when the switches SW2a and SW2b are turned on, it is considered that no current flows from the battery cell C to the capacitor Cf. It is considered that the operation of either of the switches SW2a and SW2b is not normal.
なお、コンデンサCfの端子電圧の変化が正しく認識できるように、出力電圧Eは通常の動作時に電池セルCが取りえない電圧に設定することが好ましい。また、電池セルCに外部から電流が流れ込むと、電池セルC内部で発熱するなどの影響が生じ、これが電池セルCに悪影響を及ぼす虞があるため、出力電圧Eは動作時に電池セルCが取り得る電圧よりも低い、例えば負の電圧であることが好ましい。 The output voltage E is preferably set to a voltage that cannot be taken by the battery cell C during normal operation so that the change in the terminal voltage of the capacitor Cf can be recognized correctly. In addition, when an electric current flows into the battery cell C from the outside, there is an influence such as heat generation inside the battery cell C, which may adversely affect the battery cell C. Therefore, the output voltage E is taken by the battery cell C during operation. It is preferable that the voltage is lower than, for example, a negative voltage.
次に、本発明の一実施の形態について説明する。図1の例は単一入力の例であるが、複数の入力について同時に接触検知を行う場合には、複数の電池セルからの入力電圧が絡み合うため、検知に特別な工夫が必要になる。 Next, an embodiment of the present invention will be described. Although the example of FIG. 1 is an example of a single input, when contact detection is simultaneously performed for a plurality of inputs, special input is required for detection because input voltages from a plurality of battery cells are intertwined.
図3は、同時に直列に接続された4個の電池セルCの起電力を同時に測定する電圧測定装置における入力回路を示す回路図である。次に、図3に基づいて本発明の接触検知方法を説明する。この入力回路10では、各電池セルの電圧を四つずつ検出できる。図3において、符号B1〜B5はバッファ、符号C1〜C4は電圧測定対象である電池セル、符号D1〜D4は差動増幅器、F1〜F4は低域ろ波フィルタを構成するコンデンサ、符号S1〜S5はフォトMOSスイッチ、符号GNDは接地である。コンデンサF(F1〜F4)と抵抗で構成された低域ろ波フィルタは、入力回路10の入力端子に接続され、電池セルの電圧を測定する際に印加されたノイズを除去し、電圧を安定化させている。このコンデンサFは入力回路10と電池セルとの接触を検出するためにも利用される。すなわち、前記したようにこの実施の形態では、この低域ろ波フィルタのコンデンサFを予め充電し、フォトMOSスイッチをオンにして入力回路10の各端子を電池セルに接続したとき、フォトMOSスイッチオン前後のコンデンサF(F1〜F4)の電圧の変化で電池セルC(C1〜C4)の測定点と入力端子の間の接触不良を検出するようにしている。 FIG. 3 is a circuit diagram showing an input circuit in the voltage measuring device that simultaneously measures the electromotive forces of four battery cells C connected in series at the same time. Next, the contact detection method of the present invention will be described with reference to FIG. This input circuit 10 can detect four voltages of each battery cell. 3, reference characters B1 to B5 are buffers, reference symbols C1 to C4 are battery cells that are voltage measurement targets, reference symbols D1 to D4 are differential amplifiers, F1 to F4 are capacitors that constitute a low-pass filter, and reference symbols S1 to S1. S5 is a photo MOS switch, and GND is a ground. A low-pass filter composed of a capacitor F (F1 to F4) and a resistor is connected to the input terminal of the input circuit 10, removes noise applied when measuring the voltage of the battery cell, and stabilizes the voltage. It has become. The capacitor F is also used for detecting contact between the input circuit 10 and the battery cell. That is, as described above, in this embodiment, when the capacitor F of this low-pass filter is charged in advance, the photo MOS switch is turned on, and each terminal of the input circuit 10 is connected to the battery cell, the photo MOS switch A contact failure between the measurement point of the battery cell C (C1 to C4) and the input terminal is detected by a change in the voltage of the capacitor F (F1 to F4) before and after being turned on.
具体的には、低域ろ波フィルタのコンデンサF(F1〜F4)を別々の電圧に充電して、フォトMOSスイッチS(S1〜S5)をオンにしてコンデンサFの電圧変化を確認することによって、同時に4個の電池セルC(C1〜C4)の測定点と入力端子間の接触を検知し、かつ、図示しないCPUで4個の電池セルC(C1〜C4)の起電力を同時に測定することができる。さらに、電池セルC1〜C4の起電力測定が終わると、フォトMOSスイッチS(S1〜S5)をオフにし、次の四つの電池セルに接続される五つのフォトMOSスイッチSをオンにすることによって、入力回路10の各入力端子を次の四つの電池セルに切り替えるように、順次に接続を切り替えてゆくと、各測定点との接触を検知しながら電池セルの電圧を測定することができる。これについては、従来と同様であり、詳しい説明を省略する。 Specifically, the capacitors F (F1 to F4) of the low-pass filter are charged to different voltages, the photo MOS switches S (S1 to S5) are turned on, and the voltage change of the capacitor F is confirmed. Simultaneously, the contact between the measurement points of the four battery cells C (C1 to C4) and the input terminals is detected, and the electromotive force of the four battery cells C (C1 to C4) is simultaneously measured by a CPU (not shown). be able to. Further, when the electromotive force measurement of the battery cells C1 to C4 is finished, the photo MOS switches S (S1 to S5) are turned off, and the five photo MOS switches S connected to the next four battery cells are turned on. When the connection is sequentially switched so that each input terminal of the input circuit 10 is switched to the next four battery cells, the voltage of the battery cell can be measured while detecting contact with each measurement point. This is the same as in the prior art and will not be described in detail.
ここで、測定対象の電池セルC1〜C4が、図7で示したような燃料電池のセル102であるとする。燃料電池の単位セルの動作時の起電力は0V〜1.3Vである。
図4は前記した原理に基づいて測定点との接触の検知を可能にした入力回路を示す図である。図3に対して図4においては、コンデンサF(F1〜F4)にそれぞれ異なる電圧で充電可能な充電回路11とスイッチSW(SW1〜SW4が追加される。また、符号C1〜C4は直列に接続された2個の電池セルを表し、2個の電池セルの直列起電力を測定するものとする。また、バッファB2〜B5の出力端と差動増幅器D1〜D4の+入力端との間に抵抗rが接続され、差動増幅器D1〜D4の+入力端に抵抗Rを介して1Vが印加される点で、図3の構成とは異なる。
Here, it is assumed that the battery cells C1 to C4 to be measured are the
FIG. 4 is a diagram showing an input circuit that enables detection of contact with a measurement point based on the principle described above. 4, a charging
次に、図4に基づいて本発明の接触検知方法を説明する。まず、フォトMOSスイッチS1〜S5をオフにし、スイッチSW1〜SW4をオンにする。これは、図1および図2の例に当てはめると、スイッチSW2aおよびSW2bをオフにしてスイッチSW1aおよびSW1bをオンにした図2(a)での時刻t1に当たる。 Next, the contact detection method of the present invention will be described with reference to FIG. First, the photo MOS switches S1 to S5 are turned off, and the switches SW1 to SW4 are turned on. When this is applied to the examples of FIGS. 1 and 2, this corresponds to time t1 in FIG. 2A in which the switches SW2a and SW2b are turned off and the switches SW1a and SW1b are turned on.
このとき、充電回路11はスイッチSW1〜SW4を介してコンデンサF1〜F4にそれぞれ、−0.3V、−0.6V、−0.9Vおよび−1.2Vの起電力で充電する。これにより、低域ろ波フィルタの各コンデンサF(F1〜F4)はそれぞれ異なる電圧で充電される。充電が完了すると、差動増幅器D1〜D4の出力電圧はすべて+0.7Vとになる。これは、例えば、差動増幅器D2を例にとると、その+入力側ではコンデンサF2に充電された−0.6VがバッファB3を経て差動増幅器D2の+入力端に入力されて+1Vのオフセット電圧に加算される。差動増幅器D2の−入力側ではコンデンサF2に充電された−0.3VがバッファB2を経て入力されるため、−0.6+1−(−0.3)=+0.7(V)となるのである。その他も同じように各差動増幅器D1、D3、D4から0.7Vの電圧が出力される。そして、充電が完了すると、スイッチSW1〜SW4をオフにする。このタイミングは図2での時刻t2に当たる。
At this time, the charging
そして、スイッチSW1〜SW4をオフにした後、フォトMOSスイッチS1〜S5をオンにする(これは図2(b)での時刻t3に当たる)。これにより、各コンデンサF(F1〜F4)はそれぞれ対応する電池セルC1〜C4に接続されその出力電圧で充電される。 Then, after the switches SW1 to SW4 are turned off, the photoMOS switches S1 to S5 are turned on (this corresponds to time t3 in FIG. 2B). Thereby, each capacitor | condenser F (F1-F4) is each connected to the corresponding battery cell C1-C4, and is charged with the output voltage.
ここで、仮に電池セルの単体の起電力がすべて+1Vであって、電池セルC1〜C4の起電力が+2Vであるとする。測定点の接触が全て正常であり、かつ、フォトMOSスイッチS1〜S5が正常に働いている場合には、コンデンサF1の端子電圧は−0.3Vから+2Vへ、コンデンサF2の端子電圧は−0.6Vから+4Vへ、コンデンサF3の端子電圧は−0.9Vから+6Vへ、コンデンサF4の端子電圧は−1.2Vから+8Vへと変化する。 Here, it is assumed that the single electromotive forces of the battery cells are all + 1V, and the electromotive forces of the battery cells C1 to C4 are + 2V. When all the contact points of the measurement points are normal and the photoMOS switches S1 to S5 are operating normally, the terminal voltage of the capacitor F1 is changed from −0.3V to + 2V, and the terminal voltage of the capacitor F2 is −0. The terminal voltage of the capacitor F3 changes from -0.9V to + 6V, and the terminal voltage of the capacitor F4 changes from -1.2V to + 8V.
これにより、差動増幅器D1の+入力端には端子電圧+2Vにオフセット電圧+1Vを加えた+3Vが、−入力側には0Vが印加される。差動増幅器D2の+入力端には+4Vと+1Vの和の+5Vが、−入力側には+2Vが、差動増幅器D3の+入力端には+7Vが、−入力側には+4Vが、差動増幅器D4の+入力端には+9V、−入力側には+6Vがそれぞれ印加されることになって、差動増幅器D1〜D4の出力はすべて+3Vとなる。 As a result, +3 V obtained by adding the offset voltage +1 V to the terminal voltage +2 V is applied to the + input terminal of the differential amplifier D1, and 0 V is applied to the − input side. + 5V, which is the sum of + 4V and + 1V, is added to the + input terminal of the differential amplifier D2, + 2V is supplied to the -input side, + 7V is supplied to the + input terminal of the differential amplifier D3, and + 4V is supplied to the -input side. + 9V is applied to the + input terminal of the amplifier D4, and + 6V is applied to the − input side, and the outputs of the differential amplifiers D1 to D4 are all + 3V.
燃料電池の単位セルの動作時の起電力は0V〜+1.3Vの範囲にあり、単位セルが直列に2個並んだ電池セルC1〜C4の起電力(出力電圧)は0V〜+2.6Vの範囲にある。これに対応する正常な差動増幅器D1〜D4の出力は、オフセット電圧が+1Vの場合、図5に示すように、+1V〜+3.6Vの範囲となる。したがって、出力がこれ以外の値を示した場合は、測定点での接触不良か、フォトMOSスイッチS1〜S5の不良などが発生していると検知することができる。 The electromotive force during operation of the unit cell of the fuel cell is in the range of 0V to + 1.3V, and the electromotive force (output voltage) of the battery cells C1 to C4 in which two unit cells are arranged in series is 0V to + 2.6V. Is in range. Corresponding outputs of the normal differential amplifiers D1 to D4 are in the range of + 1V to + 3.6V as shown in FIG. 5 when the offset voltage is + 1V. Therefore, when the output shows a value other than this, it can be detected that a contact failure at the measurement point or a failure of the photoMOS switches S1 to S5 has occurred.
次に、接触不良箇所の特定について説明する。
表1にはこの実施の形態で、接触不良やスイッチ不良の発生場所とその場合の差動増幅器D1〜D4の出力の電圧値を示す。この表では、オフセット電圧は+1V、各電池セルの起電力は+2Vとした場合を示している。この表の見方を例に沿って説明する。
Table 1 shows the location of occurrence of contact failure or switch failure and the output voltage values of the differential amplifiers D1 to D4 in this embodiment. This table shows a case where the offset voltage is + 1V and the electromotive force of each battery cell is + 2V. How to read this table will be described with reference to an example.
ここで、図4で測定点AN−0の部分の不良の場合、すなわち電池セルC1の負極側に接触不良や断線があるか、フォトMOSスイッチS1に不良があった場合を考える。このときは接地GNDが電池セルC側に繋がらなくなるので、他の部分が正常でもコンデンサF(F1〜F4)が電池セルC(C1〜C4)側から充電されることがなく、表1の最下列に示すように、接地GNDが−入力端に接続されている差動増幅器D1から充電した時と同じ+0.7Vが出力される以外は差動増幅器D2〜D4の出力は不安定である。 Here, consider the case where the measurement point AN-0 is defective in FIG. 4, that is, the case where there is a contact failure or disconnection on the negative electrode side of the battery cell C1, or the photoMOS switch S1 is defective. At this time, since the ground GND is not connected to the battery cell C side, the capacitors F (F1 to F4) are not charged from the battery cell C (C1 to C4) side even if other parts are normal, and the maximum in Table 1 is obtained. As shown in the lower row, the outputs of the differential amplifiers D2 to D4 are unstable except that the same + 0.7V is output as when the ground GND is charged from the differential amplifier D1 connected to the negative input terminal.
次に、測定点AN−2の部分の不良の場合、すなわち電池セルC3の負極側と電池セルC2の正極側の測定点に接触不良や断線があるか、フォトMOSスイッチS3に不良があった場合を考える。この場合はコンデンサF1が+2Vに充電されるので、差動増幅器D1の出力はオフセット電圧との和で+2+1=3(V)である。 Next, in the case of a defect at the measurement point AN-2, that is, there is a contact failure or disconnection at the measurement point on the negative electrode side of the battery cell C3 and the positive electrode side of the battery cell C2, or the photoMOS switch S3 has a defect. Think about the case. In this case, since the capacitor F1 is charged to + 2V, the output of the differential amplifier D1 is + 2 + 1 = 3 (V) as a sum with the offset voltage.
コンデンサF2は電池セルC2側から充電されないので充電したときと同じ−0.6Vを保っている。したがって、差動増幅器D2の+入力端には−0.6+1=+0.4(V)が、−入力端には+2Vが印加されるので差動増幅器D2の出力は+0.4−2=−1.6(V)となる。 Since the capacitor F2 is not charged from the battery cell C2 side, it maintains -0.6V, which is the same as when charged. Therefore, −0.6 + 1 = + 0.4 (V) is applied to the + input terminal of the differential amplifier D2, and + 2V is applied to the −input terminal, so that the output of the differential amplifier D2 is + 0.4−2 = −. 1.6 (V).
同様に、コンデンサF3は電池セルC3側から+6Vに充電され、差動増幅器D3の+入力端には+6+1=+7(V)が、−入力端には−0.6Vが印加されるので、差動増幅器D2の出力は+7−(−0.6)=+7.6(V)となる。
さらに、コンデンサF4は電池セルC4側から+8Vに充電され、差動増幅器D4の+入力端には+8+1=+9(V)が、−入力端には+6Vが印加されるので、差動増幅器D4の出力は+9−(+6)=+3(V)となる。これらの出力電圧が表1の3列目に示されている。他の場所の不良も同様に検知できる。
このように差動増幅器D1〜D4の出力電圧を調べることによって、接触が正常かどうか、AN−0〜AN−4のどの場所に接触不良、断線、スイッチ不良などの故障を検知することができる。
Similarly, the capacitor F3 is charged to + 6V from the battery cell C3 side, and + 6 + 1 = + 7 (V) is applied to the + input terminal of the differential amplifier D3, and −0.6V is applied to the −input terminal. The output of the dynamic amplifier D2 is +7 − (− 0.6) = + 7.6 (V).
Further, the capacitor F4 is charged to + 8V from the battery cell C4 side, and + 8 + 1 = + 9 (V) is applied to the + input terminal of the differential amplifier D4 and + 6V is applied to the − input terminal. The output is +9 − (+ 6) = + 3 (V). These output voltages are shown in the third column of Table 1. Defects at other locations can be detected in the same way.
By examining the output voltages of the differential amplifiers D1 to D4 as described above, it is possible to detect whether the contact is normal or any location of AN-0 to AN-4, such as a contact failure, disconnection, or switch failure. .
ところで、従来はこのようなノイズを除去する低域ろ波フィルタとして図6に示すようなフィルタf1〜f4が用いられる例が多かったが、各回路が完全に独立しているため部品点数が多くなる。本発明では、図3、図4に示すように、抵抗と平滑コンデンサだけで構成し、平滑コンデンサの一端をGNDに落とすようにしているため、抵抗素子を減らしてその分、回路部品点数を削減することができる。 By the way, conventionally, there are many examples in which filters f1 to f4 as shown in FIG. 6 are used as a low-pass filter for removing such noise, but since each circuit is completely independent, the number of parts is large. Become. In the present invention, as shown in FIG. 3 and FIG. 4, only a resistor and a smoothing capacitor are used, and one end of the smoothing capacitor is dropped to GND. Therefore, the number of circuit elements is reduced by reducing the number of resistance elements. can do.
本発明は、以上のように燃料電池のセルなど複数の直列に接続された電池セルのコネクタ端子と前記接続点との接触検知する有効な方法を提供するので、燃料電池システムが用いられる広範な産業分野を中心に、このような起電力素子の監視が必要な分野で広範に用いられる可能性を有している。
また、本実施の形態では、コンデンサF1〜F4の充電電圧に関して、電池セルC1〜C5に対して極性の反転したマイナスの電圧で充電したが、プラスの電圧で充電してもよい。
As described above, the present invention provides an effective method for detecting contact between a connector terminal of a plurality of battery cells connected in series, such as a fuel cell, and the connection point, so that a fuel cell system is widely used. It has the possibility of being widely used in fields where monitoring of such electromotive force elements is necessary, mainly in the industrial field.
Moreover, in this Embodiment, regarding the charging voltage of capacitor | condenser F1-F4, although it charged with the negative voltage which reversed the polarity with respect to battery cell C1-C5, you may charge with a positive voltage.
10 入力回路
11 充電回路(充電手段)
101 電圧測定用端子
102 セル
AN−0〜AN−4 測定点
B2,B3 バッファ
C 電池セル(起電力素子)
Cf コンデンサ(蓄電素子)
D1〜D4 差動増幅器
E 出力電圧
F1〜F4 コンデンサ(蓄電素子)
GND 接地
S1〜S5 フォトMOSスイッチ
10
101
Cf capacitor (storage element)
D1 to D4 Differential amplifier E Output voltage F1 to F4 Capacitor (storage element)
GND Grounding S1-S5 Photo MOS switch
Claims (4)
前記コネクタ端子と接地との間に設けられた複数の蓄電素子と、
前記複数の蓄電素子を所定の電圧に充電させる充電手段とを設け、
前記充電手段は、
前記起電力素子の起電力に対して極性が反転した電圧で、直列接続方向に隣接する前記起電力素子の高電圧側の起電力素子に接続される前記蓄電素子については、当該蓄電素子の電圧の絶対値が、所定の電圧幅だけ低電圧側の前記起電力素子に接続される蓄電素子の電圧より高くなるように、前記蓄電素子ごとに異なる前記所定の電圧で予め充電し、
前記コネクタ端子と前記接続点とが接触した後に生じる前記蓄電素子の端子電圧を検出
して複数の前記コネクタ端子と前記接続点との接触を同時に検知することを特徴とする接
触検知方法。 In the contact detection method between the connector terminal and the connection point in a voltage measuring device that measures the potential difference between adjacent connection points of a plurality of electromotive elements connected in series via the connector terminal,
A plurality of power storage elements provided between the connector terminal and the ground;
Charging means for charging the plurality of power storage elements to a predetermined voltage;
The charging means,
For the storage element connected to the high-voltage side electromotive force element adjacent to the electromotive force element adjacent in the series connection direction at a voltage whose polarity is inverted with respect to the electromotive force of the electromotive force element, the voltage of the storage element Is charged in advance with the predetermined voltage different for each power storage element so that the absolute value is higher than the voltage of the power storage element connected to the electromotive element on the low voltage side by a predetermined voltage width ,
Detects the terminal voltage of the storage element that occurs after the connector terminal and the connection point are in contact with each other
And the contact detection method characterized by detecting simultaneously the contact with the said several connector terminal and the said connection point .
The contact detection method according to claim 1, wherein the plurality of electromotive force elements connected in series are fuel cell cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004347534A JP4291769B2 (en) | 2004-11-30 | 2004-11-30 | Contact detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004347534A JP4291769B2 (en) | 2004-11-30 | 2004-11-30 | Contact detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006153758A JP2006153758A (en) | 2006-06-15 |
JP4291769B2 true JP4291769B2 (en) | 2009-07-08 |
Family
ID=36632236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004347534A Expired - Lifetime JP4291769B2 (en) | 2004-11-30 | 2004-11-30 | Contact detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4291769B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220082630A1 (en) * | 2019-01-15 | 2022-03-17 | Goiku Battery Co., Ltd. | Soh/soc detecting device for power storage element, and power storage element managing unit |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4836729B2 (en) * | 2006-09-26 | 2011-12-14 | 三洋電機株式会社 | Power supply device for vehicle and method for detecting disconnection of power supply device |
US7852047B2 (en) | 2007-09-20 | 2010-12-14 | Denso Corporation | Disconnection detection device of assembled battery system and disconnection detection method of same |
KR100946246B1 (en) | 2007-12-04 | 2010-03-09 | 에이디반도체(주) | Multi-channel capacitive touch sensor with minimal number of channel input terminals |
JP5319137B2 (en) | 2008-02-21 | 2013-10-16 | 株式会社ケーヒン | DCDC converter and voltage detection device used therefor |
ES2395695T3 (en) | 2009-03-18 | 2013-02-14 | Vito Nv | Power cell system with means to detect a discontinuity |
JP5467601B2 (en) * | 2010-08-05 | 2014-04-09 | 富士通テレコムネットワークス株式会社 | Battery test apparatus, battery test method, and battery test program |
JP5606871B2 (en) * | 2010-10-26 | 2014-10-15 | ラピスセミコンダクタ株式会社 | Semiconductor circuit, semiconductor device, wiring abnormality diagnosis method, and abnormality diagnosis program |
JP5624907B2 (en) * | 2011-02-17 | 2014-11-12 | 本田技研工業株式会社 | Power storage device, disconnection detection device, vehicle, and disconnection detection method |
JP5843518B2 (en) * | 2011-08-08 | 2016-01-13 | 富士通テン株式会社 | Disconnection detector |
JP5666712B2 (en) | 2011-09-14 | 2015-02-12 | 本田技研工業株式会社 | Voltage measuring device |
JP6621256B2 (en) * | 2015-07-16 | 2019-12-18 | ラピスセミコンダクタ株式会社 | Semiconductor device, battery monitoring device, and battery cell voltage detection method |
JP7649173B2 (en) * | 2021-03-19 | 2025-03-19 | 積水化学工業株式会社 | Battery Control System |
-
2004
- 2004-11-30 JP JP2004347534A patent/JP4291769B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220082630A1 (en) * | 2019-01-15 | 2022-03-17 | Goiku Battery Co., Ltd. | Soh/soc detecting device for power storage element, and power storage element managing unit |
Also Published As
Publication number | Publication date |
---|---|
JP2006153758A (en) | 2006-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4291769B2 (en) | Contact detection method | |
JP2013036975A (en) | Detecting disconnected wire to connect battery cell and external circuit | |
JP5169491B2 (en) | Battery pack monitoring device and battery breakage detection method | |
JP5443327B2 (en) | Battery assembly | |
JP6477593B2 (en) | Battery pack monitoring system | |
US8836341B2 (en) | Semiconductor circuit, semiconductor device, method of diagnosing abnormality of wire, and computer readable storage medium | |
JP2015059762A (en) | Battery pack module and disconnection detection method | |
US7719284B2 (en) | Apparatus for measuring voltage | |
JP4471965B2 (en) | Automatic battery polarity detection device | |
CN108226794B (en) | Secondary battery monitoring device and fault diagnosis method | |
EP3336565A1 (en) | Secondary battery monitoring device and method for diagnosing failure | |
JP4616875B2 (en) | Voltage detector | |
CN101191824A (en) | Power supply voltage test circuit | |
EP3812784B1 (en) | Systems and methods involving measurement of battery cells | |
US10247785B2 (en) | Assembled-battery system, semiconductor circuit, and diagnostic method | |
JP4392333B2 (en) | Fuel cell system | |
CN220730387U (en) | Battery detector | |
JP4180560B2 (en) | Battery voltage measurement circuit | |
US7466137B2 (en) | Apparatus and method for measuring voltage of the fuel cell stack using a capacitor | |
JP5640964B2 (en) | Battery monitoring device | |
JP5308770B2 (en) | Short-circuit fault inspection method for input switching relay switch in multi-channel input measuring device | |
JP5846092B2 (en) | Voltage detector | |
JP4571888B2 (en) | Voltage measuring device and degradation determination method thereof | |
JP4256837B2 (en) | Voltage measuring device | |
JP6507989B2 (en) | Battery monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4291769 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |