[go: up one dir, main page]

JP4277463B2 - Method for manufacturing electrode for phosphoric acid fuel cell - Google Patents

Method for manufacturing electrode for phosphoric acid fuel cell Download PDF

Info

Publication number
JP4277463B2
JP4277463B2 JP2001183557A JP2001183557A JP4277463B2 JP 4277463 B2 JP4277463 B2 JP 4277463B2 JP 2001183557 A JP2001183557 A JP 2001183557A JP 2001183557 A JP2001183557 A JP 2001183557A JP 4277463 B2 JP4277463 B2 JP 4277463B2
Authority
JP
Japan
Prior art keywords
sic
manufacturing
layer
electrode
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001183557A
Other languages
Japanese (ja)
Other versions
JP2002373664A (en
Inventor
業 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2001183557A priority Critical patent/JP4277463B2/en
Publication of JP2002373664A publication Critical patent/JP2002373664A/en
Application granted granted Critical
Publication of JP4277463B2 publication Critical patent/JP4277463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リン酸を電解質として用いて電気化学反応により電気エネルギーを得るリン酸型燃料電池の電極の製造方法に関する。
【0002】
【従来の技術】
燃料電池においては、触媒(固体)、電解質(液体)、反応ガス(気体)の三相界面において電気化学反応が生じるので、三相界面を多く形成することが必要である。このため、電解質層の両面に配される電極は、反応ガスを電解質層へと拡散させる役割も果たすようにカーボン多孔材に触媒層を形成して構成されており、特にガスの通路となる気孔を確保するために、撥水材のポリテトラフルオロエチレン(PTFE)が触媒に添加されている。
【0003】
図7は、従来のリン酸型燃料電池用電極の製造方法の一例を示すフロー図である。また、図8は本製造方法に用いられる製造装置の基本構成を示す模式図である。本製造方法では、まず、アニオン系の界面活性剤 3〜10gを純水1000gに加えて攪拌し、アニオン系界面活性剤を約 0.3〜1 wt%含む分散媒を得る。なお、このとき用いるアニオン系の界面活性剤としては、スルホン酸系、ポリカルボン酸系、リン酸系、アミノ酸系の界面活性剤がよく、特に、アミノ酸系、ポリカルボン酸系の界面活性剤が好適である。次いで、この分散媒にカーボン粒子に白金粒子を担持した触媒 1〜10g( 0.1〜1 wt%)を加え、例えば図8(a)に見られるごとく攪拌槽1中で超音波発振器2を用いて超音波を印加する等の方法により攪拌・ホモジナイザー分散させて分散液(スラリー)を得る。このとき分散液のカーボンの二次粒子径が平均で1μm以下となるようにする。次に、この分散液にPTFEの分散液(例えば、Du Pont 社;30−J)を添加する。このとき、PTFEの添加量は、触媒中のカーボン重量の 60 〜 100%相当量が望ましい。PTFEの添加後、さらに超音波発振器2を用いて超音波を印加する等の措置を講じて攪拌・ホモジナイザー分散させ、触媒とPTFEが良好に分散したスラリー3(図8(a))を得る。この後、スラリー3に強酸を滴下して混合し、pHを3以下にする。アニオン系の界面活性剤は低pH領域では界面活性剤としの能力を急速に失い、触媒およびPTFEの電荷が小さくなるため、触媒とPTFEがそれぞれに分離することなく、凝集、沈降する。なお、強酸としてはリン酸、硫酸、硝酸、塩酸等が用いられるが、特にリン酸および硝酸が好適である。
【0004】
次いで、図8(a)に示したごとく、攪拌槽1のバルブ6を開けて、酸を加えて沈降させたスラリー3を電極の基材となる多孔材のカーボンペーパー4の上に搭載した枠5の内部へと注ぎ、カーボンペーパー4の反対面に配した吸引機7によって吸引、濾過する。なお、濾過電極の表面を平滑にするために、数回に分割して濾過する方法が採られる。この吸引、濾過によって、図8(b)に示したごとく、カーボンペーパー4の上に触媒層8が形成される。続いて、バルブ6を開けて純水9を枠の内部へ注ぎ、吸引機7で吸引して洗浄することにより酸が除去される。このあと、自然乾燥によって水分を除去したのち、窒素雰囲気、320 〜 350℃において焼成し、PTFEを溶融させて撥水性を付与することによって電極の作製が完了する。
【0005】
また、図9は、従来のリン酸型燃料電池用電極の製造方法の他の一例を示すフロー図である。また、図10は、本製造方法に用いられる製造装置の基本構成を示す模式図である。本製造方法の特徴は、図7に示した前述の製造方法と同様に酸を加えて沈降させたスラリーを多孔材のカーボンペーパー上に注ぎ、吸引、濾過したのち、アルカリ溶液による洗浄を行っている点にある。すなわち、この製造方法では、図10(a)のごとく、攪拌槽1のバルブ6を開けて、酸を加えて沈降させたスラリー3を多孔材のカーボンペーパー4の上に配した枠5の内部へと注ぎ、吸引機7によって吸引、濾過することによってカーボンペーパー4の上に触媒層8を形成したのち、図10(b)に示したごとく、アンモニアあるいはエタノールアミン類等の希薄アルカリ溶液12を枠5の内部に注ぎ、吸引機7によって吸引、洗浄して触媒層8中に残留している界面活性剤を除去し、次いで、図10(c)のごとく、純水9を注ぎ、吸引機7によって吸引、洗浄して、残留するアルカリ成分を除去している。洗浄後の乾燥、焼成工程は、図7に示した前述の製造方法と同様である。
【0006】
【発明が解決しようとする課題】
上述のごとき吸引濾過法を用いた製造方法は、撥水材のPTFE粒子と触媒粒子が良好に分散した触媒層が得られ、かつ、製造工数も少なくてすむので、リン酸型燃料電池用電極の製造方法として極めて有効である。
とはいえ、上記の製造方法もリン酸型燃料電池用電極の製造方法としては十分ではなく、製造コストを下げるために更に製造工数の低減が要求されており、吸引濾過して純水洗浄した後の触媒層8の水分除去を加熱乾燥により行う方法、さらには、より緻密で平滑な触媒層を形成するために熱プレス処理を行う方法等が検討されている。
【0007】
しかしながら、上記の製造方法において触媒層8の水分除去に加熱乾燥を採り入れると、凝集した触媒粒子間に存在する水分が除去される際に、その毛管力によって触媒粒子同士の距離が縮まるため、いわゆるマッドクラックが発生しやすくなる。図11は、マッドクラックの発生を模式的に説明する断面図である。図11(a)に示したごとくカーボンペーパー4の上に吸引濾過して触媒層8を形成した後、加熱乾燥を行うと、図11(b)のごとく触媒層8が縮んで割れ、マッドクラックが発生する。このようにマッドクラックが発生すると、表面の凹凸によってクロスリークが発生する可能性が大きくなる。
【0008】
また、上記の製造方法において、より緻密で平滑な触媒層を形成するために熱プレス処理を追加すると、溶融したPTFEが、プレス板あるいは保護層として挿入する金属箔等に癒着し、多孔材より剥離する現象が生じ易くなる。図12は剥離の発生を模式的に説明する断面図である。図12(a)に示したごとくカーボンペーパー4の上に吸引濾過して触媒層8を形成した後、熱プレス処理を行うと、図12(b)のごとく触媒層8の一部8aがプレス板20に癒着し、多孔材より剥離する事態が生じ易くなる。このように剥離を生じると、有効面積が低下し電池特性が損なわれることとなる。
【0009】
すなわち、吸引濾過方式を用いたリン酸型燃料電池用電極の製造方法においては、加熱乾燥工程の組み込みにより工程の短縮化、さらには、熱プレス処理法の導入によるより緻密で平滑な触媒層の形成等が期待されているが、上述のように従来の製造方法では、電池特性を低下させる危険性が高くなり、電極の歩留まりを低下させることとなっていた。
【0010】
本発明は、上記のごとき従来のリン酸型燃料電池用電極の製造方法の問題点を考慮してなされたもので、本発明の目的は、加熱乾燥、さらには熱プレス処理に伴う損傷の発生を抑制して、高品質のリン酸型燃料電池用電極が低コストで短時間に製造可能な製造方法を提供することにある。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、本発明においては、
リン酸型燃料電池用電極を、
(1)触媒粒子と撥水材粒子を分散した第1のスラリーをカーボン多孔材に吸引濾過して触媒層を形成する触媒層形成工程と、 SiC粒子を分散した第2のスラリーを吸引濾過して触媒層上に SiC層を形成する SiC層形成工程と、上面に前記SiC層形成された状態で触媒層を加熱焼成する触媒層加熱焼成工程と、を含むリン酸型燃料電池用電極の製造方法を用いて製造することとする。
また、上記の製造方法において、加熱焼成後の触媒層よりSiC層を除去する SiC層除去工程をさらに設けることとする。
【0012】
(2)さらに、上記(1)の第2のスラリーに分散される SiC粒子を、粒径が 0.3〜3 μmの SiC粒子と、粒径が 7〜15μmの SiC粒子の混合物から構成することとする。
(3)また、上記(1)あるいは(2)の第2のスラリーを形成する SiC粒子の分散溶媒にアルカリ溶液、例えばアンモニア溶液あるいはトリエタノールアミン溶液を用いることとする。
【0013】
【発明の実施の形態】
以下、本発明を実施例を用いて詳しく説明する。
<実施例1>
図1は、本発明の第1の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図である。また、図2は、本製造方法に用いられる製造装置の基本構成を示す模式図である。本実施例のリン酸型燃料電池用電極の製造方法の特徴は、図7に示した従来の電極の製造方法において、吸引濾過によりカーボンペーパー4の上に触媒層8を形成して純水洗浄した後に、 SiC層を形成する工程を組み込み、さらに加熱乾燥したのち SiC層を除去する工程を組み込んだ点にある。
【0014】
すなわち、本製造方法では、従来例と同様に、まず、アニオン系の界面活性剤 3〜10gを純水1000gに加え、攪拌してアニオン系界面活性剤を約 0.3〜1 wt%含む分散媒を作製し、次いで、この分散媒に、カーボン粒子に白金粒子を担持した触媒 1〜10gを加え、図2(a)のごとく攪拌槽1中で超音波発振器2により超音波を印加して攪拌・ホモジナイザー分散させて分散液を得る。次に、この分散液にPTFEの分散液を添加し、超音波を印加して攪拌し、触媒とPTFEが良好に分散したスラリー(第1のスラリー)3を作製する。この後、スラリー3に強酸を滴下、混合してpHを3以下とし、界面活性剤としの能力を除去し、触媒とPTFEを、それぞれに分離することなく、凝集、沈降させる。次いで、このスラリー3を、電極の基材となる多孔材のカーボンペーパー4の上に搭載した枠5の内部へと注ぎ、カーボンペーパー4の反対面に配した吸引機7によって数回に分割して吸引、濾過し、表面の平滑な触媒層8を形成する。続いて、図2(b)のごとく純水9を枠の内部へ注ぎ、吸引機7で吸引して洗浄し、酸を除去する。
【0015】
次いで、図2(c)のごとく SiC粒子を 2〜10wt%分散した純水10を枠5の内部の触媒層8の上へと注ぎ、吸引機7によって吸引、濾過して、 SiC層11を形成する。
この後、窒素雰囲気、240 〜 280℃での加熱乾燥/焼成により水分と界面活性剤を除去したのち、さらに 320〜350 ℃で焼成しPTFEを溶融させて撥水性を持たせる処理を実施する。なお、焼成の際に熱プレスを行ってもよい。
【0016】
その後、 SiC層11を除去することにより電極の作製が完了する。なお、 SiC層11はバインダーを含んでいないため、ブラッシングや純水洗浄によって熱処理後の電極から容易に除去される。
従来の構成の電極においては、吸引、濾過して形成した触媒層8を加熱乾燥/焼成すると触媒粒子同士の距離が縮まり、マッドクラックが発生する可能性が高かったが、本実施例のごとく触媒層8の上に SiC層11を形成した電極においては、 SiCが緻密な層を形成しているため、触媒粒子同士の距離が縮まる際、これに抵抗する働きを果たすこととなるので、クラックの発生が大幅に低減されることとなる。したがって、本構成の電極では、製造工程に加熱乾燥/焼成工程を組み込むことが可能となり、従来に比べて製造時間が短縮され、低コストで電極を作製できることとなる。
【0017】
なお、上記の純水10に分散する SiC粒子として、粒子径が 0.3〜3 μmの SiC粒子を 50 〜 70 %、粒径が 7〜15μmの SiC粒子を 30 〜 50 %の割合で混合して用いれば、吸引濾過が速やかに行われ、さらには、濾過により形成される SiC層が緻密となる。
<実施例2>
図3は、本発明の第2の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図である。また、図4は、本製造方法に用いられる製造装置の基本構成を示す模式図である。本実施例のリン酸型燃料電池用電極の製造方法の特徴は、図9に示した従来の電極の製造方法において、吸引濾過によりカーボンペーパー4の上に触媒層8を形成し、アルカリ溶液洗浄して純水洗浄した後に、 SiC層を形成する工程を組み込み、さらに加熱乾燥工程と熱プレス処理工程ののち、 SiC層を除去する工程を組み込んだ点にある。
【0018】
すなわち、本製造方法では、図9に示した従来の電極の製造方法と同様に、まず、図4(a)に示したごとく、攪拌槽1のバルブ6を開けて、酸を加えて沈降させたスラリー3を多孔材のカーボンペーパー4の上に配した枠5の内部へと注ぎ、吸引機7によって吸引、濾過することによってカーボンペーパー4の上に触媒層8を形成し、そののち、図4(b)に示したごとく、希薄アルカリ溶液12を枠5の内部に注ぎ、吸引機7によって吸引、洗浄して、触媒層8中に残留している界面活性剤を除去し、次いで、図4(c)に示したごとく、純水9を注ぎ、吸引機7によって吸引、洗浄して、残留するアルカリ成分を除去する。
【0019】
次いで図4(d)に示したごとく、 SiC粒子を 2〜10 wt %分散した純水10を枠5の内部の触媒層8の上へと注ぎ、吸引機7によって吸引、濾過して、 SiC層11を形成する。
この後、実施例1と同様に、窒素雰囲気、240 〜 280℃での加熱乾燥/焼成を行って水分と界面活性剤を除去する。続いて、PTFEを溶融させて撥水性を持たせるために熱プレスによって 320〜350 ℃に加熱焼成処理を行う。これらの加熱焼成処理ののち、ブラッシングあるいは純水洗浄によって SiC層を除去することにより電極の作製が完了する。
【0020】
本実施例のごとく製造された電極では、実施例1と同様に、触媒層8の上に SiC層11が形成されているので、加熱乾燥/焼成工程を組み込んでもクラックの発生が少なく、従来に比べて製造時間が短縮され、低コストで電極を作製できることとなる。また、本実施例ではPTFEを溶融させて撥水性を持たせる処理の際に熱プレスを用いているので、緻密で平滑な触媒層が得られ、優れた電池特性が得られる。
【0021】
なお、上記の純水10に分散する SiC粒子として、粒子径が 0.3〜3 μmの SiC粒子を 50 〜 70 %、粒径が 7〜15μmの SiC粒子を 30 〜 50 %の割合で混合して用いれば、実施例1と同様に、吸引濾過が速やかに行われ、かつ、濾過により形成される SiC層が緻密となる。
<実施例3>
図5は、本発明の第3の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図である。また、図6は、本製造方法に用いられる製造装置の基本構成を示す模式図である。本実施例のリン酸型燃料電池用電極の製造方法の特徴は、図7に示した従来の電極の製造方法において、吸引濾過によりカーボンペーパー4の上に触媒層8を形成したのち、アルカリ溶液洗浄と SiC層を形成する工程を組み込み、さらに加熱乾燥工程と熱プレス処理工程ののち、 SiC層を除去する工程を組み込んだ点にある。
【0022】
すなわち、本製造方法においては、まず、アニオン系の界面活性剤 3〜10gを純水1000gに加え、攪拌してアニオン系界面活性剤を約 0.3〜1 wt%含む分散媒を作製し、次いで、この分散媒に、カーボン粒子に白金粒子を担持した触媒 1〜10gを加え、図6(a)のごとく攪拌槽1中で超音波発振器2により超音波を印加して攪拌・ホモジナイザー分散させて分散液を得る。次に、この分散液にPTFEの分散液を添加し、超音波を印加して攪拌し、触媒とPTFEが良好に分散したスラリー(第1のスラリー)3を作製した後、スラリー3に強酸を滴下、混合してpHを3以下として触媒とPTFEを分離することなく凝集、沈降させる。次いで、このスラリー3を、電極の基材となる多孔材のカーボンペーパー4の上に搭載した枠5の内部へと注ぎ、カーボンペーパー4の反対面に配した吸引機7によって数回に分割して吸引、濾過し、表面の平滑な触媒層8を形成する。
【0023】
次いで、図6(b)に示したごとく SiC粒子を 2〜10 wt %分散した希薄アルカリ溶液13を枠5の内部の触媒層8の上へと注ぎ、吸引機7によって吸引、濾過することによって、触媒層8中に残留している界面活性剤を希薄アルカリ溶液13により洗浄除去するとともに、触媒層8の上に SiC層11を形成する。
次いで、図6(c)に示したごとく純水9を枠5の内部へ注ぎ、吸引機7によって吸引、濾過することによって、電極層中に残留しているアルカリ成分を除去する。
【0024】
その後、実施例2と同様に、窒素雰囲気、240 〜 280℃での加熱乾燥/焼成を行って水分と界面活性剤を除去し、続いて、PTFEを溶融させて撥水性を持たせるために熱プレスによって 320〜350 ℃に加熱焼成処理を行う。これらの加熱焼成処理ののち、ブラッシングあるいは純水洗浄によって SiC層を除去することによって、電極の作製が完了する。
【0025】
本実施例のごとく製造された電極では、実施例1あるいは実施例2と同様に、触媒層8の上に SiC層11が形成されているので、加熱乾燥/焼成工程を組み込んでもクラックの発生が少なく、従来に比べて製造時間が短縮され、低コストで電極を作製できることとなる。また、本実施例でもPTFEを溶融させて撥水性を持たせる処理の際に熱プレスを用いているので、緻密で平滑な触媒層が得られ、優れた電池特性が得られる。
【0026】
なお、上記の希薄アルカリ溶液13に分散する SiC粒子として、粒子径が 0.3〜3 μmの SiC粒子を 50 〜 70 %、粒径が 7〜15μmの SiC粒子を 30 〜 50 %の割合で混合して用いれば、吸引濾過が速やかに行われ、かつ、濾過により形成される SiC層が緻密となる。また、 SiC粒子を分散させるアルカリ溶液としては、実施例2のアルカリ溶液洗浄にも用いられるアンモニア溶液あるいはトリエタノールアミン溶液が好適である。
【0027】
【発明の効果】
上述のように、本発明によれば、
触媒粒子と撥水材粒子を分散した第1のスラリーをカーボン多孔材に吸引濾過して触媒層を形成する触媒層形成工程と、 SiC粒子を分散した第2のスラリーを吸引濾過して触媒層上に SiC層を形成する SiC層形成工程と、上面に SiC層を形成した触媒層を加熱焼成する触媒層加熱焼成工程と、加熱焼成後の触媒層より SiC層を除去する SiC層除去工程を含む製造方法を用いてリン酸型燃料電池用電極を製造することとしたので、高品質のリン酸型燃料電池用電極が高い歩留まりで、かつ、短期間に低コストで製造できることとなった。
【図面の簡単な説明】
【図1】本発明の第1の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図
【図2】第1の実施例の製造方法に用いられる製造装置の基本構成を示す模式図
【図3】本発明の第2の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図
【図4】第2の実施例の製造方法に用いられる製造装置の基本構成を示す模式図
【図5】本発明の第3の実施例のリン酸型燃料電池用電極の製造方法を示すフロー図
【図6】第3の実施例の製造方法に用いられる製造装置の基本構成を示す模式図
【図7】従来のリン酸型燃料電池用電極の製造方法の一例を示すフロー図
【図8】図7の製造方法に用いられる製造装置の基本構成を示す模式図
【図9】従来のリン酸型燃料電池用電極の製造方法の他の一例を示すフロー図
【図10】図9の製造方法に用いられる製造装置の基本構成を示す模式図
【図11】従来例での加熱乾燥に伴うマッドクラックの発生を模式的に説明する断面図
【図12】従来例での熱プレス処理に伴う剥離の発生を模式的に説明する断面図
【符号の説明】
1 攪拌槽
2 超音波発振器
3 スラリー
4 カーボンペーパー
5 枠
6 バルブ
7 吸引機
8 触媒層
9 純水
10 純水( SiC粒子分散)
11 SiC層
12 希薄アルカリ溶液
13 希薄アルカリ溶液( SiC粒子分散)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electrode of a phosphoric acid fuel cell that uses phosphoric acid as an electrolyte to obtain electric energy through an electrochemical reaction.
[0002]
[Prior art]
In a fuel cell, an electrochemical reaction occurs at a three-phase interface of a catalyst (solid), an electrolyte (liquid), and a reaction gas (gas), so it is necessary to form a large number of three-phase interfaces. Therefore, the electrodes arranged on both surfaces of the electrolyte layer are formed by forming a catalyst layer on the carbon porous material so as to also diffuse the reaction gas into the electrolyte layer. In order to ensure this, water repellent polytetrafluoroethylene (PTFE) is added to the catalyst.
[0003]
FIG. 7 is a flowchart showing an example of a conventional method for manufacturing a phosphoric acid fuel cell electrode. FIG. 8 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method. In this production method, first, 3 to 10 g of an anionic surfactant is added to 1000 g of pure water and stirred to obtain a dispersion medium containing about 0.3 to 1 wt% of an anionic surfactant. The anionic surfactant used at this time is preferably a sulfonic acid-based, polycarboxylic acid-based, phosphoric acid-based or amino acid-based surfactant, and particularly an amino acid-based or polycarboxylic acid-based surfactant. Is preferred. Next, 1 to 10 g (0.1 to 1 wt%) of a catalyst in which platinum particles are supported on carbon particles is added to the dispersion medium, and the ultrasonic oscillator 2 is used in the stirring tank 1 as shown in FIG. A dispersion (slurry) is obtained by stirring and homogenizer dispersion by a method such as applying ultrasonic waves. At this time, the secondary particle diameter of carbon in the dispersion is set to 1 μm or less on average. Next, a dispersion of PTFE (for example, Du Pont; 30-J) is added to the dispersion. At this time, the amount of PTFE added is desirably 60 to 100% of the weight of carbon in the catalyst. After the addition of PTFE, further measures such as applying ultrasonic waves using the ultrasonic oscillator 2 are taken and the mixture is stirred and homogenized to obtain slurry 3 (FIG. 8 (a)) in which the catalyst and PTFE are well dispersed. Thereafter, a strong acid is dropped into the slurry 3 and mixed to bring the pH to 3 or less. An anionic surfactant rapidly loses its ability as a surfactant in a low pH region, and the charges of the catalyst and PTFE become small. Therefore, the catalyst and PTFE aggregate and settle without being separated from each other. As the strong acid, phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid and the like are used, and phosphoric acid and nitric acid are particularly preferable.
[0004]
Next, as shown in FIG. 8 (a), the valve 6 of the agitation tank 1 is opened, and the slurry 3 that has been precipitated by adding an acid is mounted on the porous carbon paper 4 that serves as the electrode substrate. 5 is poured into the inside of the carbon paper 4 and sucked and filtered by a suction machine 7 disposed on the opposite surface of the carbon paper 4. In addition, in order to smooth the surface of the filtration electrode, a method of filtering by dividing into several times is adopted. By this suction and filtration, the catalyst layer 8 is formed on the carbon paper 4 as shown in FIG. Subsequently, the acid is removed by opening the valve 6 and pouring pure water 9 into the frame, and suctioning and washing with the suction device 7. Thereafter, moisture is removed by natural drying, followed by firing in a nitrogen atmosphere at 320 to 350 ° C., melting PTFE to impart water repellency, thereby completing the production of the electrode.
[0005]
FIG. 9 is a flow chart showing another example of a conventional method for manufacturing a phosphoric acid fuel cell electrode. FIG. 10 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in this manufacturing method. The feature of this manufacturing method is that, as in the above-described manufacturing method shown in FIG. 7, a slurry prepared by adding an acid and poured is poured onto a porous carbon paper, suctioned and filtered, and then washed with an alkaline solution. There is in point. That is, in this manufacturing method, as shown in FIG. 10A, the valve 6 of the agitation tank 1 is opened, and the inside of the frame 5 in which the slurry 3 that has been precipitated by adding acid is disposed on the carbon paper 4 made of porous material. After forming the catalyst layer 8 on the carbon paper 4 by suction and filtration with a suction machine 7, as shown in FIG. 10 (b), a dilute alkaline solution 12 such as ammonia or ethanolamines is added. The inside of the frame 5 is poured and sucked and washed by the suction machine 7 to remove the surfactant remaining in the catalyst layer 8, and then pure water 9 is poured as shown in FIG. The remaining alkali component is removed by suction and washing by the No. 7. The drying and firing steps after washing are the same as the above-described manufacturing method shown in FIG.
[0006]
[Problems to be solved by the invention]
In the manufacturing method using the suction filtration method as described above, a catalyst layer in which the PTFE particles and the catalyst particles of the water repellent material are well dispersed can be obtained, and the number of manufacturing steps can be reduced. It is extremely effective as a manufacturing method.
Nonetheless, the above manufacturing method is also not sufficient as a manufacturing method of an electrode for a phosphoric acid fuel cell, and further reduction in manufacturing man-hours is required in order to reduce the manufacturing cost. A method for removing moisture from the catalyst layer 8 by heating and drying, and a method for performing a heat press treatment to form a denser and smoother catalyst layer have been studied.
[0007]
However, when heat drying is adopted for removing moisture from the catalyst layer 8 in the above production method, when the moisture present between the agglomerated catalyst particles is removed, the distance between the catalyst particles is reduced by the capillary force, so-called. Mud cracks are likely to occur. FIG. 11 is a cross-sectional view for schematically explaining the occurrence of mud cracks. When the catalyst layer 8 is formed by suction filtration on the carbon paper 4 as shown in FIG. 11 (a) and then dried by heating, the catalyst layer 8 shrinks and cracks and mud cracks as shown in FIG. 11 (b). Will occur. When mud cracks occur in this way, the possibility of cross leaks due to surface irregularities increases.
[0008]
In addition, in the above manufacturing method, when a hot press treatment is added to form a denser and smoother catalyst layer, the molten PTFE adheres to a metal foil or the like to be inserted as a press plate or a protective layer. Peeling phenomenon tends to occur. FIG. 12 is a cross-sectional view schematically illustrating the occurrence of peeling. When the catalyst layer 8 is formed on the carbon paper 4 by suction filtration as shown in FIG. 12 (a) and then hot pressing is performed, a part 8a of the catalyst layer 8 is pressed as shown in FIG. 12 (b). It becomes easy for the situation which it adheres to the board 20 and peels from a porous material. When peeling occurs in this manner, the effective area is reduced and the battery characteristics are impaired.
[0009]
That is, in the manufacturing method of the phosphoric acid fuel cell electrode using the suction filtration method, the process can be shortened by incorporating a heat drying process, and further, a denser and smoother catalyst layer can be formed by introducing a hot press treatment method. However, as described above, in the conventional manufacturing method, there is a high risk of lowering the battery characteristics, and the yield of the electrodes is reduced.
[0010]
The present invention has been made in consideration of the problems of the conventional method for manufacturing an electrode for a phosphoric acid fuel cell as described above, and an object of the present invention is to generate damage due to heat drying and further heat press treatment. It is an object of the present invention to provide a manufacturing method capable of manufacturing a high-quality phosphoric acid fuel cell electrode at a low cost in a short time.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
Phosphate-type fuel cell electrode
(1) A catalyst layer forming step of forming a catalyst layer by suction filtration of the first slurry in which the catalyst particles and water repellent material particles are dispersed into a carbon porous material; and suction filtration of the second slurry in which the SiC particles are dispersed. Te and SiC layer forming step of forming a SiC layer on the catalyst layer, the phosphoric acid fuel cell electrode comprising a catalyst layer firing step of firing the catalyst layer in a state that the SiC layer is formed on the upper surface It shall be manufactured using a manufacturing method.
In the manufacturing method described above, a SiC layer removing step for removing the SiC layer from the catalyst layer after heating and firing is further provided.
[0012]
(2) Furthermore, the SiC particles dispersed in the second slurry of (1) are composed of a mixture of SiC particles having a particle size of 0.3 to 3 μm and SiC particles having a particle size of 7 to 15 μm. To do.
(3) In addition, an alkaline solution such as an ammonia solution or a triethanolamine solution is used as a dispersion solvent for the SiC particles forming the second slurry of (1) or (2).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples.
<Example 1>
FIG. 1 is a flowchart showing a method for manufacturing an electrode for a phosphoric acid fuel cell according to a first embodiment of the present invention. FIG. 2 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in this manufacturing method. The feature of the method for manufacturing an electrode for a phosphoric acid fuel cell according to the present embodiment is that the catalyst layer 8 is formed on the carbon paper 4 by suction filtration in the conventional electrode manufacturing method shown in FIG. After that, a process for forming the SiC layer is incorporated, and further, a process for removing the SiC layer after heating and drying is incorporated.
[0014]
That is, in this production method, as in the conventional example, first, 3 to 10 g of an anionic surfactant is added to 1000 g of pure water and stirred to obtain a dispersion medium containing about 0.3 to 1 wt% of an anionic surfactant. Next, 1 to 10 g of a catalyst in which platinum particles are supported on carbon particles is added to the dispersion medium, and an ultrasonic wave is applied by an ultrasonic oscillator 2 in the stirring tank 1 as shown in FIG. Dispersion is obtained by dispersing with a homogenizer. Next, a dispersion of PTFE is added to this dispersion, and an ultrasonic wave is applied and stirred to prepare slurry (first slurry) 3 in which the catalyst and PTFE are well dispersed. Thereafter, a strong acid is dropped and mixed in the slurry 3 to adjust the pH to 3 or less, the ability as a surfactant is removed, and the catalyst and PTFE are aggregated and settled without being separated from each other. Next, this slurry 3 is poured into the inside of a frame 5 mounted on a porous carbon paper 4 which is a base material of an electrode, and is divided into several times by a suction machine 7 arranged on the opposite surface of the carbon paper 4. Then, suction and filtration are performed to form a catalyst layer 8 having a smooth surface. Subsequently, as shown in FIG. 2B, pure water 9 is poured into the frame, and is sucked and washed with a suction machine 7 to remove the acid.
[0015]
Next, as shown in FIG. 2 (c), pure water 10 in which 2 to 10 wt% of SiC particles are dispersed is poured onto the catalyst layer 8 inside the frame 5 and sucked and filtered by the suction device 7 to form the SiC layer 11. Form.
Thereafter, after moisture and surfactant are removed by heat drying / baking at 240 to 280 ° C. in a nitrogen atmosphere, a treatment is further carried out at 320 to 350 ° C. to melt PTFE and impart water repellency. In addition, you may perform a hot press in the case of baking.
[0016]
Thereafter, the electrode layer is completed by removing the SiC layer 11. Since the SiC layer 11 does not contain a binder, it is easily removed from the electrode after heat treatment by brushing or pure water cleaning.
In the electrode having the conventional structure, when the catalyst layer 8 formed by suction and filtration is heated and dried / fired, the distance between the catalyst particles is reduced and mud cracks are likely to occur. In the electrode in which the SiC layer 11 is formed on the layer 8, since the SiC forms a dense layer, it acts to resist this when the distance between the catalyst particles is reduced. Occurrence is greatly reduced. Therefore, in the electrode of this configuration, it is possible to incorporate a heating / drying / firing process in the manufacturing process, and the manufacturing time is shortened compared to the conventional method, and the electrode can be manufactured at a low cost.
[0017]
The SiC particles dispersed in the pure water 10 are mixed by mixing 50 to 70% SiC particles having a particle size of 0.3 to 3 μm and 30 to 50% SiC particles having a particle size of 7 to 15 μm. If used, suction filtration is performed quickly, and the SiC layer formed by filtration becomes dense.
<Example 2>
FIG. 3 is a flowchart showing a method for manufacturing an electrode for a phosphoric acid fuel cell according to a second embodiment of the present invention. FIG. 4 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method. The feature of the method for manufacturing an electrode for a phosphoric acid fuel cell of the present embodiment is that the catalyst layer 8 is formed on the carbon paper 4 by suction filtration in the conventional electrode manufacturing method shown in FIG. After cleaning with pure water, a process for forming a SiC layer is incorporated, and a process for removing the SiC layer is incorporated after a heat drying process and a heat press process.
[0018]
That is, in the present manufacturing method, as in the conventional electrode manufacturing method shown in FIG. 9, first, as shown in FIG. 4 (a), the valve 6 of the stirring tank 1 is opened and acid is added to cause precipitation. The slurry 3 is poured into the inside of a frame 5 disposed on a carbon paper 4 made of a porous material, and a catalyst layer 8 is formed on the carbon paper 4 by suction and filtration with a suction machine 7. As shown in FIG. 4 (b), the diluted alkaline solution 12 is poured into the frame 5, and is sucked and washed by the suction device 7 to remove the surfactant remaining in the catalyst layer 8, and then, FIG. As shown in FIG. 4 (c), pure water 9 is poured and sucked and washed by the suction device 7 to remove the remaining alkaline components.
[0019]
Next, as shown in FIG. 4 (d), pure water 10 in which 2 to 10 wt% of SiC particles are dispersed is poured onto the catalyst layer 8 inside the frame 5, sucked and filtered by the suction machine 7, Layer 11 is formed.
Thereafter, in the same manner as in Example 1, heat drying / firing at 240 to 280 ° C. in a nitrogen atmosphere is performed to remove moisture and surfactant. Subsequently, in order to melt PTFE and impart water repellency, a heat baking treatment is performed at 320 to 350 ° C. by hot pressing. After these heat-firing treatments, the fabrication of the electrode is completed by removing the SiC layer by brushing or pure water cleaning.
[0020]
In the electrode manufactured as in this example, since the SiC layer 11 is formed on the catalyst layer 8 as in Example 1, the generation of cracks is small even if a heat drying / firing process is incorporated. Compared to this, the manufacturing time is shortened, and the electrode can be manufactured at low cost. Further, in this example, since hot pressing is used in the process of melting PTFE to impart water repellency, a dense and smooth catalyst layer can be obtained, and excellent battery characteristics can be obtained.
[0021]
The SiC particles dispersed in the pure water 10 are mixed by mixing 50 to 70% SiC particles having a particle size of 0.3 to 3 μm and 30 to 50% SiC particles having a particle size of 7 to 15 μm. If used, as in Example 1, suction filtration is performed quickly, and the SiC layer formed by filtration becomes dense.
<Example 3>
FIG. 5 is a flowchart showing a method for manufacturing a phosphoric acid fuel cell electrode according to a third embodiment of the present invention. FIG. 6 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method. The feature of the method for manufacturing an electrode for a phosphoric acid fuel cell of this example is that, in the conventional electrode manufacturing method shown in FIG. 7, after forming the catalyst layer 8 on the carbon paper 4 by suction filtration, an alkaline solution Including the steps of cleaning and forming the SiC layer, and the step of removing the SiC layer after the heat-drying process and the hot press process.
[0022]
That is, in this production method, first, 3 to 10 g of an anionic surfactant is added to 1000 g of pure water and stirred to prepare a dispersion medium containing about 0.3 to 1 wt% of an anionic surfactant, To this dispersion medium, 1 to 10 g of a catalyst in which platinum particles are supported on carbon particles is added, and as shown in FIG. 6A, ultrasonic waves are applied by an ultrasonic oscillator 2 in a stirring tank 1 and dispersed by stirring and homogenizer. Obtain a liquid. Next, a dispersion of PTFE is added to the dispersion, and an ultrasonic wave is applied and stirred to prepare a slurry (first slurry) 3 in which the catalyst and PTFE are well dispersed, and then a strong acid is added to the slurry 3. The catalyst is dropped and mixed to adjust the pH to 3 or less, and the catalyst and PTFE are aggregated and settled without being separated. Next, this slurry 3 is poured into the inside of a frame 5 mounted on a porous carbon paper 4 which is a base material of an electrode, and is divided into several times by a suction machine 7 arranged on the opposite surface of the carbon paper 4. Then, suction and filtration are performed to form a catalyst layer 8 having a smooth surface.
[0023]
Next, as shown in FIG. 6 (b), a diluted alkaline solution 13 in which 2 to 10 wt% of SiC particles are dispersed is poured onto the catalyst layer 8 inside the frame 5, and sucked and filtered by the suction machine 7. The surfactant remaining in the catalyst layer 8 is removed by washing with the diluted alkaline solution 13 and the SiC layer 11 is formed on the catalyst layer 8.
Next, as shown in FIG. 6 (c), pure water 9 is poured into the frame 5, and suction and filtration are performed by the suction device 7 to remove the alkali component remaining in the electrode layer.
[0024]
Thereafter, in the same manner as in Example 2, heat drying / baking at 240 to 280 ° C. in a nitrogen atmosphere is performed to remove moisture and surfactant, and then heat is applied to melt PTFE to give water repellency. A baking process is performed at 320 to 350 ° C. by pressing. After these heat-firing treatments, removal of the SiC layer by brushing or pure water cleaning completes the production of the electrode.
[0025]
In the electrode manufactured as in this example, the SiC layer 11 is formed on the catalyst layer 8 in the same manner as in Example 1 or Example 2. Therefore, cracks are not generated even if the heating / drying / firing process is incorporated. Therefore, the manufacturing time is shortened compared to the conventional case, and the electrode can be manufactured at a low cost. Also, in this example, since heat press is used in the process of melting PTFE to impart water repellency, a dense and smooth catalyst layer can be obtained, and excellent battery characteristics can be obtained.
[0026]
As SiC particles dispersed in the diluted alkaline solution 13, 50 to 70% of SiC particles having a particle size of 0.3 to 3 μm and 30 to 50% of SiC particles having a particle size of 7 to 15 μm are mixed. If used, suction filtration is performed quickly, and the SiC layer formed by filtration becomes dense. As the alkaline solution for dispersing the SiC particles, an ammonia solution or a triethanolamine solution that is also used for the alkaline solution cleaning in Example 2 is suitable.
[0027]
【The invention's effect】
As mentioned above, according to the present invention,
A catalyst layer forming step of forming a catalyst layer by suction filtration of the first slurry in which the catalyst particles and the water repellent material particles are dispersed into the carbon porous material, and a catalyst layer by suction filtration of the second slurry in which the SiC particles are dispersed. The SiC layer formation process that forms the SiC layer on top, the catalyst layer heating and firing process that heats and fires the catalyst layer with the SiC layer formed on the top surface, and the SiC layer removal process that removes the SiC layer from the catalyst layer after heat and firing Since the phosphoric acid fuel cell electrode was manufactured using the manufacturing method including the above, it was possible to manufacture a high quality phosphoric acid fuel cell electrode with a high yield and at a low cost in a short time.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a manufacturing method of a phosphoric acid fuel cell electrode according to a first embodiment of the present invention. FIG. 2 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method of the first embodiment. FIG. 3 is a flowchart showing a method for manufacturing a phosphoric acid fuel cell electrode according to a second embodiment of the present invention. FIG. 4 shows a basic configuration of a manufacturing apparatus used in the manufacturing method according to the second embodiment. Schematic diagram [FIG. 5] A flow chart showing a method of manufacturing a phosphoric acid fuel cell electrode according to a third embodiment of the present invention. [FIG. 6] A basic configuration of a manufacturing apparatus used in the manufacturing method of the third embodiment. Fig. 7 is a flow diagram showing an example of a conventional method for manufacturing an electrode for a phosphoric acid fuel cell. Fig. 8 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method of Fig. 7. FIG. 10 is a flowchart showing another example of a conventional method for manufacturing a phosphoric acid fuel cell electrode. Fig. 11 is a schematic diagram showing the basic configuration of a manufacturing apparatus used in the manufacturing process. Fig. 11 is a cross-sectional view schematically explaining the generation of mud cracks accompanying heat drying in a conventional example. Cross-sectional view that schematically explains the occurrence of the phenomenon [Explanation of symbols]
1 Stirring tank 2 Ultrasonic oscillator 3 Slurry 4 Carbon paper 5 Frame 6 Valve 7 Suction machine 8 Catalyst layer 9 Pure water 10 Pure water (SiC particle dispersion)
11 SiC layer 12 Dilute alkaline solution 13 Dilute alkaline solution (SiC particle dispersion)

Claims (5)

触媒粒子と撥水材粒子を分散した第1のスラリーをカーボン多孔材に吸引濾過して触媒層を形成する触媒層形成工程と、 SiC粒子を分散した第2のスラリーを吸引濾過して触媒層上に SiC層を形成する SiC層形成工程と、上面に前記SiC層形成された状態で触媒層を加熱焼成する触媒層加熱焼成工程と、を含むリン酸型燃料電池用電極の製造方法。A catalyst layer forming step of forming a catalyst layer by suction filtration of the first slurry in which the catalyst particles and the water repellent material particles are dispersed into the carbon porous material, and a catalyst layer by suction filtration of the second slurry in which the SiC particles are dispersed. and SiC layer forming step of forming a SiC layer thereon, the manufacturing method of the phosphoric acid fuel cell electrode comprising a catalyst layer firing step of firing the catalyst layer in a state that the SiC layer is formed on the upper surface, a. 加熱焼成後の触媒層より、From the catalyst layer after heating and firing, SiC SiC 層を除去するRemove layer SiC SiC 層除去工程を含む請求項1に記載のリン酸型燃料電池用電極の製造方法。The manufacturing method of the electrode for phosphoric acid fuel cells of Claim 1 including a layer removal process. 前記の SiC層形成工程に用いられる第2のスラリーに分散された SiC粒子が、粒径が 0.3〜3 μmの SiC粒子と、粒径が 7〜15μmの SiC粒子の混合物からなることを特徴とする請求項1または2のいずれかに記載のリン酸型燃料電池用電極の製造方法。The SiC particles dispersed in the second slurry used in the SiC layer forming step are composed of a mixture of SiC particles having a particle size of 0.3 to 3 μm and SiC particles having a particle size of 7 to 15 μm. The manufacturing method of the electrode for phosphoric acid fuel cells in any one of Claim 1 or 2. 前記の SiC層形成工程に用いられる第2のスラリーを形成するSiC粒子の分散溶媒がアルカリ溶液であることを特徴とする請求項1から3のいずれかに記載のリン酸型燃料電池用電極の製造方法。4. The phosphoric acid fuel cell electrode according to claim 1, wherein a dispersion solvent of SiC particles forming the second slurry used in the SiC layer forming step is an alkaline solution. 5. Production method. 前記のアルカリ溶液が、アンモニア溶液あるいはトリエタノールアミン溶液のいずれかであることを特徴とする請求項4に記載のリン酸型燃料電池用電極の製造方法。The method for producing an electrode for a phosphoric acid fuel cell according to claim 4, wherein the alkaline solution is either an ammonia solution or a triethanolamine solution.
JP2001183557A 2001-06-18 2001-06-18 Method for manufacturing electrode for phosphoric acid fuel cell Expired - Fee Related JP4277463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183557A JP4277463B2 (en) 2001-06-18 2001-06-18 Method for manufacturing electrode for phosphoric acid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183557A JP4277463B2 (en) 2001-06-18 2001-06-18 Method for manufacturing electrode for phosphoric acid fuel cell

Publications (2)

Publication Number Publication Date
JP2002373664A JP2002373664A (en) 2002-12-26
JP4277463B2 true JP4277463B2 (en) 2009-06-10

Family

ID=19023494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183557A Expired - Fee Related JP4277463B2 (en) 2001-06-18 2001-06-18 Method for manufacturing electrode for phosphoric acid fuel cell

Country Status (1)

Country Link
JP (1) JP4277463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257715A1 (en) * 2005-05-16 2006-11-16 Matsushita Electric Industrial Co., Ltd. Direct oxidation fuel cell and manufacturing method therefor
JP5230064B2 (en) * 2005-09-30 2013-07-10 大日本印刷株式会社 Electrode catalyst layer, catalyst layer-electrolyte membrane laminate production transfer sheet and catalyst layer-electrolyte membrane laminate
JP5332863B2 (en) * 2009-04-22 2013-11-06 富士電機株式会社 Manufacturing method of gas diffusion electrode
JP2011150978A (en) * 2010-01-25 2011-08-04 Toyota Motor Corp Electrode manufacturing device and electrode manufacturing method

Also Published As

Publication number Publication date
JP2002373664A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
CN105523547B (en) A kind of super flexible high heat conduction graphene film and preparation method thereof
JP5376364B2 (en) Solid electrolyte structure manufacturing method, all solid state battery manufacturing method, solid electrolyte structure and all solid state battery
CN109546087A (en) The manufacturing method of negative electrode tab
CN110797534A (en) Method for preparing expanded graphite by using battery graphite cathode
CN108083270A (en) A kind of reparative regeneration method of graphite cathode waste material
CN111777069B (en) A kind of structurally stable MXene composite material and its preparation method and application
CN106410113A (en) Method for removing pole piece coating and pole piece coating cleaning device
JP4277463B2 (en) Method for manufacturing electrode for phosphoric acid fuel cell
CN111584805A (en) Preparation method of water-based clay mineral/polyvinyl alcohol crosslinked nano coating composite diaphragm
CN115275155B (en) Easily-processed lithium iron phosphate composite material and preparation method thereof
CN116845408A (en) Method for recycling waste lithium cobalt oxide battery cathode materials using water-based deep eutectic solvents
CN114430092B (en) Lithium ion battery diaphragm based on magnesium hydroxide nanotubes and preparation method thereof
CN103272487A (en) Method for preparing nano-porous gold film through treating graphene as template
CN101814598B (en) Novel titanium dioxide cathode material of power lithium ion cell and preparation method thereof
TW202000748A (en) Porous microsphere and method for preparing the same
CN113327774A (en) Preparation method of carbon-based metal selenide composite material
CN106310961A (en) Preparation method of lithium ion sieve acid-resistant blend membrane
CN116805678A (en) A kind of preparation method of sodium ion battery cathode material
WO2023202186A1 (en) Method for coating lithium cobalt oxide positive electrode material by spraying and application thereof
JP2001057216A (en) Method for producing gas diffusion electrode for phosphoric acid fuel cell
CN116199502B (en) Alumina ceramic plate film and preparation method and application thereof
CN116014125B (en) Negative electrode with dual gradient change of particle size and pore, and preparation method and application thereof
CN115534502B (en) Screen printing stencil, method for forming solar cell electrode, and solar cell
JPH0845512A (en) Manufacture of electrode for phosphoric acid type fuel cell
CN109368621A (en) Method for directly preparing porous graphene from graphite

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees