JP4288618B2 - Method for producing carboxymethylcellulose gel - Google Patents
Method for producing carboxymethylcellulose gel Download PDFInfo
- Publication number
- JP4288618B2 JP4288618B2 JP2006250947A JP2006250947A JP4288618B2 JP 4288618 B2 JP4288618 B2 JP 4288618B2 JP 2006250947 A JP2006250947 A JP 2006250947A JP 2006250947 A JP2006250947 A JP 2006250947A JP 4288618 B2 JP4288618 B2 JP 4288618B2
- Authority
- JP
- Japan
- Prior art keywords
- gel
- acid
- cmc
- alkali metal
- metal salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002134 Carboxymethyl cellulose Polymers 0.000 title claims description 108
- 235000010948 carboxy methyl cellulose Nutrition 0.000 title claims description 108
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000001768 carboxy methyl cellulose Substances 0.000 title claims description 18
- 239000008112 carboxymethyl-cellulose Substances 0.000 title claims description 18
- 239000002253 acid Substances 0.000 claims description 72
- 238000004898 kneading Methods 0.000 claims description 28
- 229910052783 alkali metal Inorganic materials 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 239000002994 raw material Substances 0.000 claims description 16
- -1 alkali metal salt Chemical class 0.000 claims description 15
- 238000004132 cross linking Methods 0.000 claims description 11
- 230000005865 ionizing radiation Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 11
- 239000011260 aqueous acid Substances 0.000 claims description 8
- 229920006321 anionic cellulose Polymers 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims 1
- 229920000609 methyl cellulose Polymers 0.000 claims 1
- 239000001923 methylcellulose Substances 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 239000000499 gel Substances 0.000 description 150
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 31
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 22
- 230000005855 radiation Effects 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 12
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 11
- 238000001879 gelation Methods 0.000 description 11
- 230000001678 irradiating effect Effects 0.000 description 11
- 235000011007 phosphoric acid Nutrition 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 231100000987 absorbed dose Toxicity 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229920003169 water-soluble polymer Polymers 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 5
- 238000006266 etherification reaction Methods 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 229920006184 cellulose methylcellulose Polymers 0.000 description 4
- 239000011153 ceramic matrix composite Substances 0.000 description 4
- 238000012710 chemistry, manufacturing and control Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 230000005251 gamma ray Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Jellies, Jams, And Syrups (AREA)
- Medicinal Preparation (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、酸または酸水溶液を用いてアニオン系のセルロース誘導体であるカルボキシメチルセルロースアルカリ金属塩(以下、単にCMCと言う。)に分子結合(架橋)を生じさせることによって、食品、医薬品等の安定性向上、保形性向上等のために使用されるゲルを製造する方法に関する。 The present invention stabilizes foods, pharmaceuticals, and the like by causing molecular bonds (crosslinking) to occur in an carboxymethylcellulose alkali metal salt (hereinafter simply referred to as CMC), which is an anionic cellulose derivative, using an acid or an aqueous acid solution. The present invention relates to a method for producing a gel used for improving property and shape retention.
CMCは、現在最も一般的に使用されている水溶性高分子である。CMCは、白色または類白色の粉末であり、水に溶解し、透明で無臭の粘ちょう液になる。CMCは、天然パルプを原料としているので、安全性が高い。CMCの分子同士を架橋させることで、セルロースの分子が三次元の網目構造をとり、この網目構造の内部に水をしっかり捉えたゲルが得られる。このようにして得られたゲルは、食品、医薬品、日用品、保冷材、建築用材等に幅広く使用されている。 CMC is the most commonly used water-soluble polymer at present. CMC is a white or similar white powder that dissolves in water and becomes a clear, odorless viscous liquid. Since CMC uses natural pulp as a raw material, it is highly safe. By cross-linking the CMC molecules, a cellulose molecule has a three-dimensional network structure, and a gel in which water is firmly captured inside the network structure is obtained. The gel thus obtained is widely used in foods, pharmaceuticals, daily necessities, cold insulation materials, building materials and the like.
このようなゲルを製造する方法として、従来からアニオン性水溶性高分子を多価金属イオンで架橋させゲルを調製する方法(例えば、特許文献1、2,3及び4)や、アニオン性水溶性高分子に架橋剤を添加してゲルを調製する方法(例えば、特許文献5、6及び7)、及びアニオン性水溶性高分子に水を加えペースト状に練り放射線を照射することによりゲルを調製する方法(例えば特許文献8及び9、並びに非特許文献1、2及び3)が知られている。
As a method for producing such a gel, conventionally, a method of preparing a gel by crosslinking an anionic water-soluble polymer with a polyvalent metal ion (for example,
しかし、多価金属イオンでアニオン性水溶性高分子を架橋させゲルを調製する方法ではゲル中に多価金属イオンが残存する可能性があること、架橋剤を用いるゲルの製造法においては架橋剤の大半に毒性があり、生成されたゲルの用途が限られること、放射線を用いる製造法では放射線を用いるため特殊な設備が必要であることなどの制約があった。 However, in the method of preparing a gel by cross-linking an anionic water-soluble polymer with polyvalent metal ions, there is a possibility that the polyvalent metal ion may remain in the gel. Most of them are toxic, and there are limitations such as the limited use of the generated gel and the production method using radiation requires special equipment because it uses radiation.
本発明の目的は、環境や人体への安全性が高く、簡単な設備で安価に製造でき、従って、食品や医薬品等に安心して使用できるカルボキシメチルセルロースアルカリ金属塩を原料とするゲルの製造方法を提供することにある。 The object of the present invention is to provide a method for producing a gel using a carboxymethyl cellulose alkali metal salt as a raw material, which is highly safe for the environment and the human body, can be produced at low cost with simple equipment, and can be used with peace of mind in foods and pharmaceuticals. It is to provide.
本発明の基本原理は、酸または酸水溶液を用いてアニオン系のセルロース誘導体であるカルボキシメチルセルロースアルカリ金属塩(CMC)に分子結合(架橋)を生じさせることができ、これによってCMCゲルが得られるという、本発明者の新たな知見に基づいている。 The basic principle of the present invention is that an anionic cellulose derivative carboxymethylcellulose alkali metal salt (CMC) can be made to form a molecular bond (cross-linking) using an acid or an acid aqueous solution, thereby obtaining a CMC gel. , Based on the inventor's new knowledge.
本発明のより具体的かつ好適なゲル製造方法においては、天然パルプを原料とする安全性の高いアニオン性水溶性高分子であるカルボキシメチルセルロースアルカリ金属塩(CMC)を出発物質として採用し、出発物質であるCMCに酸または酸水溶液を加え、混練することにより、CMCを原料とするゲルを製造するようにしている。 In the more specific and preferred gel production method of the present invention, carboxymethyl cellulose alkali metal salt (CMC), which is a highly safe anionic water-soluble polymer made from natural pulp, is employed as a starting material, and the starting material is used. A gel using CMC as a raw material is produced by adding an acid or an aqueous acid solution to CMC and kneading.
また、本発明の別の観点に係るCMCを原料とするゲルの製造方法においては、CMCを水と混練させ、ペースト状にした後、そのペースト状CMCを酸または酸水溶液に浸漬させることにより、CMCを原料とするゲルを製造するようにしている。 Further, in the method for producing a gel using CMC as a raw material according to another aspect of the present invention, CMC is kneaded with water to make a paste, and then the paste CMC is immersed in an acid or an acid aqueous solution. A gel made from CMC is produced.
なお、CMCと酸との混練によるゲル生成の機構は次のように考えられる。
酸処理により生成したゲルの赤外線吸収スペクトルを測定した結果、酸の種類を問わず、ゲルはほぼ同一のものであることが分かった。ゲルの元素分析、熱重量分析、示差熱分析の測定結果から、ゲルは新たに導入された共有結合によるものではなく、CMC分子鎖の凝集により生成したゲルであると推定される。用いているCMCはナトリウム塩なので、水溶性であるが酸が入ることによりCMCのカルボキシル基は解離度の低い−COOHの形になる。そのためにCMC分子鎖の広がりが押さえられ、凝集し、水素結合を形成する。その結果、ゲルが生成する。カルボキシル基が一部−COONaの形で残っている場合には、架橋点が少なく、より柔らかいゲルが生成するものと考えられる。
In addition, the mechanism of the gel production | generation by kneading | mixing CMC and an acid is considered as follows.
As a result of measuring the infrared absorption spectrum of the gel produced by the acid treatment, it was found that the gel was almost the same regardless of the type of acid. From the measurement results of the elemental analysis, thermogravimetric analysis, and differential thermal analysis of the gel, it is presumed that the gel is not a newly introduced covalent bond but a gel formed by aggregation of CMC molecular chains. Since CMC used is a sodium salt, it is water-soluble, but when an acid enters, the carboxyl group of CMC becomes -COOH having a low dissociation degree. Therefore, the spread of the CMC molecular chain is suppressed, aggregates, and forms a hydrogen bond. As a result, a gel is formed. If some of the carboxyl groups remain in the form of -COONa, it is considered that there are few crosslinking points and a softer gel is formed.
さらに、本発明の別な観点に係るCMCを原料とするゲルの製造方法においては、出発物質であるCMCに酸または酸水溶液を加え、混練した後、さらに電離放射線を照射するようにしている。
電離放射線を照射することによって、CMCに化学結合を導入することができ、ゲル分率を増大させることができる。すなわち、電離放射線を照射することによって、CMCの分子結合(架橋)が増大し、ゲルの改質が行われる。
Furthermore, in the method for producing a gel using CMC as a raw material according to another aspect of the present invention, an acid or an aqueous acid solution is added to the starting material CMC, kneaded, and then irradiated with ionizing radiation.
By irradiating with ionizing radiation, chemical bonds can be introduced into the CMC, and the gel fraction can be increased. That is, by irradiating with ionizing radiation, molecular bonding (crosslinking) of CMC increases and gel modification is performed.
さらに、本発明の別な観点に係るCMCを原料とするゲルの製造方法においては、CMCを水と混練してペースト状にした後、そのペースト状CMCを酸または酸水溶液に浸漬させた後に、さらに電離放射線を照射するようにしている。
この場合にも、電離放射線を照射することによって、CMCに化学結合を導入することができ、ゲル分率を増大させることができる。すなわち、電離放射線を照射することによって、CMCの分子結合(架橋)が増大し、ゲルの改質が行われる。
Furthermore, in the method for producing a gel using CMC as a raw material according to another aspect of the present invention, after the CMC is kneaded with water to make a paste, the paste-like CMC is immersed in an acid or an aqueous acid solution, Further, ionizing radiation is irradiated.
Also in this case, chemical bonds can be introduced into the CMC by irradiating with ionizing radiation, and the gel fraction can be increased. That is, by irradiating with ionizing radiation, molecular bonding (crosslinking) of CMC increases and gel modification is performed.
さらに、本発明の別な観点に係るCMCを原料とするゲルの製造方法においては、CMCを水に溶解させ、ペースト状にし、そのペースト状CMCに電離放射線を照射した後、酸または酸水溶液に浸漬させるようにしている。この場合にも、上述した電離放射線の照射と同様の効果が得られる。 Furthermore, in the method for producing a gel using CMC as a raw material according to another aspect of the present invention, CMC is dissolved in water to make a paste, and the paste-like CMC is irradiated with ionizing radiation, and then the acid or acid aqueous solution is added. I am trying to immerse. In this case as well, the same effect as the above-mentioned irradiation with ionizing radiation can be obtained.
本発明によれば、CMCに酸または酸水溶液を混練するだけでゲルを生成できるので、従来のように毒性のある試薬を使用する必要がない。また、電離放射線を照射しないでゲルを製造する方法では、放射線照射装置などの特別な装置を用いる必要がない。特に、本発明に従って製造されたゲルは、従来のゲルにはない優れた圧縮弾性率を持ち、耐熱性や耐酸性も高いため、これまで以上に広い用途への適用が期待できる。 According to the present invention, since a gel can be generated simply by kneading an acid or an acid aqueous solution into CMC, it is not necessary to use a toxic reagent as in the prior art. Further, in the method for producing a gel without irradiating with ionizing radiation, it is not necessary to use a special device such as a radiation irradiation device. In particular, since the gel produced according to the present invention has an excellent compressive elastic modulus not found in conventional gels and has high heat resistance and acid resistance, it can be expected to be applied to a wider range of applications than ever before.
以下、図面を参照しながら、本発明のCMCゲルの製造方法について、実施例に基づいて詳細に説明する。
実施例1(ゲルA)
Hereinafter, the manufacturing method of the CMC gel of this invention is demonstrated in detail based on an Example, referring drawings.
Example 1 (Gel A)
置換度(エーテル化度)及び粘度(粘度が高ければ分子量も大きい)の異なる各種CMC(ダイセル化学工業株式会社製)(図2を参照)と3mole/l のリン酸水溶液とをそれぞれよく混練したところ、用いた全てのCMCでゲル化が起こった。このゲル化のフローを図1(A)に示す。このようにして調製されたゲル(以下、ゲルAと言う。)は、比較的大きな圧縮弾性率を有する。生成されたゲルAを水中に投じ、未架橋のCMC及びリン酸を除去し、水に不溶な部分の割合をゲル分率として求めた。この結果を図2及び図3に示す。図3(A)は、図2のゲル分率に着目して表したグラフであり、図3(B)は、図2の吸水量に着目して表したグラフである。図3(A)から、粘度が高いCMCほどゲル分率が高くなることがわかる。同様に、図3(B)から置換度(エーテル化度)が高いCMCほど吸水量が高くなる傾向が認められる。ゲル中のリンをEDX(エネルギー分散型蛍光X線分析装置)とICP(誘導結合プラズマ質量分析装置)を用いて定量した結果、ゲル中にリンが残留していないことが確認された。 Various CMCs (manufactured by Daicel Chemical Industries, Ltd.) (see FIG. 2) having different degrees of substitution (degree of etherification) and viscosity (higher molecular weight is higher) and 3 mole / l phosphoric acid aqueous solution were kneaded well. However, gelation occurred in all the CMCs used. The gelation flow is shown in FIG. The gel thus prepared (hereinafter referred to as gel A) has a relatively large compression modulus. The produced gel A was poured into water to remove uncrosslinked CMC and phosphoric acid, and the proportion of the insoluble portion in water was determined as the gel fraction. The results are shown in FIGS. FIG. 3 (A) is a graph expressed by paying attention to the gel fraction of FIG. 2, and FIG. 3 (B) is a graph expressed by paying attention to the water absorption amount of FIG. From FIG. 3 (A), it can be seen that the higher the viscosity of the CMC, the higher the gel fraction. Similarly, it can be seen from FIG. 3B that CMC with a higher degree of substitution (etherification degree) tends to have a higher water absorption. As a result of quantifying phosphorus in the gel using EDX (energy dispersive X-ray fluorescence spectrometer) and ICP (inductively coupled plasma mass spectrometer), it was confirmed that no phosphorus remained in the gel.
以上の実施例は、CMCとリン酸との混練によるゲルAの生成に関するものであるが、他の酸についても同様の実験を行なった。その結果を図4の(A)、(B)及び(C)に示す。図4(C)は、図4の(A)及び(B)のデータをグラフ化した図である。図4から、一般的なCMCであるCMC1380とギ酸、クエン酸、酢酸、乳酸、リン酸、マレイン酸、シュウ酸及び塩酸のいずれかの水溶液を混練しても、しっかりした硬さ(N)を持つCMCゲルAが生成されることがわかる。なお、アスコルビン酸については、やわらかなゲルが生成されることがわかった。また、どの酸を用いても、酸のpHが低いほどゲル分率が高く、ゲルはより硬くなることが明らかであるので、本発明において酸の種類を特定する必要がないことがわかる。さらに、酸の種類、濃度を変えることによってゲルの硬さの調整が可能である。 The above examples relate to the formation of gel A by kneading CMC and phosphoric acid, but similar experiments were performed for other acids. The results are shown in FIG. 4 (A), (B) and (C). FIG. 4C is a graph of the data of FIGS. 4A and 4B. From FIG. 4, even when kneading CMC1380, which is a general CMC, and an aqueous solution of any of formic acid, citric acid, acetic acid, lactic acid, phosphoric acid, maleic acid, oxalic acid and hydrochloric acid, a firm hardness (N) is obtained. It can be seen that the CMC gel A is produced. In addition, about ascorbic acid, it turned out that a soft gel is produced | generated. Moreover, it is clear that no matter what acid is used, the lower the pH of the acid, the higher the gel fraction and the harder the gel, so that it is not necessary to specify the type of acid in the present invention. Furthermore, the hardness of the gel can be adjusted by changing the type and concentration of the acid.
図2に示された実験結果から、CMCとして市販のCMC全てが使用可能であると言える。すなわち、すべてのCMCが、酸または酸水溶液と混練されることによってゲル化されるものと言える。置換度(エーテル化度)、粘度を問わないが、置換度(エーテル化度)、分子量の異なるCMCを用いると、異なる特性を持つゲルAができる。CMCの濃度については、高濃度ではゲル化が早く、低濃度では遅い。CMCの濃度は酸もしくは酸水溶液と混練できる範囲であって、2.5重量%以上、40重量%以下が望ましい。 From the experimental results shown in FIG. 2, it can be said that all commercially available CMCs can be used as the CMC. That is, it can be said that all CMCs are gelled by being kneaded with an acid or an acid aqueous solution. Regardless of the degree of substitution (etherification degree) and viscosity, gel A having different characteristics can be obtained by using CMC having different degree of substitution (etherification degree) and molecular weight. Regarding the concentration of CMC, gelation is fast at a high concentration and slow at a low concentration. The concentration of CMC is within a range where it can be kneaded with an acid or an aqueous acid solution, and is preferably 2.5 wt% or more and 40 wt% or less.
CMCと酸の組み合わせにより異なる特性をもつゲルの製造が可能である。酸の濃度は酸の種類によって異なってくるが、概ね0.1mole/l 以上が望ましい。濃度の高い酸を用いた場合には、ゲル化が早く、ゲル分率が高く、固いゲルができる。このことを説明するための一例として、図5にリン酸濃度(%)とゲル分率(%)との関係を示す。リン酸の場合、その濃度が7.75%付近まではゲル分率(72.35%)が急激に上昇するが、それ以降は濃度が増してもゲル分率は緩やかに上昇する。CMCの濃度を高くすることによっても、ゲル分率を高めることができる。本発明者による実験によれば、3mole/lのリン酸を混練した場合に、CMC濃度(%)が5、10及び20の場合、ゲル分率(%)はそれぞれ21.5、85.8及び86.1の値を示した。 Depending on the combination of CMC and acid, it is possible to produce gels with different properties. Although the acid concentration varies depending on the type of acid, it is generally preferably at least 0.1 mole / l. When an acid having a high concentration is used, gelation is fast, gel fraction is high, and a hard gel is formed. As an example for explaining this, FIG. 5 shows the relationship between phosphoric acid concentration (%) and gel fraction (%). In the case of phosphoric acid, the gel fraction (72.35%) increases rapidly until the concentration is around 7.75%, but thereafter, the gel fraction gradually increases even if the concentration is increased. The gel fraction can also be increased by increasing the concentration of CMC. According to an experiment by the present inventors, when 3 mole / l phosphoric acid was kneaded, when the CMC concentration (%) was 5, 10 and 20, the gel fraction (%) was 21.5 and 85.8, respectively. And a value of 86.1.
CMCと酸もしくは酸水溶液とを混練する温度は問わない。一般的に、混練時の温度が高いほどゲル化は速やかに進行するが、CMCが加水分解を受けるほどの温度、例えば70℃以上での混練は避けるべきである。また、CMCと酸もしくは酸水溶液とを混練した後放置する時間は問わない。CMCと酸の濃度が高い場合にはゲル化は瞬時に進行し、混練と同時にゲル化が起こる。濃度が低い場合には、ゲル化は比較的ゆっくりと進行する。一般的に、混練後の放置時間が長いほどゲル分率は高くなるが、概ね24時間以内に反応は終結する。 The temperature at which CMC and acid or acid aqueous solution are kneaded is not limited. In general, the higher the temperature at the time of kneading, the faster the gelation proceeds. However, kneading at a temperature at which CMC is hydrolyzed, for example, 70 ° C. or higher should be avoided. Moreover, the time to leave after kneading | mixing CMC and an acid or an acid aqueous solution does not ask | require. When the concentration of CMC and acid is high, gelation proceeds instantaneously and gelation occurs simultaneously with kneading. When the concentration is low, gelation proceeds relatively slowly. In general, the longer the standing time after kneading, the higher the gel fraction, but the reaction is completed within 24 hours.
実施例2(ゲルC)
1つはCMC20重量部、そしてもう1つはCMC20重量部と1モルのリン酸を混練したCMCゲルA(図1(A)に示されたフローに従って生成される。)の2つを用意し、これらCMC及びCMCゲルAに、それぞれγ線を照射した。その結果、新たな改質ゲル(以下、ゲルCと言う。)が得られた。この改質ゲルの製造手順を図6(D)に簡潔に示してある。吸収線量が5kGy、10kGy、20kGy、30kGy、40kGy及び50kGyのCMC及びCMCゲルCのそれぞれのゲル分率(%)及び吸水量(g水/gゲル)を測定した結果、図6(A)に示す数値データが得られた。なお、図6(B)及び図6(C)は、図6(A)に示された数値wデータに基いて、それぞれゲル分率(%)及び吸水量(g水/gゲル)をグラフ化した図である。
Example 2 (Gel C)
One is 20 parts by weight of CMC, and the other is CMC gel A (produced according to the flow shown in FIG. 1A) in which 20 parts by weight of CMC and 1 mol of phosphoric acid are kneaded. These CMC and CMC gel A were each irradiated with γ rays. As a result, a new modified gel (hereinafter referred to as gel C) was obtained. The procedure for producing this modified gel is shown briefly in FIG. As a result of measuring each gel fraction (%) and water absorption (g water / g gel) of CMC and CMC gel C having absorbed doses of 5 kGy, 10 kGy, 20 kGy, 30 kGy, 40 kGy and 50 kGy, FIG. The numerical data shown are obtained. 6B and 6C are graphs showing the gel fraction (%) and water absorption (g water / g gel), respectively, based on the numerical value w data shown in FIG. 6A. FIG.
これらのグラフから、酸でゲル化されていないCMC20重量部のみの場合は、放射線の吸収線量の増加とともにゲル分率は増加し、吸水量は低下することが容易に理解される。すなわち、放射線を照射することによって、より強固なゲルが得られる。また、CMCと酸または酸水溶液とを混練して得たゲルの場合、前述したCMCと水を混練して得たペースト状のCMCに放射線を照射する場合に比較してより低線量でゲル化が進行する。さらに、高濃度の酸を用いてゲル化させたゲルでは、吸水量が少なく、放射線の照射による影響をほとんど受けない。
実施例3(ゲルB)
From these graphs, it is easily understood that, in the case of only 20 parts by weight of CMC not gelled with acid, the gel fraction increases and the water absorption decreases as the absorbed dose of radiation increases. That is, a stronger gel can be obtained by irradiation with radiation. In addition, in the case of a gel obtained by kneading CMC and acid or an aqueous acid solution, gelation is performed at a lower dose as compared with the case where the paste-like CMC obtained by kneading CMC and water is irradiated with radiation. Progresses. Furthermore, a gel gelled using a high concentration acid has a small amount of water absorption and is hardly affected by radiation irradiation.
Example 3 (Gel B)
20重量部のCMCと80重量部の水を混練して生成されたペースト状のCMCを0.1mole/l の塩酸水溶液に投じたところゲル(以下、ゲルBという。)が生成された。生成されたゲルのゲル分率は35%で、乾燥ゲル1gあたりの吸水量は340gであった。
図1(B)にゲルBの製造手順を簡潔に示す。ゲルB調製の条件は、ゲルA調製の条件に準ずる。ペースト状に混練したCMCを酸または酸水溶液に浸漬させた場合、CMCと酸または酸水溶液とを混練してゲル化させるよりも、より濃度の低い酸または酸水溶液でゲル化が起った。
実施例4(ゲルD)
When paste-like CMC produced by kneading 20 parts by weight of CMC and 80 parts by weight of water was poured into a 0.1 mole / l aqueous hydrochloric acid solution, a gel (hereinafter referred to as gel B) was produced. The gel fraction of the produced gel was 35%, and the water absorption per gram of the dried gel was 340 g.
FIG. 1B briefly shows the procedure for producing gel B. The conditions for preparing gel B are the same as those for preparing gel A. When CMC kneaded in paste form was immersed in an acid or an acid aqueous solution, gelation occurred with a lower concentration of acid or acid aqueous solution than kneading and gelling CMC and acid or acid aqueous solution.
Example 4 (Gel D)
上述のように、水を加えてペースト状に混練したCMCを、酸または酸水溶液に浸漬させて得たCMCゲル(以下、ゲルBと言う。)に、さらにγ線を照射した結果、改質されたゲル(以下、ゲルDと言う。)が生成された。 As described above, the CMC gel (hereinafter referred to as gel B) obtained by immersing CMC kneaded in paste form by adding water into an acid or an acid aqueous solution was further irradiated with γ-rays. The produced gel (hereinafter referred to as gel D) was produced.
このゲルDの生成過程を図7に示す。また、γ線照射前のゲルBとγ線照射後の改質ゲルDのゲル分率(%)の数値データを図8(A)に示す。なお、図8(B)は、図8(A)に示された数値データをグラフ化した図である。図8(A)及び図8(B)から次のことが認められる。酸の濃度が十分低い場合には、γ線の照射によってゲル分率が格段に増大する。しかし、γ線の吸収線量が10kGyを越えた段階でゲル分率はほぼ横ばいの特性を示すようになる。逆に、酸の濃度が十分高い場合には、ゲルBの段階で十分高いゲル分率が得られ、γ線を照射してもゲル分率が高まることはない。
実施例5(ゲルE)
The formation process of this gel D is shown in FIG. Moreover, the numerical data of the gel fraction (%) of the gel B before γ-ray irradiation and the modified gel D after γ-ray irradiation are shown in FIG. FIG. 8B is a graph of the numerical data shown in FIG. The following is recognized from FIGS. 8A and 8B. When the acid concentration is sufficiently low, the gel fraction is remarkably increased by irradiation with γ rays. However, when the absorbed dose of γ-rays exceeds 10 kGy, the gel fraction shows almost flat characteristics. Conversely, when the acid concentration is sufficiently high, a sufficiently high gel fraction is obtained at the stage of gel B, and the gel fraction does not increase even when γ rays are irradiated.
Example 5 (Gel E)
20重量部のCMCと80重量部の水を混練することにより生成したペースト状のCMCに、γ線を5kGy照射することにより生成した放射線架橋のCMCゲル100重量部を1000重量部の0.1mole/l の塩酸水溶液に入れ、室温で16時間放置しておいたところ、ゲル分率が33%から73%に増加した。乾燥ゲル1g当たりの吸水量は887gから90gに低下した。これは、塩酸水溶液にゲルを浸漬することにより、物理架橋が進み、新たな改質ゲル(以下、ゲルEと言う。)ができたことを示すものである。このようにして生成されたゲルは、吸収線量20kGyで調製した放射線架橋ゲルのゲル分率、吸水量に相当し、酸中での処理は吸収線量低減化に寄与することを意味する。 放射線で架橋したゲルを酸または酸水溶液に入れることにより、より強度の高いゲルを得ることができる。これは、吸収線量の低減化に寄与する技術となる。 100 parts by weight of radiation-crosslinked CMC gel produced by irradiating 5 kGy of γ rays to paste-like CMC produced by kneading 20 parts by weight of CMC and 80 parts by weight of water was added to 1000 parts by weight of 0.1 mole. When placed in an aqueous hydrochloric acid solution of / l and allowed to stand at room temperature for 16 hours, the gel fraction increased from 33% to 73%. The water absorption per gram of the dried gel decreased from 887 g to 90 g. This indicates that by immersing the gel in an aqueous hydrochloric acid solution, physical cross-linking progressed and a new modified gel (hereinafter referred to as gel E) was produced. The gel thus produced corresponds to the gel fraction and water absorption of the radiation cross-linked gel prepared at an absorbed dose of 20 kGy, and the treatment in acid means that the absorbed dose is reduced. A gel with higher strength can be obtained by placing the gel crosslinked with radiation in an acid or an aqueous acid solution. This is a technique that contributes to a reduction in absorbed dose.
以上のゲルEが生成されるまでの過程が、図9に示されている。また、図9のフローに従って生成されたゲルEのゲル分率が図10(A)に数値データで示されている。なお、図10(B)は図10(A)に示された数値データをグラフ化した図である。図10(B)のグラフから容易に理解されるように、ゲルEに関してのゲル化率は放射線の吸収線量の値が高くても、低くてもほとんど変化がないことがわかる。 The process until the above gel E is produced is shown in FIG. Moreover, the gel fraction of the gel E produced | generated according to the flow of FIG. 9 is shown by numerical data in FIG. 10 (A). FIG. 10B is a graph of the numerical data shown in FIG. As can be easily understood from the graph of FIG. 10B, it can be seen that the gelation rate with respect to the gel E hardly changes even when the value of the absorbed dose of radiation is high or low.
以上の実施例においては、例えば、CMCを酸または酸水溶液と混練して生成したゲルにさらにγ線を照射しているが、本発明の原理から明らかなようにγ線に限定されるものではなく、例えば従来の放射線架橋技術おいて使用されている電子線であっても良い。 In the above embodiment, for example, γ rays are further irradiated to a gel formed by kneading CMC with an acid or an acid aqueous solution. However, as is apparent from the principle of the present invention, the gel is not limited to γ rays. For example, it may be an electron beam used in a conventional radiation crosslinking technique.
さらに、以上の説明では、一種類の酸のみを使用しているが、本発明の原理から見て2種類以上の酸を組み合わせても同様のゲルを生成できることもわかる。
なお、以上の説明では、ゲルA、ゲルB、ゲルC、ゲルD及びゲルEと言う用語を使用しているが、これらはゲル自体の分子結合構造を示すものではなく、単に製造方法の理解を容易にするために使用しているに過ぎない。
Furthermore, although only one type of acid is used in the above description, it can be seen that a similar gel can be formed by combining two or more types of acids in view of the principle of the present invention.
In the above description, the terms gel A, gel B, gel C, gel D and gel E are used, but these do not indicate the molecular bond structure of the gel itself, but merely an understanding of the production method. It is only used to make it easier.
以上のようにして生成されたゲルは、工業、農業、医療、食品等の広範囲の分野において利用可能である。以下にその一例を挙げるが、これらに限定されるものではない。
(1)薬剤徐放性カプセル(特に大腸で薬剤を放出できるカプセル):カルボキシメチルセルロースまたはカルボキシメチルセルロースアルカリ金属塩(以下、CMCと略す)と酸を混練することにより、耐酸性に優れ、耐アルカリ性が低いゲルができるので、胃では分解されずに腸まで薬剤が届き、腸で薬剤が放出されることが期待される。
(2)食品添加物:食品添加物として認可されている酸とCMCを混練することにより、食品に使用可能なゲルを製造できる。
(3)保冷剤:CMCを酸と混練することにより容易にゲルができる。酸を除かずに用いれば凝固点降下のためにより低温で使用できる。
(4)金属吸着剤、排水処理剤:ある種の金属に対する金属吸着能がある。
(5)湿布剤、ピーリング剤:CMCを毒性のない酸と混練することによりゲルができる。酸の濃度、種類によりソフトなゲルを調製できる。
The gel produced as described above can be used in a wide range of fields such as industry, agriculture, medicine and food. Examples thereof are given below, but are not limited thereto.
(1) Sustained drug release capsules (especially capsules that can release drugs in the large intestine): By kneading carboxymethylcellulose or carboxymethylcellulose alkali metal salt (hereinafter abbreviated as CMC) and an acid, it has excellent acid resistance and alkali resistance. Since a low gel is formed, it is expected that the drug reaches the intestine without being decomposed in the stomach and is released in the intestine.
(2) Food additive: A gel usable for food can be produced by kneading an acid approved as a food additive with CMC.
(3) Coolant: A gel can be easily formed by kneading CMC with an acid. If it is used without removing the acid, it can be used at lower temperatures because of the freezing point depression.
(4) Metal adsorbent, wastewater treatment agent: has metal adsorbing ability for certain metals.
(5) Poultice, peeling agent: A gel is formed by kneading CMC with a non-toxic acid. A soft gel can be prepared depending on the concentration and type of acid.
CMC カルボキシメチルセルロース
HCL 塩酸
PA リン酸
CA クエン酸
CMC Carboxymethylcellulose HCL Hydrochloric acid PA Phosphoric acid CA Citric acid
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250947A JP4288618B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing carboxymethylcellulose gel |
GB0718000A GB2445818B8 (en) | 2006-09-15 | 2007-09-14 | Preparation of gels derived from carboxymethyl cellulose alkali metal salt |
US11/855,335 US8633254B2 (en) | 2006-09-15 | 2007-09-14 | Preparation of gels derived from carboxymethyl cellulose alkali metal salt |
CN2007101474876A CN101157760B (en) | 2006-09-15 | 2007-09-15 | Preparation of gel derived from alkali metal salt of carboxymethyl cellulose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250947A JP4288618B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing carboxymethylcellulose gel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009026032A Division JP5057250B2 (en) | 2009-02-06 | 2009-02-06 | Method for producing gel using carboxymethylcellulose alkali metal salt as raw material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008069315A JP2008069315A (en) | 2008-03-27 |
JP4288618B2 true JP4288618B2 (en) | 2009-07-01 |
Family
ID=39291184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006250947A Active JP4288618B2 (en) | 2006-09-15 | 2006-09-15 | Method for producing carboxymethylcellulose gel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4288618B2 (en) |
CN (1) | CN101157760B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264643A1 (en) * | 2021-06-18 | 2022-12-22 | 三菱鉛筆株式会社 | Non-baked pencil lead and method for manufacturing same |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010122687A1 (en) | 2009-04-20 | 2010-10-28 | 独立行政法人日本原子力研究開発機構 | Method for producing gel of carboxymethyl cellulose alkali metal salt |
JP5429527B2 (en) * | 2008-04-21 | 2014-02-26 | 眞知子 瀧上 | Method for producing gel of carboxymethylcellulose alkali metal salt |
AU2009316622B2 (en) * | 2008-11-18 | 2014-09-04 | Gelesis Llc | Methods and compositions for weight management and for improving glycemic control |
JP2010121028A (en) * | 2008-11-19 | 2010-06-03 | Ina Food Industry Co Ltd | Modified xanthan gum, modified gum arabic, and modified tamarind seed gum, and method for cross-linking xanthan gum, gum arabic, and tamarind seed gum |
KR101778826B1 (en) * | 2010-05-21 | 2017-09-14 | 다케시 시미즈 | Dry cellulose gel and process for producing same |
JP2012029588A (en) * | 2010-07-29 | 2012-02-16 | Fujita:Kk | Method for growing sedum kamtschaticum |
AU2012267855B2 (en) | 2011-06-07 | 2016-03-03 | Gelesis Llc | Method for producing hydrogels |
CN115381850A (en) | 2014-06-20 | 2022-11-25 | 吉莱斯公司 | Method for treating overweight or obesity |
KR20170109587A (en) * | 2015-01-29 | 2017-09-29 | 젤레시스 엘엘씨 | Method for producing a hydrogel bonded at high modulus of elasticity and water absorption |
CN105011343B (en) * | 2015-05-27 | 2018-01-19 | 青岛农业大学 | A kind of intestinal-specific pH sensitiveness condenses microcapsule delivery system and preparation method and application again |
CN110551300A (en) * | 2018-05-30 | 2019-12-10 | 华南理工大学 | Water-resistant transparent cellulose-based film and preparation method thereof |
CN110551301A (en) * | 2018-05-30 | 2019-12-10 | 华南理工大学 | Water-resistant nano cellulose film and preparation method thereof |
WO2021256038A1 (en) * | 2020-06-18 | 2021-12-23 | 国立研究開発法人日本原子力研究開発機構 | Gel, porous body, and gel or porous body production method |
CN113150324B (en) * | 2021-04-13 | 2023-02-14 | 华南理工大学 | TEMPO oxidized Millettia speciosa champ cellulose/gellan gum pH response type hydrogel and preparation method and application thereof |
JP2023021640A (en) * | 2021-08-02 | 2023-02-14 | 株式会社Nhvコーポレーション | Method for producing carboxymethylcellulose gel |
CN114921401B (en) * | 2022-05-24 | 2023-07-18 | 灵知蓝诺(北京)生物技术有限公司 | Method for extracting cells from mucus based on liquid phase molecular sieve |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ513517A (en) * | 1999-02-19 | 2003-08-29 | Denki Kagaku Kogyo Kk | Hyaluronic acid gel composition containing a polymer for use as a wound dressing |
ITTO20040918A1 (en) * | 2004-12-29 | 2005-03-29 | Luigi Ambrosio | POLYMERIC HYDROGEL BIODEGRADABLE ABSORBERS AND PROCEDURE FOR THEIR PREPARATION |
CN1803185A (en) * | 2005-01-12 | 2006-07-19 | 中南大学湘雅二医院 | Compound zedoary turmeric oil gelata and its preparing method |
CN100340231C (en) * | 2005-10-18 | 2007-10-03 | 合肥华威药业有限责任公司 | Itch eliminatin gel and its preparing method |
-
2006
- 2006-09-15 JP JP2006250947A patent/JP4288618B2/en active Active
-
2007
- 2007-09-15 CN CN2007101474876A patent/CN101157760B/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264643A1 (en) * | 2021-06-18 | 2022-12-22 | 三菱鉛筆株式会社 | Non-baked pencil lead and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN101157760A (en) | 2008-04-09 |
CN101157760B (en) | 2012-03-21 |
JP2008069315A (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4288618B2 (en) | Method for producing carboxymethylcellulose gel | |
CN104140630B (en) | A kind of chitosan-based double-network hydrogel and preparation method thereof | |
Liu et al. | Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel | |
Guo et al. | Mechanical and drug release properties of alginate beads reinforced with cellulose | |
Barreiro-Iglesias et al. | Preparation of chitosan beads by simultaneous cross-linking/insolubilisation in basic pH: Rheological optimisation and drug loading/release behaviour | |
Pushpamalar et al. | Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media | |
Bandomir et al. | Synthesis and characterization of polymerized ionic liquids: mechanical and thermal properties of a novel type of hydrogels | |
Özbaş et al. | Swelling kinetics, mechanical properties, and release characteristics of chitosan‐based semi‐IPN hydrogels | |
CN105837841A (en) | Polydopamine-modified chitosan-based material and preparation method thereof | |
Distantina et al. | Synthesis of hydrogel film based on carrageenan extracted from Kappaphycus alvarezii | |
JP2014209093A5 (en) | ||
KR20150121740A (en) | Manufacturing method of graphene hydrogel using radiation and its application | |
CN110157132B (en) | High-strength organic-inorganic homogeneous composite material, and preparation method and application thereof | |
Osorio-Madrazo et al. | Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight | |
Shen et al. | Effect of 60Co irradiation on the properties of chitosan rod | |
US8633254B2 (en) | Preparation of gels derived from carboxymethyl cellulose alkali metal salt | |
Li et al. | Synthesis and swelling behaviors of semi‐IPNs superabsorbent resin based on chicken feather protein | |
Wang et al. | Effect of sodium alginate block type on the physicochemical properties and curcumin release behavior of quaternized chitosan-oxidized sodium alginate Schiff base hydrogels | |
JP5057250B2 (en) | Method for producing gel using carboxymethylcellulose alkali metal salt as raw material | |
Pourkhatoun et al. | Preparation and characterization of pH‐sensitive carboxymethyl cellulose‐based hydrogels for controlled drug delivery | |
Akakuru et al. | Facile fabrication of pH-responsive and swellable slow release microparticles of chlorpheniramine maleate with chitosan-starch matrices and their crosslinks | |
CN108904466A (en) | A method of the hydrogel beads containing ZnO encapsulate insoluble drug | |
CN110818840B (en) | A kind of synthetic method of polysaccharide biomass-based fast self-healing gel | |
JP2008230996A (en) | Method for producing gel containing carboxymethylcellulose as main component, and gel | |
CN103933607B (en) | The preparation method of the organic strontium coating of TC4 titanium alloy surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090303 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4288618 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |