CN103933607B - The preparation method of the organic strontium coating of TC4 titanium alloy surface - Google Patents
The preparation method of the organic strontium coating of TC4 titanium alloy surface Download PDFInfo
- Publication number
- CN103933607B CN103933607B CN201410155138.9A CN201410155138A CN103933607B CN 103933607 B CN103933607 B CN 103933607B CN 201410155138 A CN201410155138 A CN 201410155138A CN 103933607 B CN103933607 B CN 103933607B
- Authority
- CN
- China
- Prior art keywords
- solution
- titanium alloy
- strontium
- coating
- organic strontium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 54
- 238000000576 coating method Methods 0.000 title claims abstract description 44
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000011248 coating agent Substances 0.000 title claims abstract description 41
- 229910052712 strontium Inorganic materials 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims description 7
- 229910001427 strontium ion Inorganic materials 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 45
- 239000000758 substrate Substances 0.000 claims description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 5
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- CTENFNNZBMHDDG-UHFFFAOYSA-N Dopamine hydrochloride Chemical compound Cl.NCCC1=CC=C(O)C(O)=C1 CTENFNNZBMHDDG-UHFFFAOYSA-N 0.000 claims description 4
- 239000007983 Tris buffer Substances 0.000 claims description 4
- 229960001149 dopamine hydrochloride Drugs 0.000 claims description 4
- 239000012456 homogeneous solution Substances 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 150000003438 strontium compounds Chemical class 0.000 abstract description 11
- 229920002134 Carboxymethyl cellulose Polymers 0.000 abstract description 8
- 210000000988 bone and bone Anatomy 0.000 abstract description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract description 4
- 239000007943 implant Substances 0.000 abstract description 4
- 230000008439 repair process Effects 0.000 abstract description 4
- 230000009471 action Effects 0.000 abstract description 3
- 238000011161 development Methods 0.000 abstract description 3
- 230000002138 osteoinductive effect Effects 0.000 abstract description 3
- 229910000883 Ti6Al4V Inorganic materials 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 abstract description 2
- 239000003102 growth factor Substances 0.000 abstract description 2
- 230000002779 inactivation Effects 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 abstract description 2
- 210000001519 tissue Anatomy 0.000 abstract description 2
- 235000013619 trace mineral Nutrition 0.000 abstract description 2
- 239000011573 trace mineral Substances 0.000 abstract description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 abstract 1
- 230000001737 promoting effect Effects 0.000 abstract 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 14
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 11
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 8
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 7
- 229960004502 levodopa Drugs 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical group OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229960003638 dopamine Drugs 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000009920 chelation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000000120 microwave digestion Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012890 simulated body fluid Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229940047908 strontium chloride hexahydrate Drugs 0.000 description 1
- AMGRXJSJSONEEG-UHFFFAOYSA-L strontium dichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Sr]Cl AMGRXJSJSONEEG-UHFFFAOYSA-L 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Paints Or Removers (AREA)
Abstract
本发明公开了一种TC4钛合金表面有机锶涂层的制备方法;以医用TC4钛合金(Ti-6Al-4V)为基体,在其表面构建可降解有机锶涂层的方法,目的是诱导骨的快速修复。基于微量元素锶特有的骨诱导性,将锶离子通过羧甲基纤维素的衍生物负载于钛合金表面,制备降解型有机锶化合物。通过锶离子在体内的降解释放,达到新生组织在植入物表面生长、促进骨快速修复的目的。本发明可以解决以往涂层骨诱导性差,生长因子昂贵、易失活、作用时间短的局限性,有利于开发廉价、高效、稳定的骨诱导材料。
The invention discloses a method for preparing an organic strontium coating on the surface of a TC4 titanium alloy; a method for constructing a degradable organic strontium coating on the surface of a medical TC4 titanium alloy (Ti-6Al-4V) with the purpose of inducing bone quick fix. Based on the unique osteoinductivity of trace element strontium, strontium ions are loaded on the surface of titanium alloy through derivatives of carboxymethyl cellulose to prepare degradable organic strontium compounds. Through the degradation and release of strontium ions in the body, the purpose of growing new tissue on the surface of the implant and promoting rapid bone repair is achieved. The invention can solve the limitations of poor osteoinductivity of previous coatings, expensive growth factors, easy inactivation and short action time, and is beneficial to the development of cheap, efficient and stable osteoinductive materials.
Description
技术领域technical field
本发明涉及一种新型的用有机锶修饰TC4钛合金(Ti-6Al-4V)材料表面诱导骨快速修复的方法,主要用于生物与医药、医用器械等领域。The invention relates to a novel method for inducing rapid bone repair on the surface of a TC4 titanium alloy (Ti-6Al-4V) material modified with organic strontium, which is mainly used in the fields of biology, medicine, medical equipment and the like.
背景技术Background technique
锶(Strontium,Sr)是一种微量元素,它在元素周期表中与钙同族。近年来,锶被发现具有提高成骨活性和抑制破骨吸收的独特的非耦联作用,其在骨科具有巨大的潜在应用价值。钛合金因力学性能优异、耐腐蚀性强及生物相容性好等优点,被广泛用作骨科植入物的主体材料。但钛合金为生物惰性,其与植入部位骨组织整合性差,易与周围宿主组织分离而引起松动,因此,对钛合金表面进行修饰,提升植入部位骨组织的修复能力、缩短愈合时间成为医用钛合金的研究焦点。已有的无机涂层存在脆性大、残余应力高、骨诱导性差等局限性;有机高分子是钛合金表面修饰的发展趋势,但其无骨诱导性。综上考虑,本发明提出合成有机锶化合物来修饰钛合金表面,并通过控制材料的降解和锶离子的释放促进植入部位骨组织的快速修复。这对于提升钛合金器械的手术效果,改善病人生活质量,节约社会医疗资源具有显著的作用。Strontium (Strontium, Sr) is a trace element that is in the same group as calcium in the periodic table. In recent years, strontium has been found to have a unique uncoupling effect of enhancing osteogenic activity and inhibiting osteoclast resorption, which has great potential application value in orthopedics. Titanium alloy is widely used as the main material of orthopedic implants due to its excellent mechanical properties, strong corrosion resistance and good biocompatibility. However, titanium alloy is biologically inert, and its integration with the bone tissue at the implantation site is poor, and it is easy to separate from the surrounding host tissue and cause loosening. Research focus of medical titanium alloys. Existing inorganic coatings have limitations such as high brittleness, high residual stress, and poor osteoinductivity; organic polymers are the development trend of surface modification of titanium alloys, but they are not osteoinductive. In summary, the present invention proposes to synthesize organic strontium compounds to modify the surface of titanium alloys, and to promote the rapid repair of bone tissue at implant sites by controlling the degradation of materials and the release of strontium ions. This has a significant effect on improving the surgical effect of titanium alloy instruments, improving the quality of life of patients, and saving social medical resources.
发明内容Contents of the invention
本发明的目的是提出一种能有效改善钛合金的骨诱导性、促进植入物与骨快速整合,且可用于临床的关键技术。The purpose of the present invention is to propose a key technology that can effectively improve the osteoinductivity of titanium alloy, promote the rapid integration of implant and bone, and can be used clinically.
通过调控反应物CMC-Na与DOPA·HCl摩尔比1:1,利用1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)/N-羟基丁二酰亚胺(NHS)活化CMC的羧甲基,制备具有锶离子结合位点的有机化合物(DOPA-CMC)。将锶离子通过上述有机物中的羧基螯合即得有机锶化合物(DOPA-CMC-Sr)。By adjusting the molar ratio of reactants CMC-Na and DOPA·HCl to 1:1, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinyl Imine (NHS) activates the carboxymethyl group of CMC to prepare an organic compound (DOPA-CMC) with a strontium ion binding site. The organic strontium compound (DOPA-CMC-Sr) is obtained by chelating strontium ions through the carboxyl groups in the above organic matter.
DOPA-CMC-Sr制备技术路线DOPA-CMC-Sr preparation technology route
本发明的TC4钛合金表面有机锶涂层的制备方法,步骤如下:The preparation method of TC4 titanium alloy surface organic strontium coating of the present invention, the steps are as follows:
(1)将等摩尔量的羧甲基纤维素钠水溶液和多巴胺盐酸盐的三羟甲基氨基甲烷溶液在偶联剂的作用下均匀混合;(1) Uniformly mix the aqueous solution of sodium carboxymethylcellulose and the trishydroxymethylaminomethane solution of dopamine hydrochloride in an equimolar amount under the action of a coupling agent;
(2)将六水氯化锶水溶液加入上述步骤(1)所得溶液中,均匀混合;(2) Add the aqueous solution of strontium chloride hexahydrate to the solution obtained in the above step (1), and mix evenly;
(3)将钛合金片浸泡于步骤(2)所得溶液中,避光反应,过夜,取出后干燥,即得TC4钛合金表面有机锶涂层;如附图1所示。(3) Soak the titanium alloy sheet in the solution obtained in step (2), and react in the dark, overnight, take it out and dry it, and then obtain the organic strontium coating on the surface of the TC4 titanium alloy; as shown in Figure 1.
所选用的TC4钛合金片作为涂层基体,可以先进行预处理,将其经水砂纸打磨清洗干净后,先后经硝酸和氢氧化钠预处理,干燥备用。The TC4 titanium alloy sheet selected as the coating substrate can be pretreated first. After being polished and cleaned by water sandpaper, it is pretreated by nitric acid and sodium hydroxide successively, and dried for later use.
所述的羧甲基纤维素钠的分子量优选为100kDa~250kDa。(kDa为生物学中蛋白质的分子质量单位)。The molecular weight of the sodium carboxymethylcellulose is preferably 100kDa-250kDa. (kDa is the molecular mass unit of protein in biology).
所述的多巴胺盐酸盐的浓度范围优选为1mg/ml~5mg/ml。The concentration range of said dopamine hydrochloride is preferably 1 mg/ml-5 mg/ml.
所述的步骤(1)的偶联剂为1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺(EDC)/N-羟基丁二酰亚胺(NHS)。The coupling agent in the step (1) is 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS).
所述的步骤(2)所得混合溶液中锶离子的浓度为5mg/ml~15mg/ml。The concentration of strontium ions in the mixed solution obtained in the step (2) is 5 mg/ml-15 mg/ml.
通过以上方法,用有机锶化合物修饰钛合金表面可以促进骨的快速修复。本发明可以解决以往涂层骨诱导性差、生长因子昂贵、易失活、作用时间短的局限性,有利于开发廉价、高效、稳定的骨诱导材料。Through the above method, modifying the surface of titanium alloy with organic strontium compounds can promote the rapid repair of bone. The invention can solve the limitations of poor osteoinductivity, expensive growth factors, easy inactivation and short action time of previous coatings, and is beneficial to the development of cheap, efficient and stable osteoinductive materials.
附图说明Description of drawings
图1TC4钛合金基体表面有机锶涂层的构建工艺流程图;Figure 1 Flow chart of the construction process of organic strontium coating on the surface of TC4 titanium alloy substrate;
图2DOPA-CMC与DOPA-CMC-Sr的红外光谱(FT-IR)图;Figure 2 Infrared spectrum (FT-IR) of DOPA-CMC and DOPA-CMC-Sr;
图3a TC4钛合金经酸碱处理后的扫描电镜(SEM)谱图;Fig. 3a Scanning electron microscope (SEM) spectrum of TC4 titanium alloy after acid-base treatment;
图3b TC4钛合金经酸碱处理后的X射线能谱分析(EDS)图;Figure 3b X-ray energy spectrum analysis (EDS) diagram of TC4 titanium alloy after acid-base treatment;
图4a TC4钛合金上有机锶涂层的扫描电镜(SEM)谱图;Fig. 4a Scanning electron microscope (SEM) spectrum of organic strontium coating on TC4 titanium alloy;
图4b TC4钛合金上有机锶涂层的X射线能谱分析(EDS)图;Figure 4b X-ray energy spectrum analysis (EDS) diagram of organic strontium coating on TC4 titanium alloy;
图5a TC4钛合金经酸碱处理后的X射线光电子能谱(XPS)图;Figure 5a X-ray photoelectron spectroscopy (XPS) diagram of TC4 titanium alloy after acid-base treatment;
图5b TC4钛合金上不含锶有机涂层的X射线光电子能谱(XPS)图;Figure 5b X-ray photoelectron spectroscopy (XPS) diagram of strontium-free organic coating on TC4 titanium alloy;
图5c TC4钛合金上有机锶涂层的X射线光电子能谱(XPS)图;Figure 5c X-ray photoelectron spectroscopy (XPS) diagram of organic strontium coating on TC4 titanium alloy;
图5d TC4钛合金上有机锶涂层中锶元素的X射线光电子能谱(XPS)图。Fig. 5d X-ray photoelectron spectroscopy (XPS) diagram of strontium element in organic strontium coating on TC4 titanium alloy.
具体实施方式Detailed ways
下面具体说明本发明的技术和具体实施列:The technology of the present invention and concrete implementation row are specified below:
实施例1:Example 1:
以TC4钛合金为基体,制备有机锶涂层的方法,利用锶离子与羧基螯合的特性制备有机锶化合物,利用多巴胺的邻二苯酚官能团与基底紧密结合的特性将该有机锶化合物固载于钛合金表面。The method of preparing an organic strontium coating using TC4 titanium alloy as a substrate uses the chelating properties of strontium ions and carboxyl groups to prepare organic strontium compounds, and utilizes the characteristics of the ortho-diphenol functional group of dopamine to be closely combined with the substrate to immobilize the organic strontium compounds on Titanium finish.
所述的以TC4钛合金为基体,是尺寸为10*10*2mm3的TC4钛合金片The TC4 titanium alloy as the substrate is a TC4 titanium alloy sheet with a size of 10*10*2mm 3
制备TC4钛合金表面有机锶涂层的工艺参数为:The process parameters for preparing the organic strontium coating on the surface of TC4 titanium alloy are:
HNO3浓度及腐蚀时间:40%,40minHNO 3 concentration and corrosion time: 40%, 40min
NaOH浓度及保温时间:5mol/L,5hNaOH concentration and holding time: 5mol/L, 5h
DOPA·HCl浓度:1mg/mlDOPA·HCl concentration: 1mg/ml
SrCl2·6H2O浓度:5mg/mlSrCl 2 ·6H 2 O concentration: 5mg/ml
上述涂层的制备方法及其步骤如下:The preparation method of above-mentioned coating and steps thereof are as follows:
(1)将试样利用线切割加工成10×10×2mm3,分别用600#,800#,2500#砂纸进行打磨,无水乙醇超声清洗,干燥。(1) The sample is processed into 10×10×2mm 3 by wire cutting, polished with 600#, 800#, 2500# sandpaper respectively, ultrasonically cleaned with anhydrous ethanol, and dried.
(2)将上述试样的表面进行酸、碱预处理,先后在40%的HNO3溶液中腐蚀40min,5mol/L的NaOH溶液中90℃下保温5h,去离子水清洗干净,无水乙醇超声15分钟后干燥备用。(2) The surface of the above sample was pretreated with acid and alkali, corroded in 40% HNO 3 solution for 40 minutes, and kept in 5mol/L NaOH solution at 90°C for 5 hours, cleaned with deionized water, and deionized water. Sonicate for 15 minutes and dry for later use.
(3)配置1%的CMC水溶液,向溶液中加入等摩尔量的EDC,在磁力搅拌器下搅拌15min后加入等摩尔量的NHS,反应40min。(3) Prepare a 1% CMC aqueous solution, add an equimolar amount of EDC to the solution, stir for 15 minutes under a magnetic stirrer, then add an equimolar amount of NHS, and react for 40 minutes.
(4)配置1mg/ml的DOPA·HCl的Tris溶液,,pH=8.5,使其在避光环境下充分溶解。(4) Prepare a Tris solution of 1mg/ml DOPA·HCl, pH=8.5, so that it can be fully dissolved in a dark environment.
(5)将步骤(4)的溶液加入步骤(3)的溶液中,在磁力搅拌器下搅拌1h至溶液呈均一溶液。(5) Add the solution of step (4) into the solution of step (3), and stir for 1 hour under a magnetic stirrer until the solution becomes a homogeneous solution.
(6)配置SrCl2·6H2O溶液,使用0.22um的过滤器将其过滤至步骤(5)所得溶液中,充分溶解,使混合溶液中锶离子的浓度为5mg/ml。(6) Prepare the SrCl 2 ·6H 2 O solution, filter it into the solution obtained in step (5) with a 0.22um filter, and fully dissolve it so that the concentration of strontium ions in the mixed solution is 5 mg/ml.
(7)将步骤(1)制备好的试样放入步骤(6)所得溶液中浸泡24h,避光保存。将试样取出后静置至钛片上的溶液干燥,用去离子水清洗数次,放入56℃干燥箱中干燥,得到TC4钛合金表面的有机锶涂层。(7) Soak the sample prepared in step (1) in the solution obtained in step (6) for 24 hours, and store in the dark. After the sample was taken out, the solution on the titanium sheet was dried, washed several times with deionized water, and dried in a drying oven at 56°C to obtain an organic strontium coating on the surface of the TC4 titanium alloy.
实施例2:Example 2:
以TC4钛合金为基体,制备有机锶涂层的方法,其特征在于:利用锶离子与羧基螯合的特性制备有机锶化合物,利用多巴胺的邻二苯酚官能团与基底紧密结合的特性将该有机锶化合物固载于钛合金表面。The method for preparing an organic strontium coating with TC4 titanium alloy as a substrate is characterized in that: the organic strontium compound is prepared by using the chelating characteristics of strontium ions and carboxyl groups, and the organic strontium compound is prepared by using the characteristics of the ortho-diphenol functional group of dopamine to be closely combined with the substrate. Compounds are immobilized on the surface of titanium alloy.
所述的以TC4钛合金为基体,是尺寸为10*10*2mm3的TC4钛合金片The TC4 titanium alloy as the substrate is a TC4 titanium alloy sheet with a size of 10*10*2mm 3
制备TC4钛合金表面有机锶涂层的工艺参数为:The process parameters for preparing the organic strontium coating on the surface of TC4 titanium alloy are:
HNO3浓度及腐蚀时间:50%,1hHNO 3 concentration and corrosion time: 50%, 1h
NaOH浓度及保温时间:5mol/L,7hNaOH concentration and holding time: 5mol/L, 7h
DOPA·HCl浓度:5mg/mlDOPA·HCl concentration: 5mg/ml
SrCl2·6H2O浓度:10mg/mlSrCl 2 6H 2 O concentration: 10mg/ml
上述所述涂层的制备方法及其步骤如下:The preparation method of the above-mentioned coating and the steps thereof are as follows:
(1)将试样利用线切割加工成10×10×2mm3,分别用600#,800#,2500#砂纸进行打磨,无水乙醇超声清洗,干燥。(1) The sample is processed into 10×10×2mm 3 by wire cutting, polished with 600#, 800#, 2500# sandpaper respectively, ultrasonically cleaned with anhydrous ethanol, and dried.
(2)将上述试样的表面进行酸、碱预处理,先后在50%的HNO3溶液中腐蚀1h,5mol/L的NaOH溶液中90℃下保温7h,去离子水清洗干净,无水乙醇超声15分钟后干燥备用。(3)配置1%的CMC水溶液,向溶液中加入等摩尔量的EDC,在磁力搅拌器下搅拌15min后加入等摩尔量的NHS,反应40min。(2) The surface of the above sample was pretreated with acid and alkali, corroded in 50% HNO 3 solution for 1 hour, and then kept in 5mol/L NaOH solution for 7 hours at 90°C, cleaned with deionized water, and anhydrous ethanol Sonicate for 15 minutes and dry for later use. (3) Prepare a 1% CMC aqueous solution, add an equimolar amount of EDC to the solution, stir for 15 minutes under a magnetic stirrer, then add an equimolar amount of NHS, and react for 40 minutes.
(4)配置5mg/ml的DOPA·HCl的Tris溶液,pH=8.5,使其在避光环境下充分溶解。(4) Prepare a Tris solution of 5mg/ml DOPA·HCl, pH=8.5, and make it fully dissolve in a dark environment.
(5)将步骤(4)的溶液加入步骤(3)的溶液中,在磁力搅拌器下搅拌1h至溶液呈均一溶液。(5) Add the solution of step (4) into the solution of step (3), and stir for 1 hour under a magnetic stirrer until the solution becomes a homogeneous solution.
(6)配置SrCl2·6H2O溶液,使用0.22um的过滤器将其过滤至步骤(5)所得溶液中,充分溶解,使混合溶液中锶离子的浓度为10mg/ml。(6) Prepare the SrCl 2 ·6H 2 O solution, filter it into the solution obtained in step (5) with a 0.22um filter, and fully dissolve it so that the concentration of strontium ions in the mixed solution is 10mg/ml.
(7)将步骤(1)制备好的试样放入步骤(6)所得溶液中浸泡24h,避光保存。将试样取出后静置至钛片上的溶液干燥,用去离子水清洗数次,放入56℃干燥箱中干燥,得到TC4钛合金表面的有机锶涂层。(7) Soak the sample prepared in step (1) in the solution obtained in step (6) for 24 hours, and store in the dark. After the sample was taken out, the solution on the titanium sheet was dried, washed several times with deionized water, and dried in a drying oven at 56°C to obtain an organic strontium coating on the surface of the TC4 titanium alloy.
实施例3:Example 3:
以TC4钛合金为基体,制备有机锶涂层的方法,其特征在于:利用锶离子与羧基螯合的特性制备有机锶化合物,利用多巴胺的邻二苯酚官能团与基底紧密结合的特性将该有机锶化合物固载于钛合金表面。The method for preparing an organic strontium coating with TC4 titanium alloy as a substrate is characterized in that: the organic strontium compound is prepared by using the chelating characteristics of strontium ions and carboxyl groups, and the organic strontium compound is prepared by using the characteristics of the ortho-diphenol functional group of dopamine to be closely combined with the substrate. Compounds are immobilized on the surface of titanium alloy.
所述的以TC4钛合金为基体,是尺寸为10*10*2mm3的TC4钛合金片The TC4 titanium alloy as the substrate is a TC4 titanium alloy sheet with a size of 10*10*2mm 3
制备TC4钛合金表面有机锶涂层的工艺参数为:The process parameters for preparing the organic strontium coating on the surface of TC4 titanium alloy are:
HNO3浓度及腐蚀时间:60%,2hHNO 3 concentration and corrosion time: 60%, 2h
NaOH浓度及保温时间:5mol/L,5hNaOH concentration and holding time: 5mol/L, 5h
DOPA·HCl浓度:5mg/mlDOPA·HCl concentration: 5mg/ml
SrCl2·6H2O浓度:15mg/mlSrCl 2 6H 2 O concentration: 15mg/ml
上述所述涂层的制备方法及其步骤如下:The preparation method of the above-mentioned coating and the steps thereof are as follows:
(1)将试样利用线切割加工成10×10×2mm3,分别用600#,800#,2500#砂纸进行打磨,无水乙醇超声清洗,干燥。(1) The sample is processed into 10×10×2mm 3 by wire cutting, polished with 600#, 800#, 2500# sandpaper respectively, ultrasonically cleaned with anhydrous ethanol, and dried.
(2)将上述试样的表面进行酸、碱预处理,先后在60%的HNO3溶液中腐蚀2h,5mol/L的NaOH溶液中90℃下保温5h,去离子水清洗干净,无水乙醇超声15分钟后干燥备用。(2) The surface of the above sample was pretreated with acid and alkali, corroded in 60% HNO 3 solution for 2 hours, and kept in 5mol/L NaOH solution at 90°C for 5 hours, cleaned with deionized water, anhydrous ethanol Sonicate for 15 minutes and dry for later use.
(3)配置1%的CMC水溶液,向溶液中加入等摩尔量的EDC,在磁力搅拌器下搅拌15min后加入等摩尔量的NHS,反应40min。(3) Prepare a 1% CMC aqueous solution, add an equimolar amount of EDC to the solution, stir for 15 minutes under a magnetic stirrer, then add an equimolar amount of NHS, and react for 40 minutes.
(4)配置5mg/ml的DOPA·HCl的Tris溶液,使其在避光环境下充分溶解。(4) Prepare a Tris solution of 5mg/ml DOPA·HCl to fully dissolve it in a dark environment.
(5)将步骤(4)的溶液加入步骤(3)的溶液中,在磁力搅拌器下搅拌1h至溶液呈均一溶液。(5) Add the solution of step (4) into the solution of step (3), and stir for 1 hour under a magnetic stirrer until the solution becomes a homogeneous solution.
(6)配置SrCl2·6H2O溶液,使用0.22um的过滤器将其过滤至步骤(5)所得溶液中,充分溶解,使混合溶液中锶离子的浓度为15mg/ml。(6) Prepare SrCl 2 ·6H 2 O solution, filter it into the solution obtained in step (5) with a 0.22um filter, and fully dissolve it so that the concentration of strontium ions in the mixed solution is 15mg/ml.
(7)将步骤(1)制备好的试样放入步骤(6)所得溶液中浸泡24h,避光保存。将试样取出后静置至钛片上的溶液干燥,用去离子水清洗数次,放入56℃干燥箱中干燥,得到TC4钛合金表面的有机锶涂层。(7) Soak the sample prepared in step (1) in the solution obtained in step (6) for 24 hours, and store in the dark. After the sample was taken out, the solution on the titanium sheet was dried, washed several times with deionized water, and dried in a drying oven at 56°C to obtain an organic strontium coating on the surface of the TC4 titanium alloy.
表征方法和效果如下:The characterization methods and effects are as follows:
(1)利用红外光谱(FT-IR)图表征上述有机物,如附图2所示。在特征谱图中可以对应找出C=O(1700cm-1),N-H(1490cm-1)的特征峰,证明聚合物中酰胺键的生成。此外,从螯合锶前后的结果对比中也可以发现,红外谱图变化趋势相似,证明锶的螯合并未改变聚合物的主链结构。为了证明锶离子被螯合到聚合物中并定量分析被螯合的锶元素,对有机锶化合物经微波消解后进行ICP-MS测试。测试结果显示样品中Sr元素含量为:70.099mg/g。(1) Use the infrared spectrum (FT-IR) diagram to characterize the above organic matter, as shown in Figure 2. In the characteristic spectrum, the characteristic peaks of C=O (1700cm -1 ) and NH (1490cm -1 ) can be found correspondingly, which proves the formation of amide bonds in the polymer. In addition, it can also be found from the comparison of the results before and after the chelation of strontium that the change trend of the infrared spectrum is similar, which proves that the chelation of strontium does not change the main chain structure of the polymer. In order to prove that strontium ions are chelated into the polymer and to quantitatively analyze the chelated strontium, organic strontium compounds were subjected to ICP-MS test after microwave digestion. The test results show that the content of Sr element in the sample is: 70.099mg/g.
(2)为提高涂层与基体的结合强度,采用多巴胺与钛合金基体进行结合。TC4钛合金基体表面有机锶涂层构建的工艺流程如附图1所示,利用邻二苯酚官能团与基底紧密结合的特性,将上述制备的DOPA-CMC与钛合金基体结合,最后通过与锶离子螯合在其表面形成有机锶涂层。以扫描电镜(SEM)观察基体负载有机锶涂层前后的表面形貌,如图3a、图4a所示。图3a表示负载有机锶涂层前基体的表面形貌,基体表面呈现多孔状。图4a表示负载有机锶涂层后的表面形貌,通过两幅图的对比可以看出负载涂层前后钛合金表面的形貌有比较明显的区别,后者可以看出有一层类似凝胶状的物质均匀的负载在基体表面。以X射线能谱、X射线光电子能谱等表征钛合金基体表面生成产物的成份和结构,如图3b、图4b及图5所示。从X射线能谱图3b和图4b中可以对比发现,相比于负载有机锶涂层前的基体(图3b)而言,负载有机锶涂层以后基体表面出现了Sr对应的峰,并且Ti元素对应的峰值减弱,说明有机锶涂层将基体覆盖,如图4b所示。此外,对基体表面负载有机锶涂层前后的成份进行了X射线光电子能谱(XPS)表征,相比于负载涂层前的XPS谱图(图5a),从图5b/5c中可以发现,负载涂层后钛合金表面的Ti对应的峰逐渐减弱或消失,螯合锶元素后,在图5c中出现Sr所对应的峰,并且处于结合能为133.919处的3d轨道(图5d所示),由以上结果也可以再次验证有机锶涂层可以以聚合物的形式均匀分布于钛合金基体表面。(2) In order to improve the bonding strength between the coating and the substrate, dopamine is used to combine with the titanium alloy substrate. The process flow for constructing the organic strontium coating on the surface of the TC4 titanium alloy substrate is shown in Figure 1. The DOPA-CMC prepared above is combined with the titanium alloy substrate by using the characteristics of the close combination of the ortho-diphenol functional group and the substrate, and finally through the combination with strontium ions Chelation forms an organic strontium coating on its surface. The surface morphology of the substrate before and after loading the organic strontium coating was observed with a scanning electron microscope (SEM), as shown in Figure 3a and Figure 4a. Figure 3a shows the surface morphology of the substrate before the organic strontium coating is loaded, and the surface of the substrate is porous. Figure 4a shows the surface morphology of the loaded organic strontium coating. Through the comparison of the two figures, it can be seen that there is a significant difference in the surface morphology of the titanium alloy before and after the loading of the coating. In the latter, it can be seen that there is a gel-like layer The substances are evenly loaded on the surface of the substrate. The composition and structure of the products formed on the surface of the titanium alloy substrate were characterized by X-ray energy spectroscopy and X-ray photoelectron spectroscopy, as shown in Figure 3b, Figure 4b and Figure 5. From the comparison of X-ray energy spectra in Figure 3b and Figure 4b, it can be found that compared with the substrate before loading the organic strontium coating (Figure 3b), the surface of the substrate after loading the organic strontium coating has a peak corresponding to Sr, and the Ti The peaks corresponding to the elements weakened, indicating that the organic strontium coating covered the substrate, as shown in Figure 4b. In addition, X-ray photoelectron spectroscopy (XPS) was used to characterize the composition of the substrate before and after the organic strontium coating was loaded. Compared with the XPS spectrum before loading the coating (Figure 5a), it can be found from Figure 5b/5c that After the coating is loaded, the peak corresponding to Ti on the surface of the titanium alloy gradually weakens or disappears. After the strontium element is chelated, the peak corresponding to Sr appears in Figure 5c, and it is in the 3d orbital at the binding energy of 133.919 (shown in Figure 5d) From the above results, it can be verified again that the organic strontium coating can be uniformly distributed on the surface of the titanium alloy substrate in the form of polymer.
(3)在模拟体液中测试复合材料的体外降解性能,以原子吸收光谱监测锶离子的释放行为;通过以上表征,总结有机锶结构与降解特性之间的联系,进一步优化有机物结构。(3) The in vitro degradation performance of the composite material was tested in simulated body fluid, and the release behavior of strontium ions was monitored by atomic absorption spectroscopy; through the above characterization, the relationship between the organic strontium structure and degradation characteristics was summarized, and the organic structure was further optimized.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410155138.9A CN103933607B (en) | 2014-04-17 | 2014-04-17 | The preparation method of the organic strontium coating of TC4 titanium alloy surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410155138.9A CN103933607B (en) | 2014-04-17 | 2014-04-17 | The preparation method of the organic strontium coating of TC4 titanium alloy surface |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103933607A CN103933607A (en) | 2014-07-23 |
CN103933607B true CN103933607B (en) | 2015-08-05 |
Family
ID=51181650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410155138.9A Active CN103933607B (en) | 2014-04-17 | 2014-04-17 | The preparation method of the organic strontium coating of TC4 titanium alloy surface |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103933607B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106693080B (en) * | 2015-11-17 | 2020-04-10 | 深圳兰度生物材料有限公司 | Guided tissue regeneration membrane and preparation method thereof |
CN106011834B (en) * | 2016-06-12 | 2018-12-04 | 天津大学 | The preparation method of the sodium alginate coating of titanium chelated surface strontium |
CN114366853B (en) * | 2022-01-20 | 2023-04-14 | 华东理工大学 | Dental implant coating with high osteoinductive activity and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087085B2 (en) * | 2000-07-26 | 2006-08-08 | Straumann Holding Ag | Surface-modified implants |
CN101829357A (en) * | 2010-03-30 | 2010-09-15 | 浙江大学 | Implant surface biomimetic coating material for promoting sacralization and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9808189D0 (en) * | 1998-04-17 | 1998-06-17 | Royal Free Hosp School Med | Bone implant |
-
2014
- 2014-04-17 CN CN201410155138.9A patent/CN103933607B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7087085B2 (en) * | 2000-07-26 | 2006-08-08 | Straumann Holding Ag | Surface-modified implants |
CN101829357A (en) * | 2010-03-30 | 2010-09-15 | 浙江大学 | Implant surface biomimetic coating material for promoting sacralization and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103933607A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106011834B (en) | The preparation method of the sodium alginate coating of titanium chelated surface strontium | |
Cheong et al. | Electrodeposition of alginic acid and composite films | |
Li et al. | Nanocomposite multifunctional hydrogel for suppressing osteosarcoma recurrence and enhancing bone regeneration | |
CN103933607B (en) | The preparation method of the organic strontium coating of TC4 titanium alloy surface | |
CN103157129B (en) | Polyamino acid/hydroxyapatite composite hydrogel for bone repair and preparation method thereof | |
CN102504311A (en) | Method for polylactic acid high polymer material surface modified hydroxyapatite coating | |
CN111184916B (en) | A kind of method for preparing hydroxyapatite/L-polylactic acid composite bone scaffold | |
CN106963984A (en) | A kind of preparation method of gelatin/carboxy apatite composite coating | |
Pavlović et al. | Anaphoretical/oxidative approach to the in-situ synthesis of adherent hydroxyapatite/titanium oxide composite coatings on titanium | |
CN106011815B (en) | Preparation method for the hybridization compounding coating that magnesium-based biomaterial surface is modified | |
JP5499347B2 (en) | Bone repair material and manufacturing method thereof | |
CN103272269A (en) | Hydroxyapatite/chitosan composite coating and preparation method thereof | |
CN104436301A (en) | Preparation method of phytic acid/hydroxyapatite hybrid coating on magnesium alloy | |
JP2023033082A (en) | Porous biological implant with excellent osseointegration property and method for manufacturing the same | |
CN106512084A (en) | Titanium implant surface bioactive film with implantation mechanical damage resistance and adjustable mechanical property and preparation method and application thereof | |
KR101933701B1 (en) | Biocompatible ceramics coating layer, titanium substrate comprising coating layer and manufacturing method thereof | |
CN101342387A (en) | Activation Method for Rapid Formation of Apatite on Titanium Coating Surface | |
CN107029297A (en) | Inorganic/organic biphasic graphene oxide composite bone repair stent material and its preparation | |
JP6358765B2 (en) | Bone repair material and manufacturing method thereof | |
CN108434523A (en) | A kind of preparation method of strontium doping hydroxyapatite laminated film | |
Arul et al. | A novel and rapid route to synthesize polyvinyl alcohol/calcium phosphate nanocomposite coatings by microwave assisted deposition | |
CN111206244A (en) | Preparation method of magnesium/magnesium alloy surface biological induction calcium-phosphorus coating | |
CN102631705A (en) | Lanthanum-doped hydroxyapatite compound coating and preparation method thereof | |
Xin-bo et al. | Converting ultrasonic induction heating deposited monetite coating to Na-doped HA coating on H2O2-treated C/C composites by a two-step hydrothermal method | |
CN103170011B (en) | In situ-coated biological ceramic artificial magnesium bone and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180402 Address after: No. 26 Xiangjiang street, Tianmu Road, Weihai, Shandong, Shandong Patentee after: SHANDONG WEIGAO ORTHOPEDIC DEVICE COMPANY LIMITED Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92, Tianjin University Patentee before: Tianjin University |
|
TR01 | Transfer of patent right |