JP4282361B2 - 写真測量方法および写真測量プログラム - Google Patents
写真測量方法および写真測量プログラム Download PDFInfo
- Publication number
- JP4282361B2 JP4282361B2 JP2003115588A JP2003115588A JP4282361B2 JP 4282361 B2 JP4282361 B2 JP 4282361B2 JP 2003115588 A JP2003115588 A JP 2003115588A JP 2003115588 A JP2003115588 A JP 2003115588A JP 4282361 B2 JP4282361 B2 JP 4282361B2
- Authority
- JP
- Japan
- Prior art keywords
- angle
- point
- camera
- survey
- points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Image Processing (AREA)
Description
【発明の属する技術分野】
本発明は、カメラにより測量対象物(被写体)を撮影して測量を行う写真測量に関する。特に、カメラの自由な撮影によって得られた異なる方向からの画像データを用いて測量対象物の座標を精度良く算出する写真測量方法に関する。
【0002】
【従来の技術】
従来の写真測量としては、例えばステレオカメラによるものが知られている。この測量方法では、離間して固定した2台のカメラにより同一の測量対象物を撮影し、得られた2つの画像から三角測量の原理を利用して測量対象物上の被測量点(以下、単に測量点という)の3次元座標を算出していた。撮影時のカメラの姿勢や3次元位置は手作業による実測或いは専用のセンサにより検出しており、これを測量点の3次元座標の算出に用いていた。
【0003】
【発明が解決しようとする課題】
しかし、従来の方法によれば、装置が大掛かりになったり、撮影作業が複雑になったりするという問題があった。そこで、本発明においては撮影時のカメラの姿勢や3次元位置を気にすることなく、任意の姿勢・位置の撮影で得られた画像データを使用して、測量点の座標を高精度に算出できる方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的は、測量対象物および該測量対象物の測量計算処理を行う際に用いる参照角が含まれるように、異なる観測点からカメラで撮影して少なくとも2つの異なる画像を得る第1ステップと、
前記各画像間で共通に、前記測量対象物上に測量点および前記観測点でのカメラ姿勢を特定するためのアングル参照点を設定すると共に、前記参照角を規定する参照角規定点を設定して、これら測量点、アングル参照点および参照角規定点について前記各画像における2次元座標を算出する第2ステップと、
前記測量対象物を含む3次元座標系を設定し、第2ステップで算出した前記各画像における前記アングル参照点の2次元座標に基づいて前記各観測点におけるカメラ姿勢を求めると共に前記参照角規定点の2次元座標から参照角を算出した後、算出した参照角が実際の角度と一致するように拘束条件を加えながら、前記観測点でのカメラ姿勢と前記各画像における前記各測量点の2次元座標との関係から三角測量の原理に基づいて前記各測量点の3次元座標を算出する第3ステップとを備える写真測量方法により達成される。
【0005】
本発明によると、撮影時のカメラ姿勢が自由である場合でもアングル参照点を用いることで測量点の3次元座標を算出することができ、さらに参照角を参照することとしたのでより精度を向上させて座標を算出することができる。すなわち、本発明は写真測量のデータ処理において、算出結果の精度を高めるための角を設けることにより測量精度を向上させる。より詳細には、本発明は、写真測量のために複数の観測点で撮影された画像内に共通に写し込まれた既知または実測により角度が既知である角(参照角)を測量計算の処理に加えて計算結果がより正確となるように誘導する。
【0006】
また、前記第3ステップでは、測量計算処理により算出される参照角の角度と実際の角度とが一致するように調整して前記測量点の3次元座標を算出するように構成されていることが望ましい。また、前記参照角は、前記各画像間に共通して写し込まれている角度が既知である物体上に前記参照角規定点を設定して特定されていてもよいし、また、前記第1ステップと第2ステップとの間に実測ステップを設け、前記参照角は前記各画像間に共通して写し込まれている物体上に任意で前記参照角規定点を設定し、該参照角規定点により規定される角の角度を実測して特定されていてもよい。さらに、前記第2ステップでは、前記カメラの光学歪を補正した値に変換するカメラ特性データを用いて、前記2次元座標が算出されることが望ましい。
【0007】
また、本発明には、測量対象物および該測量対象物の測量計算処理を行う際に用いる参照角が含まれるように、異なる観測点からカメラで撮影して少なくとも2つの異なる画像を読取る第1処理と、
前記各画像間で共通に、前記測量対象物上に測量点および前記観測点でのカメラ姿勢を特定するためのアングル参照点を設定すると共に、前記参照角を規定する参照角規定点を設定して、これら測量点、アングル参照点および参照角規定点について前記各画像における2次元座標を算出する第2処理と、
前記測量対象物を含む3次元座標系を設定し、第2処理で算出した前記各画像における前記アングル参照点の2次元座標に基づいて前記各観測点におけるカメラ姿勢を求めると共に前記参照角規定点の2次元座標から参照角を算出し、算出した参照角が実際の角度と一致するように拘束条件を加えながら、前記観測点でのカメラ姿勢と前記各画像における前記各測量点の2次元座標との関係から三角測量の原理に基づいて前記各測量点の3次元座標を算出する第3処理とを、コンピュータに実行させる写真測量プログラムが含まれる。
【0008】
そして、前記第3処理では、測量計算処理により算出される参照角の角度と実際の角度とが一致するように調整して前記測量点の3次元座標を算出するように構成されていることが望ましい。前記第2処理では、前記カメラの光学歪を補正した値に変換するカメラ特性データを用いて、前記2次元座標が算出されることが望ましい。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態を説明する。なお、本発明は、カメラ撮影で得た画像データ内に角度(°)を確認できる参照用の角(かく)を設定しておき、測量計算をして得た値が正確であるかを確認するための基準角として用い、高精度の結果が得られるようにした写真測量方法である。このように用いる角を本明細書では、特に「参照角」と称する。
【0010】
より詳細には、本発明は、異なる観測点から撮影した画像内に共通して写し込まれる参照角を測量計算の処理において利用することにより、測量結果をより正確に誘導できるようにした測量方法である。参照角の角度(°)は、角度が知られている物体の一部を利用して参照角を設定したような場合には既知の値として確認できる。また、測量者が任意に参照角を設定した場合にはこれを実測してその値を確認することになる。
【0011】
参照角は、異なる観測点から撮影された画像内に共通して写し込まれる建物や自然物を利用して測量者が任意に設定したものでよい。例えば、撮影した画像内にビルが共通して写込まれている場合には、そのビルの角部を利用して参照角(この場合の角度は一般に90°)を設定できる。また、画像内に共通して写し込まれた石や木などを利用して測量者が任意に参照角を設定してもよい。この場合には、その参照角を実測してその角度値(°)を知る。このように参照角は異なる観測点で撮影された画像内に共通して写し込まれた建物等を利用し、既知或いは実測によりその角度が確認できる角である。なお、参照角が設定される建物、自然物等は、測量対象物(以下、被写体と呼ぶ)に含まれるか否かは問わず、異なる観測点から撮影された画像内に共通して写し込まれていればよい。以下、順を追って、本発明の一実施形態の測量方法を説明する。
【0012】
図1は、本発明の一実施例に係る写真測量方法を説明するために示した図である。また、図2は、図1に示す写真測量方法においての前記参照角の設定例、及び各観測点から撮影される画像例を示した図である。本写真測量方法では、図1及び図2で示すように、異なる観測点a、bに例えばCCD等の撮像素子を備えた電子スチルカメラ1を設置して観測点ごとに向きの異なる画像を撮影する場合を想定する。被写体3上には、被写体を測量する手掛かりとしてアングル参照点P1〜P5が設定される。このアングル参照点P1〜P5は、異なる観測点a、bに設置したカメラ1の位置関係や姿勢を示すための定数(以下、アングル定数という)を算出するために用いられる。アングル定数については後に詳述する。
【0013】
アングル参照点は、図に示すように、被写体3の構成部分等から少なくとも5点を選択して設定されている。図2の下段に示すように、異なる観測点a、bで撮影された各カメラ画像5a,5bに5点のアングル参照点P1〜P5の全てが、写し込まれるように画像データが作成される。また、図2に示すように、その他の点も同様に左右2つのカメラ画像5a,5bに入るように撮影しておく。このような点には、被写体3上に設定する測量点Pn,寸法参照のための寸法参照点S1およびS2、並びに前述した参照角を得るために設定する2本の線分を得る為の参照角規定点S3〜S6が含まれる。なお、カメラ1の姿勢を算出するため被写体3上に設定されるアングル参照点P1〜P5は少なくとも5点必要である。また、被写体3を測量するための測量点は当然に被写体3上に設定される。アングル参照点は測量計算の処理において測量点として扱うことができる。よって、被写体3上に設定するこれらの点を包括して測量点Pnと呼んだり、アングル参照点Pnと表示して説明を行う場合がある。
【0014】
なお、本例では被写体3の傍に転がっている4個の石ころST1〜ST4を利用して参照角を設定し、これを測量に用いる。本例では、2つの石ころST1とST2とで規定される線分A1と、2つの石ころST3とST4とで規定される線分A2とが成す角度θが参照角となる。すなわち、石ころST1〜ST4の位置が、図2に示すようにそれぞれ参照角規定点S3〜S6となる。
【0015】
上記線分A1、A2は、一方が撮影の遠近方向、他方が観測点a、bと平行な方向など、互いに異なる方向となるように設定することが望ましい。参照角はカメラ基軸を含む面またはそれに近い面上で極端に鈍角、鋭角でない角(例えば90°、45°)を2つ特定し、または設定することが望ましい。この2つの角は、相互にある程度の距離をとった位置において成す角であり、また同一平面上または同一平面上に近い面に存在することが望ましい。なお、上記参照寸法Sおよび参照角度θは、撮影の際に実測して所定データとして記録しておく。ただし、前述したように建物の角部等を利用して参照角度θを設定した場合には、例えばこの角度は90°と既知であるので実測する必要はない。
【0016】
図1を参照して、本実施例の写真測量を順を追って説明する。図1は、本測量方法を説明するため異なる図(A)〜(E)を複合して示した図である。図1(A)は観測点a、bに設定されるカメラ1と被写体3との位置関係を示した平面的概念図である。ここで観測点a、bを結ぶ線をカメラ基軸7と呼ぶ。また、観測点a,bに関するものには添字a,bを付している。また、アングル参照点に関するものには数字1〜5を添字として付している。また、カメラ1の向きを代表する方向をそれぞれカメラ視線9a,9bと呼ぶ。このカメラ視線に関するものには添字0(ゼロ)を付して示している。
【0017】
また、図1(A)の紙面内に存在する角度や長さは()を付けずにαa0等と示し、立体成分すなわち紙面に直交する成分を含む角度や長さである場合には()を付けて(αa1)、(αb1)等と示している。また、図1(A)において、カメラ基軸7に対するカメラ視線9a、9bが成す角度をそれぞれαa0,αb0とする。また、カメラ基軸7とカメラ視線9aまたは9bとを含む面をカメラ視線面という。図1(A)は、その紙面がカメラ視線9aを含むカメラ視線面となっている((B),(C)の投影線13を参照)。
【0018】
カメラ基軸7を軸にして回転させたときのカメラ視線面に対する各アングル参照点P1〜P5の角度を、a点において測定したものを回転角βa1,…,βa5(βanで総称する。図ではβa1のみを示す)として示している。同様に、b点で測定したものを回転角βb1,…βb5(βbnで総称する。図では省略)としている。この図1(A)に関連して図1(B)〜(E)が示されている。
【0019】
図1(B)は、カメラ基軸7に直交する断面に投影した図を示している。この図(B)では、観測点a,bから見たアングル参照点P1方向とカメラ基軸7回りの回転角βa1,βb1が示されている。次に、図1(C)はカメラ視線9aに直交する断面の投影図である。また、図1(D)は、(C)についてカメラの傾きを考慮した様子を説明する図である。また、(D)は後述する仮想撮像面Hfの座標すなわち前記画像上における2次元座標が設定された面となる。また図1(E)はアングル参照点P1の像がカメラのCCDセンサ等の撮像面Hdに映し出される様子を示した図である。
【0020】
本発明は、前述したように参照角を用いて精度良く写真測量を実施する方法であるが理解を容易にするため、始めに参照角を用いないでカメラの姿勢を求める場合について説明する。そして、この後に本発明で特徴的な参照角を用いることにより精度良く写真測量を行う場合を説明する。本写真測量方法では、カメラ姿勢を求めるために前述したアングル定数を用いる。アングル定数として、図1において先に説明した、カメラ基軸7に対するカメラ視線9a、9bの角度αa0,αb0、またカメラ視線9a,9bを軸にしたカメラの傾きでカメラ視線面を基準とした角度σa0(図1(D)参照),σb0、またカメラ視線9aと9bとの方向差のうちカメラ基軸7を軸に上下方向へ回転する回転角βの方向成分の差Δβを用いる。
【0021】
ところで、カメラ1を異なる観測点a、bで自由撮影とした場合、カメラの高さ位置が異なるので、カメラ基軸7(観測点a、bを結ぶ線)は一般に水平ではない。しかし、ここでは、理解を容易にするためカメラ基軸7が水平であると、仮定して以下の説明を行う。カメラ基軸7を軸にして上下方向に回転する角を回転角βで示すとき、水平を基準にしたアングル参照点P1〜P5方向の回転角βは、同じアングル参照点については、観測点a,bのどちらから測定しても同じである。このことを手掛りにアングル定数を求める。
【0022】
前述した通りβan、βbnは、カメラ視線面を基準にした回転角であり、水平を基準にした前記手掛かりをβan、βbnで表すと次のように考えることができる。観測点a、bでは、カメラ視線9aと9bとの間でカメラ基軸7を軸に回転角の差がΔβだけ存在するとする(図1(B)参照)。すると、観測点a,bのそれぞれから見た同じアングル参照点P1についての回転角βa1と回転角βb1との差についてもΔβとなる。同様に、他のアングル参照点Pnについての回転角βanと回転角βbnとの差ΔβnはΔβと等しくなる。そこで、Δβnをアングル定数で表す方程式をアングル参照点を設定した数(本例では5個)に対応した数(5個)の連立方程式を設定し、Δβnがすべて等しいという条件で、この連立方程式を解けばアングル定数を求めることができる。
【0023】
図1を参照して方程式を設定してアングル定数を求める方法を説明する。カメラ1の撮像は、カメラレンズを挟んで被写体3と反対の側のCCDセンサ上に逆転して形成され、一般にその像はレンズ特性により歪曲している。これに対して、図1(A)に示すように、カメラ1の前方(被写体側)に成立して写る撮像Hfa(またはHfb)を仮想し、その光学特性はピンホールカメラのように歪みのないものとする。この仮想撮像面Hfaは、カメラ視線9aを鉛直に横切る面であり、カメラ1からの距離はLである。
【0024】
また、アングル参照点像Pf1は、カメラレンズの中心(ピンホールカメラのホールのように点とみなす)と被写体3上の参照点P1とを結ぶ直線が仮想撮像面Hfと交差する位置に結像するものとする。図1(C)は、Pf1が結像する仮想撮像面Hfを観測点a方向から投影して見た図となり、カメラ視線面すなわち図1(A)の紙面がその投影線13で示されている。ここで参照符号Cfはカメラ視線9aの投影点であり、この点Cfを原点中心(以下、単に中心Cfと呼ぶ)にすれば、P1は2次元の座標位置(Xt,Yt)で表される。なお、Pccはカメラ基軸7の投影点であり、参考のため図示しているが実際の画像上に存在しない。また、このPccの位置は画面の外になることもある。
【0025】
自由撮影の場合、カメラ1がカメラ視線9a或いは9b回りに傾斜していることがある。図1(D)はそのことを考慮して、観測点aにおいて、カメラ視線面の投影線13に対してカメラ1の画面の横軸15が角σa0だけ傾斜していることを示し、そのときのアングル参照点像Pf1の座標位置は、カメラ1の画面の横軸15をX−Y平面のX軸とした場合の座標位置(Xs,Ys)となる。図1(E)は、カメラ1のCCD撮像面Hd上に撮像されたアングル参照点Pd1を示し、Pd1の位置はピクセル単位での座標位置(Xp,Yp)を示している。
【0026】
図1(D)において、中心Cfとアングル参照点像Pf1とを結ぶ線と横軸15との角度およびカメラ視線面の投影線13との角度をそれぞれσsおよびσtとし、CfとPf1とを結ぶ線の長さをd1、図1(B)においてカメラ基軸7から鉛直に仮想撮像面Hf上のアングル参照点像Pf1までの距離をhとすると、図1から以下の関係が成立することが分かる。
【0027】
σs=tan−1(Ys/Xs) (1)
σt=σs−σa0 (2)
d1=√(Ys2+Xs2) (3)
Xt=d1・cosσt (4)
Yt=d1・sinσt (5)
Xt=Xs・cosσa0+Ys・sinσa0 (4)´
Yt=−Xs・sinσa0+Ys・cosσa0 (5)´
Xu=L・sinαa0−Xt・cosαa0 (6)
Yu=Yt (7)
Zu=L・cosαa0+Xt・sinαa0 (8)
h=√(Xu2+Yu2) (9)
βa1=tan−1(Yu/Xu) (10)
なお、上記式(4)、(5)は、上記式(4)’、(5)’に置き換えてもよい。観測点bについても同様の関係式が成立する。その場合は、上式において添字aを添字bに変えればよい(例:σa0→σb0、αa0→αb0)。
【0028】
以上のようにして求められた回転角βanおよびβbnについてアングル参照点ごとの差を求め、この差が等しいとする方程式を立てる。求める未知数は5つであるから、例えば5つの連立方程式を次のように設定できる。
Δβ=βa1−βb1
Δβ=βa2−βb2
Δβ=βa3−βb3
Δβ=βa4−βb4
Δβ=βa5−βb5 (11)
【0029】
上記連立方程式を解くことにより、カメラの姿勢を表すアングル定数αa0、αb0、σa0、σb0、Δβを求めることができる。これらに基づいて三角測量の原理から、各測量点の座標を算出することができる。なお、回転角βanおよびβbnは、その中の1つの回転角を基準とした相対値で見ると、その相対位置は2つの観測点a,b間で等しい。例えば、アングル参照点P1を基準方向とすると、観測点a,bから見た各点nの回転角βn間には次式の関係が成立するので、この性質を利用して以下に示す連立方程式(11)’を設定しても、同様にアングル定数を求めることができる。
βan−βa1=βbn−βb1 (11)’
以上の処理により、アングル定数αa0、αb0、σa0、σb0、Δβが求められる。これらはある程度の精度を持った解であるから、これらに基づいて一応、測量点の座標を求めることができる。
【0030】
しかしながら、本実施例では、より精度良く測量点の座標を求めるために参照角を考慮した方程式を追加して連立させるという新規な方法を採用する。この方法は、後述する式(20)〜(25)により参照角を成す線分2本の末端点(参照角規定点)のモデル座標(相似形の座標)を算出して2線のモデルにおける参照角に相当する角度を求める。そして、実測して角度(°)が確認されている参照角Θとモデルにおける参照角θとの角度(°)が同じであるという条件の方程式を前記(11)の方程式に追加する。前述したように、式(11)の連立方程式はそれだけでも解を持つが、それを強制的に別の条件で拘束させるという意味で、追加する方程式を拘束条件式と呼ぶことにする。すなわち、本実施例で用いられる参照角は一種の基準角とし利用され、測量計算の処理により算出された参照角の角度(°)が実際の角度(°)と一致するようにして算出結果を拘束させることにより測量結果がより正しい値となるように誘導する。追加する拘束条件式については後述する逐次近似解法のところで詳述する。
【0031】
ここで、カメラによる撮影で得た画像データを用いて、本発明による写真測量方法を実施するためのハードウェアを簡単に説明しておく。図3は、実施例の写真測量方法を実施するためのハードウェア構成の一例を示したブロック図である。このような構成を有する装置としてはパーソナルコンピュータ30等の情報処理装置を使用することができる。図3に示すように、システム全体を制御する中央演算処理装置(CPU)21には、インターフェース部23を介してキーボード25、マウス27、ディスプレイ(CRTまたはLCD)29、プリンタ31、ICカード読取り装置33が接続される。例えば、デジタルカメラで撮影された画像はICカード34を介して入力される。画像はディスプレイ29により確認できる。通常のカメラで撮影された写真は、フィルムスキャナ35によってデジタル画像化して入力される。また、CPU21にはハードディスク37が接続され、このハードディスク37には写真測量を実施するためのコンピュータプログラム、後述する特性データ、上記キーボード25、マウス27、ICカード読取り装置33から入力されたデータおよびCPU21による演算処理データ等が格納されるようになっている。
【0032】
さらにここで、本実施例で採用しているカメラ特性データ(以下、単に、特性データと称する)について説明しておく。図1を参照すると、カメラ1がピンホールカメラであれば、アングル参照点P1〜P5、寸法参照点S1,S2または測量点Pnとピンホールとを通る直線上に対応する撮像面上に像点がそれぞれ位置する。しかし、カメラ1は撮影レンズを有するカメラである。そのために、撮影レンズの歪みにより、像点は直線から外れた位置に投影されることもある。また、受像素子CCD上の画素配列の不整列により歪むこともあり得る。なお、参照角規定点S3〜S6についても同様であるが、ここでの図示は省略している。
【0033】
このため、本例では画像上の2次元座標としてレンズ歪みのない仮想撮像面Hfを観測点a(またはb)から被写体側に距離Lだけ離れた位置に設定する(図1(A)、(B)参照)。そして、各参照点をこの仮想撮像面Hfに投影した点をそれぞれ仮想像点Pf1〜Pf5,Sf1,Sf2,Pf(n)と定義し、参照点の受光素子CCD上(または画像上)の像点Pd1〜Pd5,Sd1,Sd2,Pd(n)と仮想像点との対応位置関係を示す特性データを予め用意する(図1(D)参照)。図1(D)では、仮想像点Pf1のみを例示的に示している。
【0034】
そして、この特性データを用いて像点Pd1〜Pd5,Sd1,Sd2,Pd(n)の2次元座標を、仮想撮像面Hfにおける仮想像点Pf1〜Pf5,Sf1,Sf2,Pf(n)の2次元座標に変換する。即ち、仮想像点の2次元座標は、像点の2次元座標について撮影レンズの歪みを補正したものである。そして、これら仮想像点は参照点等とピンホールとを通る直線上に位置するとみなして測量計算に使用する。
【0035】
図4は上記カメラ特性データを作成する処理工程を示したフローチャートである。この図4に基づいて特性データ作成の処理を説明する。ステップS101においては、図5に示すようにカメラ1を用いて方眼紙50(仮想撮像面Hfの座標の元である)が撮影される。カメラ1は方眼紙50の概ね中心にその方眼紙50に対してカメラ視線9が直交するように置かれる。そしてレンズ51をピンホールカメラのピンホールに等価した位置である観測点Cから方眼紙50までの距離Lが測定される。
【0036】
具体的には、方眼紙50が水平に置かれ、その略中央の鉛直上方にカメラ1が方眼紙50に向けた状態で図示しない三脚等により設置される。その際にカメラ1の視野の水平および垂直方向は方眼紙50の水平および垂直方向に概ね一致させる。方眼紙50およびカメラ1の設置後、第1回目の撮影が行われる。続いて、方眼紙50およびカメラ1の相対位置関係が変わらない状態で、更に平面鏡52(図中破線で示す)が方眼紙50とカメラ1との間に設けられる。具体的には平面鏡52の鏡面がカメラ1に対向しかつ方眼紙50と平行になるように置かれる。そして、カメラ視線9が方眼紙50を直交するように、具体的には観測点Cの鏡像がカメラ1のファインダやモニタから視認された状態を確認して、第1回目の撮影と同じ撮影条件で第2回目の撮影が行われる。第1回目の撮影により得られた画像(以下、第1参照画像と称す)と第2回目の撮影により得られた画像(以下、第2参照画像と称す)とは、第2参照画像にカメラ1の鏡像が映し出されていること以外は同一画像である。各画像データは図3のICカード34に収められる。
【0037】
ステップS102〜S104は図3に示したパーソナルコンピュータ30等を用いた処理である。ステップS102では、パーソナルコンピュータ30において写真測量プログラムが起動され、そのプログラムにおいて用意されたメニューから特性データ生成処理が選択され、ステップS101により得られた第1および第2参照画像が図3のICカード読取り装置33等によりパーソナルコンピュータ30に読み込まれ、表示装置29の画面に表示される。図6は画面上に表示された第1参照画面、即ち方眼紙50の画像の一部画像60を示している。
【0038】
ステップS102では、方眼紙50上のK個の格子交差点(以下、格子点という)のそれぞれについて、画面上における位置がマウス27により指定されて、それぞれのピクセル座標が読み取られると共に、マウス27で指定した格子点に対応する方眼紙50の方眼目を座標とみなした相対2次元座標がキーボード25により入力される。図6ではマウス指定された格子点が丸で示される。
【0039】
図5で、任意の格子点をT(k)(添字kは任意の格子点を示す変数であり、1以上格子点数K以下の整数値をとる)と定義し、その相対2次元座標を(XT(k),YT(k))で表す。XT(k)は方眼紙50上の任意の格子点T0を原点とし、そこから格子点T(k)までの水平方向の実測距離であり、YT(k)は原点T0から格子点T(k)はまでの垂直方向の実測距離である。実測は方眼紙の目盛で測ったものでもよい。画面の方眼紙像60に映し出された格子点t(k)は、格子点T(k)を撮像面Hdへ投影した像点t(k)とみなされ、この像点t(k)のピクセル座標は(xt(k),yt(k))で表せる。xt(k)は画面の任意のピクセル、例えば右上隅のピクセルtpを原点とし、そこから像点t(k)までの水平方向ピクセル数であり、yt(k)は原点tpから像点t(k)までの垂直方向のピクセル数である。
【0040】
ステップS103では、第2参照画像を参照して、画面上での観測点Cの鏡像の位置が撮像面Hdの中心像Cdとしてマウス27により指定され、そのピクセル座標(xc,yc)が読み取られる。この中心像Cdは、観測点Cを通るカメラ視線9が平面鏡52の鏡面と直交する点を撮像面Hdに投影した点である。平面鏡52の鏡面と方眼紙50とが平行であることから、中心像Cdはカメラ視線9が方眼紙50と直交する点(以下、中心Cfと記載する。)を撮像面Hdに投影した点となる。なお、ここで中心と呼ぶのはカメラ視線が貫く位置を撮像の中心と考えるのであって、画面の中心という意味ではない。また、第1および第2参照画像において撮影条件が同じであることから、第2参照画像で指定された撮像中心Cd(xc,yc)は第1参照画像の中心像(同符号Cdで示す)とみなせる。
【0041】
方眼紙50における中心Cfの相対2次元座標は、原点T0から中心Cfまでの水平方向距離Xcおよび垂直方向距離Ycで表される。ステップS104では、測定された撮影距離Lがキーボード25により入力される。続く、ステップS105では、全ての格子点T(k)(k=1からK)についてそれぞれ方眼紙50における相対2次元座標(XT(k),YT(k))と撮像面Hdにおける像点t(k)のピクセル座標(xt(k),yt(k))とが組み合わされた格子点T(k)に関する一連の座標データ要素{XT(k),YT(k),xt(k),yt(k)}と、Cfの座標データ要素(Xc,Yc,xc,yc)と、距離Lとが特性データとしてハードディスク37あるいはフレキシブルディスク等の外部記憶媒体に格納される。なお、Xc、Ycについては方眼紙の目盛から読み取り難い場合があるので、ここで入力せずに後述する計算により求めてもよい。
【0042】
特性データを使用することにより、例えば、方眼紙50上で中心Cfから水平方向にxf(n)、垂直方向にyf(n)だけ離れた位置にある点Pf(n)が、撮像面Hdにおいて原点tpから水平方向にxd(n)ピクセル、垂直方向にyd(n)ピクセルだけ離れた像点Pd(n)に投影されると定義付けられている場合、測量撮影による画像において画面に映し出された被写体上の測量点Pnの像が像点Pd(n)に一致するときには、その測量点Pnに対応する仮想像点は点Pf(n)に一致するとみなされる。言い換えれば、観測点Cと仮想像点とが一致する点Pf(n)と測量点Pnとが同一直線上にあるとみなされる。上述の特性データは、像点Pd(n)のピクセル座標(xd(n),yd(n))を、光学歪み等を補正した仮想像点Pf(n)の2次元座標(以下、仮想像点座標と呼ぶ)(xf(n),yf(n))に変換するために使用される。
【0043】
なお、上記特性データはCCDの全ての画素について用意されることが望ましいが、本実施形態では、データ量および算出時間を節約するために、上述したように所定間隔の格子点についてのみ特性データを生成し、その間に位置する像点については補間法により算出するようにしている。本実施例ではレンズの鏡像を別途撮影したが、透明な用紙に格子目を描く等格子以外が透き通った方眼紙を使用することにより、これを鏡の上に置き1回の撮影で方眼とレンズの鏡像を得てもよい。本実施例では特性データによりレンズ歪み、CCDに対するレンズの組立誤差あるいはCCD画素の不整列等に起因する座標値の誤差を補正しており、関数で近似し難い歪みであっても複雑な式で演算することなく簡易に補正できる。また、特性データは方眼紙を撮影して画像面上でその格子点を特定するので一般の利用者でも歪みの様子を観察し興味を持ちながら、高度な技術を要求することなく、特性データを容易に作成できる。なお、像点Pd(n)と仮想像点Pf(n)との対応位置関係はカメラ1の焦点距離や倍率等の撮影条件に応じて変化するため、被写体3の撮影時に設定すべき撮影条件に対応した特性データを用意することが望ましい。
【0044】
上記のように特性データが用意されたら測量作業に入る。図7は測量作業での処理を示したフローチャートである。ステップS201では前述した図2のようにカメラ1を用いて、被写体3を2方向から撮影した画像データ5a,5bを作成し、図3のICカード34に収める。また、寸法参照点S1,S2間の参照寸法を実測しておく。また、前述した参照角θを測量計算処理に用いる点については、後述するがこの時に合わせて実測しておく。既存のビルの窓などを利用して参照角度θを設定した場合には、角度(°)が既知であるので実測する必要はない。
【0045】
続くステップS202〜S208は、パーソナルコンピュータ30を用いての処理である。ステップS202では、パーソナルコンピュータ30において写真測量プログラムが起動され、そのプログラムにおいて用意されたメニューから測量計算処理が選択され、画像データが図3のICカード読取り装置33等によりパーソナルコンピュータ30に読み取られ、表示装置29の画面に表示される。
【0046】
各画像データに共通のアングル参照点P1〜P5、測量点Pn、参照角規定点S3〜S6および寸法参照点S1,S2の画面上のピクセル位置がマウス27で指示され入力される。入力は各観測点a,bの画像それぞれについて行なわれる。例えば、マウス27等を用いてポインタで被測量点像を指示してクリックすることにより、その位置データ(CCD画像面の画素単位ピクセルで表す)がHDD37に記録される。なお、どの点をアングル参照点P1〜P5にするか、どの点を寸法参照点S1,S2または参照角規定点S3〜S6にするかの指示および参照角は予めキーボード25により入力しHDD37に例えば参照ファイルとして記憶しておき、これらを必要とするステップでこのファイルから読み出す。
【0047】
ステップS203では各観測点a,bにおけるアングル参照点P1〜P5、測量点Pn、寸法参照点S1,S2および参照角規定点S3〜S6についてピクセル座標が特性データによって仮想像点座標に2次元座標変換される。ここで特性データによる座標変換について詳述する。例えば、前ステップS202により入力された像点Pd1に一致する像点t(k)、即ち特性データの座標データ要素の中にピクセル座標(xd1,yd1)と同じピクセル座標を有する像点t(k)が存在する場合には、同要素の対応する格子点T(k)の相対2次元座標(XT(k),YT(k))が仮想像点座標Pf1(xf1,yf1)として与えられる。ただし、Pf1は中心Cfを原点にした値である必要があるので実際はXc,Ycが差し引かれる。一方、像点Pd1に一致する像点t(k)が無い場合、例えば図6で示す像点Pd(n)のように格子間に位置する場合には、以下に述べる補間法により算出される。
【0048】
像点Pd(n)(xd(n),yd(n))に最も近い座標データ要素の像点t(k)(xt(k),yt(k))を選択すると、2つの像点Pd(n)、t(k)および対応する仮想像点Pf(n)、T(k)については近傍なので一次線形式が成り立つとみなすことができ、仮想像点座標Pf(n)(xf(n),yf(n))は以下の式(12)および式(13)により求められる。
【0049】
xf(n)=a1(xd(n)−xt(k))+a2(yd(n)−yt(k))+XT(k)−Xc (12)
yf(n)=a3(xd(n)−xt(k))+a4(yd(n)−yt(k))+YT(k)−Yc (13)
なお、xd(n),yd(n),xf(n),yf(n)は、図1においてはそれぞれXp,Yp,Xs,Ysに相当している。
【0050】
上記式(12)における係数a1およびa2は、例えば図6の像点t(k)に対して垂直方向の上側に位置する像点t(k+1)の特性データ要素{XT(k+1),YT(k+1),xt(k+1),yt(k+1)}および水平方向の左側に位置する像点t(k+2)の特性データ要素{XT(k+2),YT(k+2),xt(k+2),yt(k+2)}に基づいて算出される。
【0051】
詳述すると、係数a1およびa2に関して次の連立方程式(14)、(15)が成り立つ。
ΔX1=a1・Δx1+a2・Δy1 (14)
ΔX2=a1・Δx2+a2・Δy2 (15)
ただし、
ΔX1=XT(k+1)−XT(k) ΔY1=YT(k+1)−YT(k)
ΔX2=XT(k+2)−XT(k) ΔY2=YT(k+2)−YT(k)
Δx1=xt(k+1)−xt(k) Δy1=yt(k+1)−yt(k)
Δx2=xt(k+2)−xt(k) Δy2=yt(k+2)−yt(k)
である。
【0052】
従って、係数a1およびa2は、以下の式(16)および式(17)により求められる。また、式(13)における係数a3およびa4も、上記係数a1およびa2と同様にして、以下の式(18)および(19)により求められる。
a1=(ΔX1・Δy2−ΔX2・Δy1)/M (16)
a2=(Δx1・ΔX2−Δx2・ΔX1)/M (17)
a3=(ΔY1・Δy2−ΔY2・Δy1)/M (18)
a4=(Δx1・ΔY2−Δx2・ΔY1)/M (19)
ただし、M=Δx1・Δy2−Δx2・Δy1である。
【0053】
なお、ステップS203において、中心像Cdのピクセル座標(xc,yc)を中心Cfの相対2次元座標(Xc,Yc)に座標交換する場合には、式(12)の右辺から項(−Xc)を除いた式および式(13)の右辺から項(−Yc)を除いた式により算出する。
【0054】
次のステップ204ではアングル定数を求める。アングル参照点P1〜P5のデータを使用して連立方程式(11)を解き、カメラのアングル定数αa0、αb0、σa0、σb0、Δβを求める。この連立方程式の解法の一つとして逐次近似解法がある。この逐次近似解法については、後に具体例を詳述する。以上のようにアングル定数が求まったら得られたアングル定数に基づき三角測量計算をする。
【0055】
次のステップS205では、3次元の三角測量計算に必要なデータの準備をする。すなわち、観測点a,bから見たカメラ基軸7に対する測量点までの角度αan,αbn,観測点a,bに共通の基準方向から見た測量点までの回転角βを求める(後述する図8を参照)。三角測量計算は測量点Pnの他、寸法参照点S1,S2、参照角規定点S3〜S6およびアングル参照点P1〜P5についても行われるが、代表して測量点Pnで説明する。計算に際してはステップS203で示したとおり測量点Pnについてカメラ特性ファイルを用いて撮像面Hdの画素位置(Xp,Yp)を仮想撮像面Hf上の位置(Xs,Ys)に変換しておく。
【0056】
観測点aからみた測量点P1までの角度αa(n)は、図1(A)、(B)から明らかなように、次式(20)で算出することができる。
αa(n)=tan− 1(h/Zu) (20)
ここでh/Zuは、式(8)、(9)から求められる。観測点bから見た測量点Pnまでの角度αb(n)についても同様に求める。
【0057】
回転角βに関しては、式(10)から角βa(n),βb(n)を得られるが、これらはそれぞれカメラ基軸7回りの回転角である。三角測量に必要なのは観測点a,bに共通な基準方向からの回転角であるから、両方のカメラに写し込まれた点を任意に基準にして共通の回転角を求める。例えば、図8に示すように、測量点P1を基準とした回転角β’a(n)=βa(n)−βa1を求め、これを使用する。なお、回転角β’b(n)=βb(n)−βb1も得られるが、β’a(n)=β’b(n)であるから、誤差がなければ片方だけを求めればよい。
【0058】
ステップS206では、ステップS205のデータに基づいて、先ず、モデルを算出する。三角測量のためには観測点a,b間の距離が必要である。しかし、ここでは不明とし、仮にこの距離が1であるとして相似形の3次元座標(モデルと呼ぶ)を求める。図8に示すように、観測点aを原点とした測量点Pnの直交座標(x,y,z)は、三角測量の原理から次の式(21)〜(24)によって求められる。ただし、測量点は図8に示すような関係にある。図8は測量点P1(アングル参照点でもある)とPnとを(A)ではY−Z投影図、(B)ではX−Y投影図で示している。回転角βの基準となる測量点P1が図8(B)の紙面上にあるものとし、カメラ基軸7をX軸方向としている。図8(B)の紙面をX−Y平面、それに直交する軸をZ軸方向、観測点a,b間距離をE,X軸から鉛直に測量点Pnまでの距離をHとする。
【0059】
【数1】
このとき、観測点a,b間の距離Eを仮に1とする。以上をP1〜P5、S1〜S6についても求めてモデルとする。
【0060】
ステップS207において、仮の値とした距離Eを実際の値とした場合と同等になるように修正する。それにはまず、ステップS201で間隔を実測した図2で示した寸法参照点2点(S1,S2)について、求められたモデル即ち相似形の座標値からその間隔gを次の式により求める。なお、式(25)中添字S1,S2は寸法参照点S1,S2のモデルの座標であることを示す。
【数2】
【0061】
次いで、予め実測した参照寸法S(S1,S2の実際の間隔)と間隔gとの比を求める。この比を求めたモデルの各座標値に掛けて数値を算出する。以上のステップにより、観測点aを原点とした、測量点Pnの他参照点等の3次元座標における実際の値を算出する。
【0062】
しかし、算出された座標の原点が観測点aであったり、P1を含む面がX−Y面、X軸がカメラ基軸7に固定されるのでは不便なこともある。必要に応じて、その原点、基準方向を調整する。例えば、測量点の内のある点を原点としたり、XYの基準方向を指定して変更する。そのために、例えば座標基準指示ファイルを予めHDD37に記憶しておく。すなわち、原点とする点、X軸を定める点、Y軸方向を定める点等を参照点等の中から選択してキーボードなどから入力したものを記録したデータファイルであり、希望する原点および基準方向となるように同ファイルを参照して、求められた3次元座標を平行移動または回転させ座標変換を行えるように設定しておくことが望ましい。
【0063】
ステップS208では、以上の測量計算結果が、表示装置29に表示され、またプリンタ31等に出力され利用者に読取られる。また、用途に応じてCAD用等ファイルにして出力し、CAD、CGの骨格データ等として使用することができる。
【0064】
前後するが、ここで前述したステップS204で式(11)からアングル定数αa0、αb0、σa0、σb0、Δβを求めるための逐次近似解法について説明する。式(1)〜式(10)を変形しβan(βbnにも共通)を求めると、
【数3】
となる。なお、以降の計算のため式(26)の右辺の括弧内を
【数4】
とする。
【0065】
上式(26)に観測点を示す添字a,bおよびアングル参照点の個別を示す添字1〜5を適切に添えて式(11)に代入すれば、変数を詳しく示した式になるがここでの表示は省略する。
(11)式についてアングル定数のみで示した式を関数fで表すと、
Δβ=βan−βbn=f(αa0,σa0,αb0,σb0) (28)
となる。
【0066】
連立方程式を解けるよう、関数fを一次近似式にするためαa0,σa0の偏導関数を誘導すると
【数5】
となる。
なお、αb0,σb0の偏導関数についても(29)(30)式の添字a、bを入れかえれば同様に表せる。
【0067】
上記(29)式および(30)式を組み合わせ、(11)式について一次近似式にすると
【数6】
となる。
【0068】
上式(31)中fnはアングル参照点Pnの現在のアングル定数値におけるβan−βbn、各偏導関数式はPnの現在のアングル定数における偏微分係数、Δαa0,Δσa0,Δαb0,Δσb0は現在のアングル定数からの各増分である。また、Rは本近似式で一次を超える成分を省いたことよる誤差を示す。このRは無視する。なお、この前後の文中で「現在の」と表記するのは逐次近似の1回毎の初期値を意味するものとする。
【0069】
各偏微分係数を行列要素Ank、fnを行列要素Bnと表して、上記式(11)の全式に当てはめて整理すると
【数7】
となる。
ただし、nはアングル参照点の数、An5はΔβの符号である−1であり常に一定である。
【0070】
上記(32)式を、求めたいアングル定数の増分Δαa0,Δσa0,Δαb0,Δσb0,Δβを行列の要素xnとした行列xで表すと
Ax=B (33)
ただし、AはAnkを要素とする行列、BはBnを要素とする行列である。
【0071】
式(11)ではアングル参照点を5つとして式を5つ連立させているが、6点以上とした場合はその数だけ連立させ、次の式により(最小二乗法)により5行に変換する。
【数8】
ただし、AバーはAの転置行列、A’,B’は5行に変換した行列である。
【0072】
アングル定数の増分、即ちxの要素を求めるには次のようにクラーメルの公式による。
【数9】
ただし、|A‘|はA’を行列式にしたもの、|A‘B’|は|A‘|のxnに関する列をB’で置き換えた行列式である。
【0073】
以上で得られたxn、即ちアングル定数の増分Δαa0,Δσa0,Δαb0,Δσb0を現在のアングル定数αa0,σa0,αb0,σb0に加算して、次の現在のアングル定数αa0,σa0,αb0,σb0として以上を繰り返す。繰り返しは、Δβの最大偏差が解とみなせる規定値を下回るまで、もしくは特定回数行う。
【0074】
ここで、前述した追加する拘束条件式について詳細を示す。図9は図2に示した参照角θを形成する2つの線分A1,A2に対応するモデルとして線分a1、a2との関係を示した図である。図9(A)において、a1’は2本の線分が離れていた場合、2本の線が成す角度θを正確に示すためこの2本の線が最も接近する位置でa1をa2に平行移動した線である。図9(B)はθを計算するため(A)における線分a2をs3とs5が一致するよう平行移動して線分a2’とした図である。L1〜L3は各線分が作る三角形の各辺の長さを示している。
【0075】
前述した式(1)〜(11)および式(20)〜(24)により測量点等の参照点モデルにおける座標が求められる。同様に参照角を成す線分A1、A2に対応するモデルにおける線分a1、a2の末端S3〜S6も求められる。そのxyz座標をx、y、zに添字S3〜S6を付して示す。図2で示した線分A1、A2に対応するモデルにおける線分a1、a2の成す参照角θは次のように求められる。
【数10】
【0076】
算出したアングル定数が正しければ、図2で示した線分A1,A2により形成される参照角を実測した角度Θとの関係は、
Θ=θ (41)
である。
あるいはアングル定数に誤差Δθがある場合は
Θ=θ+Δθ (42)
となる。
【0077】
上式(42)について誤差を左辺にし(32)式に合わせた変数で近似式にすると
【数11】
となる。なお、Rは近似残差で逐次計算上は無視する。本方程式ではΔβは無関係なので係数は0とする。
【0078】
上式(43)の左辺の各項の係数をA行列の追加行の要素とし(33)式に含めて解く。なお、各項の係数はこの場合偏微分導関数としたが、次のように増分を求めることによってもよい。(43)式の左辺第一項を例に示す。
【0079】
θをf(x)と表すと
【数12】
となる。
この場合、各Δα0、Δσ0は例えばπ/10000程度にすればよい。
【0080】
以上のようにして参照角θとして画像内に設定した部分の角度が、実際の角度Θと同じ角度となるように拘束することで、他の部分の算出値も実際の値に近い値とすることができるので、本実施例によると精度よく写真測量を行うことができるようになる。
【0081】
前述したように式(11)の連立方程式はそれだけでも解を持ちカメラのアングル定数αa0、αb0、σa0、σb0、Δβを求めることもできる。しかし、この式(11)に基づいた単なる測量計算ではカメラアングル定数の内の角σa0およびσb0に同じ誤差があるとその誤差が大きくても正解と区別がつき難い場合がある。本発明は計算結果であるモデル座標上の角度、寸法を実際の角度(参照角θ)で点検、調整(拘束)することで、σa0およびσb0を正しく拘束できるのでモデル座標の計算のみの場合と比較して測量計算の精度を向上させることができる。
【0082】
なお、本実施例では参照角θを1つ設定する場合を説明したが、この参照角θを2つ設定するようにしてもよい。このように2つの参照角を設定するときには、例えば、カメラ基軸を含む面またはそれに近い面上に見出される三角形または四角形に含まれる角2つを特定または設定すればよい。ここでカメラ基軸を含む面またはそれに近い面とは、観測点a,bを水平に配置しほぼ水平方向に向けて撮影した場合に、地面、床面、屋上面などの水平面が該当する。例えば既知の参照角としてビルなどの方形状である建物の角部に着目し、屋上の四隅に含まれる2つの直角を参照角として利用することができる。また、タイル、フロア材など方形状である床材やこれに描かれた方形状の模様等を利用するようにしてもよい。
【0083】
以上本発明の好ましい実施例について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【0084】
【発明の効果】
以上詳述したところから明らかなように、発明によれば、参照角を利用することにより、測量対象物を高精度に測量することができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る写真測量方法を説明するために示した図である。
【図2】図1に示す写真測量方法においての前記参照角の設定例、及び各観測点から撮影される画像例を示した図である。
【図3】実施例の写真測量方法を実施するためのハードウェア構成の一例を示したブロック図である。
【図4】カメラ特性データを作成する処理工程を示したフローチャートである。
【図5】カメラ特性データを作成する様子を説明するために示した図である。
【図6】カメラ特性データを作成する際の画像の一部を示した図である。
【図7】測量作業での処理を示したフローチャートである。
【図8】測量点P1とPnとの関係及び三角測量計算を説明するために示した図であり、(A)はY−Z投影図、(B)はX−Y投影図である。
【図9】図2に示した参照角θを形成する2つの線分A1,A2に対応するモデルとして線分a1、a2との関係を示した図である。
【符号の説明】
1 カメラ
3 測量対象物(被写体)
5a、5b カメラ画像
7 カメラ基軸
9a,9b カメラ視線
a、b 観測点
P1〜P5 アングル参照点
Pn 測量点
S1,S2 寸法参照点
S3〜S6 参照角規定点
θ 参照角
Claims (8)
- 測量対象物および該測量対象物の測量計算処理を行う際に用いる参照角が含まれるように、異なる観測点からカメラで撮影して少なくとも2つの異なる画像を得る第1ステップと、
前記各画像間で共通に、前記測量対象物上に測量点および前記観測点でのカメラ姿勢を特定するためのアングル参照点を設定すると共に、前記参照角を規定する参照角規定点を設定して、これら測量点、アングル参照点および参照角規定点について前記各画像における2次元座標を算出する第2ステップと、
前記測量対象物を含む3次元座標系を設定し、第2ステップで算出した前記各画像における前記アングル参照点の2次元座標に基づいて前記各観測点におけるカメラ姿勢を求めると共に前記参照角規定点の2次元座標から参照角を算出した後、算出した参照角が実際の角度と一致するように拘束条件を加えながら、前記観測点でのカメラ姿勢と前記各画像における前記各測量点の2次元座標との関係から三角測量の原理に基づいて前記各測量点の3次元座標を算出する第3ステップとを備える、ことを特徴とする写真測量方法。 - 前記アングル参照点は、少なくとも5点に亘って設定されるものであって、前記参照角規定点は、前記参照角を得る為の2本の線分を規定する少なくとも3点に亘って設定されるものである請求項1に記載の写真測量方法。
- 前記参照角は、前記各画像間に共通して写し込まれている角度が既知である物体上に前記参照角規定点を設定して特定されている、ことを特徴とする請求項1記載の写真測量方法。
- 前記第1ステップと第2ステップとの間に実測ステップを設け、前記参照角は前記各画像間に共通して写し込まれている物体上に任意で前記参照角規定点を設定し、該参照角規定点により規定される角の角度を実測して特定されている、ことを特徴とする請求項1に記載の写真測量方法。
- 前記第2ステップでは、前記カメラの光学歪を補正した値に変換するカメラ特性データを用いて、前記2次元座標を算出する、ことを特徴とする請求項1から4のいずれかに記載の写真測量方法。
- 測量対象物および該測量対象物の測量計算処理を行う際に用いる参照角が含まれるように、異なる観測点からカメラで撮影した少なくとも2つの異なる画像を読取る第1処理と、
前記各画像間で共通に、前記測量対象物上に測量点および前記観測点でのカメラ姿勢を特定するためのアングル参照点を設定すると共に、前記参照角を規定する参照角規定点を設定して、これら測量点、アングル参照点および参照角規定点について前記各画像における2次元座標を算出する第2処理と、
前記測量対象物を含む3次元座標系を設定し、第2処理で算出した前記各画像における前記アングル参照点の2次元座標に基づいて前記各観測点におけるカメラ姿勢を求めると共に前記参照角規定点の2次元座標から参照角を算出し、算出した参照角が実際の角度と一致するように拘束条件を加えながら、前記観測点でのカメラ姿勢と前記各画像における前記各測量点の2次元座標との関係から三角測量の原理に基づいて前記各測量点の3次元座標を算出する第3処理とを、コンピュータに実行させることを特徴とする写真測量プログラム。 - 前記第2処理は、ポインタを用いて前記各画像に、少なくとも5点の前記アングル参照点を設定すると共に、前記参照角を得る為の2本の線分を規定する少なくとも3点の前記参照角規定点を設定する手段を備えることを特徴とする請求項6に記載の写真測量プログラム。
- 前記第2処理では、前記カメラの光学歪を補正した値に変換するカメラ特性データを用いて、前記2次元座標を算出する、ことを特徴とする請求項6または7に記載の写真測量プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003115588A JP4282361B2 (ja) | 2003-04-21 | 2003-04-21 | 写真測量方法および写真測量プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003115588A JP4282361B2 (ja) | 2003-04-21 | 2003-04-21 | 写真測量方法および写真測量プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004325072A JP2004325072A (ja) | 2004-11-18 |
JP4282361B2 true JP4282361B2 (ja) | 2009-06-17 |
Family
ID=33496097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003115588A Expired - Fee Related JP4282361B2 (ja) | 2003-04-21 | 2003-04-21 | 写真測量方法および写真測量プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4282361B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10665035B1 (en) | 2017-07-11 | 2020-05-26 | B+T Group Holdings, LLC | System and process of using photogrammetry for digital as-built site surveys and asset tracking |
US11151782B1 (en) | 2018-12-18 | 2021-10-19 | B+T Group Holdings, Inc. | System and process of generating digital images of a site having a structure with superimposed intersecting grid lines and annotations |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2019209755B2 (en) | 2018-01-22 | 2024-04-18 | Fnv Ip B.V. | Surveying instrument for and surveying method of surveying reference points |
US11361466B2 (en) * | 2018-11-30 | 2022-06-14 | Casio Computer Co., Ltd. | Position information acquisition device, position information acquisition method, recording medium, and position information acquisition system |
CN110595443A (zh) * | 2019-08-22 | 2019-12-20 | 苏州佳世达光电有限公司 | 一种投影装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0493705A (ja) * | 1990-08-09 | 1992-03-26 | Topcon Corp | 3次元位置測定装置及び測定方法 |
JP3441657B2 (ja) * | 1997-11-10 | 2003-09-02 | ペンタックス株式会社 | 画像点設定装置及びこの画像点設定装置を用いた写真測量方法 |
JP4480212B2 (ja) * | 1999-11-05 | 2010-06-16 | アジア航測株式会社 | 空中写真の位置及び姿勢の計算方法 |
JP3851483B2 (ja) * | 2000-02-21 | 2006-11-29 | ペンタックス株式会社 | 像点対応付け装置、像点対応付け方法、および像点対応付けプログラムを格納した記録媒体 |
JP3530978B2 (ja) * | 2000-12-28 | 2004-05-24 | 鹿島建設株式会社 | 画像計測方法及び画像計測プログラムを記録した記録媒体 |
-
2003
- 2003-04-21 JP JP2003115588A patent/JP4282361B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10665035B1 (en) | 2017-07-11 | 2020-05-26 | B+T Group Holdings, LLC | System and process of using photogrammetry for digital as-built site surveys and asset tracking |
US11151782B1 (en) | 2018-12-18 | 2021-10-19 | B+T Group Holdings, Inc. | System and process of generating digital images of a site having a structure with superimposed intersecting grid lines and annotations |
Also Published As
Publication number | Publication date |
---|---|
JP2004325072A (ja) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7162933B2 (ja) | オブジェクトの内部空間モデルを確立するための方法、装置及びシステム、並びに、コンピュータ装置及びコンピュータ可読記憶媒体 | |
JP4529157B2 (ja) | 3次元測量システム及び電子的記憶媒体 | |
JP4147059B2 (ja) | キャリブレーション用データ測定装置、測定方法及び測定プログラム、並びにコンピュータ読取可能な記録媒体、画像データ処理装置 | |
US7773799B2 (en) | Method for automatic stereo measurement of a point of interest in a scene | |
JP3426459B2 (ja) | 写真測量システムおよび写真測量方法 | |
US20140015924A1 (en) | Rapid 3D Modeling | |
JP2013539147A5 (ja) | ||
JP2009017480A (ja) | カメラキャリブレーション装置およびそのプログラム | |
CN113962853B (zh) | 一种旋转线阵扫描图像位姿自动化精密解算方法 | |
JP4138145B2 (ja) | 画像形成装置 | |
JP2000321059A (ja) | 画像形成システム | |
JP5007885B2 (ja) | 3次元測量システム及び電子的記憶媒体 | |
CN113947638A (zh) | 鱼眼相机影像正射纠正方法 | |
JP4764896B2 (ja) | カメラ校正装置、カメラ校正方法、カメラ校正プログラムおよびそのプログラムを記録した記録媒体 | |
CN114926538B (zh) | 单目激光散斑投影系统的外参数标定方法和装置 | |
JP4149732B2 (ja) | ステレオマッチング方法、3次元計測方法及び3次元計測装置並びにステレオマッチング方法のプログラム及び3次元計測のプログラム | |
JP4282361B2 (ja) | 写真測量方法および写真測量プログラム | |
JP4112077B2 (ja) | 画像計測処理方法並びに装置及び画像計測処理プログラムを記録した記録媒体 | |
Martínez et al. | Non-contact 3D measurement of buildings through close range photogrammetry and a laser distance meter | |
JP2020139742A (ja) | 画像計測システム及び画像計測方法 | |
JP3637416B2 (ja) | 3次元計測方法、3次元計測システム、画像処理装置、及びコンピュータプログラム | |
CN111415295B (zh) | 一种倾斜摄影三维模型的拍摄分辨率正射图生成方法 | |
JP2004325073A (ja) | 写真測量方法および写真測量プログラム | |
KR100457080B1 (ko) | 영상에 의한 암반사면 절리의 기하학적 특성조사방법 | |
JP2003042730A (ja) | 表面形状測定装置、及びその方法、並びに表面状態図化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041022 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060307 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070331 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070413 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090225 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090317 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20180327 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |