JP2002373664A - Method for producing electrode for phosphoric acid type fuel cell - Google Patents
Method for producing electrode for phosphoric acid type fuel cellInfo
- Publication number
- JP2002373664A JP2002373664A JP2001183557A JP2001183557A JP2002373664A JP 2002373664 A JP2002373664 A JP 2002373664A JP 2001183557 A JP2001183557 A JP 2001183557A JP 2001183557 A JP2001183557 A JP 2001183557A JP 2002373664 A JP2002373664 A JP 2002373664A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- layer
- particles
- catalyst
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
Abstract
(57)【要約】
【課題】高品質のリン酸型燃料電池用電極が短時間に低
コストで製造可能な製造方法を得る。
【解決手段】触媒粒子と撥水材(PTFE)粒子を分散
したスラリーをカーボン多孔材に吸引濾過して触媒層を
形成し、次いで、 SiC粒子を分散した第2のスラリーを
吸引濾過して触媒層の上に SiC層を形成したのち、加熱
乾燥、焼成してPTFEを溶融させ、撥水性を付与した
のち SiC層を除去する。
(57) [Problem] To provide a manufacturing method capable of manufacturing a high quality phosphoric acid fuel cell electrode in a short time and at low cost. A catalyst layer is formed by suction-filtering a slurry in which catalyst particles and water-repellent material (PTFE) particles are dispersed on a porous carbon material, and then suction-filtering a second slurry in which SiC particles are dispersed to form a catalyst. After the SiC layer is formed on the layer, the PTFE is melted by heating, drying and baking to give water repellency, and then the SiC layer is removed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リン酸を電解質と
して用いて電気化学反応により電気エネルギーを得るリ
ン酸型燃料電池の電極の製造方法に関する。The present invention relates to a method for producing an electrode of a phosphoric acid type fuel cell which obtains electric energy by an electrochemical reaction using phosphoric acid as an electrolyte.
【0002】[0002]
【従来の技術】燃料電池においては、触媒(固体)、電
解質(液体)、反応ガス(気体)の三相界面において電
気化学反応が生じるので、三相界面を多く形成すること
が必要である。このため、電解質層の両面に配される電
極は、反応ガスを電解質層へと拡散させる役割も果たす
ようにカーボン多孔材に触媒層を形成して構成されてお
り、特にガスの通路となる気孔を確保するために、撥水
材のポリテトラフルオロエチレン(PTFE)が触媒に
添加されている。2. Description of the Related Art In a fuel cell, since an electrochemical reaction occurs at a three-phase interface between a catalyst (solid), an electrolyte (liquid), and a reaction gas (gas), it is necessary to form many three-phase interfaces. For this reason, the electrodes arranged on both sides of the electrolyte layer are formed by forming a catalyst layer on a porous carbon material so as to also play a role of diffusing a reaction gas into the electrolyte layer, and particularly, pores serving as gas passages. In order to ensure a good water repellency, polytetrafluoroethylene (PTFE) is added to the catalyst.
【0003】図7は、従来のリン酸型燃料電池用電極の
製造方法の一例を示すフロー図である。また、図8は本
製造方法に用いられる製造装置の基本構成を示す模式図
である。本製造方法では、まず、アニオン系の界面活性
剤 3〜10gを純水1000gに加えて攪拌し、アニオン系界
面活性剤を約 0.3〜1 wt%含む分散媒を得る。なお、こ
のとき用いるアニオン系の界面活性剤としては、スルホ
ン酸系、ポリカルボン酸系、リン酸系、アミノ酸系の界
面活性剤がよく、特に、アミノ酸系、ポリカルボン酸系
の界面活性剤が好適である。次いで、この分散媒にカー
ボン粒子に白金粒子を担持した触媒 1〜10g( 0.1〜1
wt%)を加え、例えば図8(a)に見られるごとく攪拌
槽1中で超音波発振器2を用いて超音波を印加する等の
方法により攪拌・ホモジナイザー分散させて分散液(ス
ラリー)を得る。このとき分散液のカーボンの二次粒子
径が平均で1μm以下となるようにする。次に、この分
散液にPTFEの分散液(例えば、Du Pont 社;30−
J)を添加する。このとき、PTFEの添加量は、触媒
中のカーボン重量の 60 〜 100%相当量が望ましい。P
TFEの添加後、さらに超音波発振器2を用いて超音波
を印加する等の措置を講じて攪拌・ホモジナイザー分散
させ、触媒とPTFEが良好に分散したスラリー3(図
8(a))を得る。この後、スラリー3に強酸を滴下し
て混合し、pHを3以下にする。アニオン系の界面活性
剤は低pH領域では界面活性剤としの能力を急速に失
い、触媒およびPTFEの電荷が小さくなるため、触媒
とPTFEがそれぞれに分離することなく、凝集、沈降
する。なお、強酸としてはリン酸、硫酸、硝酸、塩酸等
が用いられるが、特にリン酸および硝酸が好適である。FIG. 7 is a flowchart showing an example of a conventional method for manufacturing an electrode for a phosphoric acid fuel cell. FIG. 8 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the present manufacturing method. In this production method, first, 3 to 10 g of an anionic surfactant is added to 1000 g of pure water and stirred to obtain a dispersion medium containing about 0.3 to 1 wt% of the anionic surfactant. The anionic surfactant used at this time is preferably a sulfonic acid-based, polycarboxylic acid-based, phosphoric acid-based, or amino acid-based surfactant, and particularly, an amino acid-based or polycarboxylic acid-based surfactant is preferred. It is suitable. Next, 1 to 10 g of a catalyst in which platinum particles are supported on carbon particles in this dispersion medium (0.1 to 1 g)
(% by weight), and the mixture is stirred and homogenized by a method such as application of ultrasonic waves using an ultrasonic oscillator 2 in a stirring tank 1 as shown in FIG. 8A to obtain a dispersion (slurry). . At this time, the secondary particle diameter of carbon in the dispersion is adjusted to be 1 μm or less on average. Next, a PTFE dispersion (for example, Du Pont; 30-
J) is added. At this time, the addition amount of PTFE is desirably 60 to 100% of the weight of carbon in the catalyst. P
After the addition of TFE, measures such as application of ultrasonic waves using the ultrasonic oscillator 2 are taken and the mixture is stirred and homogenized to obtain a slurry 3 (FIG. 8A) in which the catalyst and PTFE are well dispersed. Thereafter, a strong acid is dropped into the slurry 3 and mixed to adjust the pH to 3 or less. In the low pH region, the anionic surfactant rapidly loses its ability as a surfactant and the charge of the catalyst and PTFE is reduced, so that the catalyst and PTFE aggregate and sediment without being separated from each other. As the strong acid, phosphoric acid, sulfuric acid, nitric acid, hydrochloric acid and the like are used, and phosphoric acid and nitric acid are particularly preferable.
【0004】次いで、図8(a)に示したごとく、攪拌
槽1のバルブ6を開けて、酸を加えて沈降させたスラリ
ー3を電極の基材となる多孔材のカーボンペーパー4の
上に搭載した枠5の内部へと注ぎ、カーボンペーパー4
の反対面に配した吸引機7によって吸引、濾過する。な
お、濾過電極の表面を平滑にするために、数回に分割し
て濾過する方法が採られる。この吸引、濾過によって、
図8(b)に示したごとく、カーボンペーパー4の上に
触媒層8が形成される。続いて、バルブ6を開けて純水
9を枠の内部へ注ぎ、吸引機7で吸引して洗浄すること
により酸が除去される。このあと、自然乾燥によって水
分を除去したのち、窒素雰囲気、320 〜350℃において
焼成し、PTFEを溶融させて撥水性を付与することに
よって電極の作製が完了する。[0004] Next, as shown in FIG. 8 (a), the valve 6 of the stirring tank 1 is opened, and the slurry 3 precipitated by adding an acid is placed on a porous carbon paper 4 serving as a base material of an electrode. Pour into the inside of the mounted frame 5 and use carbon paper 4
Is suctioned and filtered by a suction machine 7 arranged on the opposite side of the above. In addition, in order to smooth the surface of the filtration electrode, a method of performing filtration by dividing into several times is adopted. By this suction and filtration,
As shown in FIG. 8B, the catalyst layer 8 is formed on the carbon paper 4. Subsequently, the valve 6 is opened, the pure water 9 is poured into the inside of the frame, and the acid is removed by sucking and washing with the suction machine 7. Then, after removing water by natural drying, baking is performed at 320 to 350 ° C. in a nitrogen atmosphere to melt PTFE and impart water repellency, thereby completing the production of the electrode.
【0005】また、図9は、従来のリン酸型燃料電池用
電極の製造方法の他の一例を示すフロー図である。ま
た、図10は、本製造方法に用いられる製造装置の基本
構成を示す模式図である。本製造方法の特徴は、図7に
示した前述の製造方法と同様に酸を加えて沈降させたス
ラリーを多孔材のカーボンペーパー上に注ぎ、吸引、濾
過したのち、アルカリ溶液による洗浄を行っている点に
ある。すなわち、この製造方法では、図10(a)のご
とく、攪拌槽1のバルブ6を開けて、酸を加えて沈降さ
せたスラリー3を多孔材のカーボンペーパー4の上に配
した枠5の内部へと注ぎ、吸引機7によって吸引、濾過
することによってカーボンペーパー4の上に触媒層8を
形成したのち、図10(b)に示したごとく、アンモニ
アあるいはエタノールアミン類等の希薄アルカリ溶液1
2を枠5の内部に注ぎ、吸引機7によって吸引、洗浄し
て触媒層8中に残留している界面活性剤を除去し、次い
で、図10(c)のごとく、純水9を注ぎ、吸引機7に
よって吸引、洗浄して、残留するアルカリ成分を除去し
ている。洗浄後の乾燥、焼成工程は、図7に示した前述
の製造方法と同様である。FIG. 9 is a flow chart showing another example of a conventional method for manufacturing an electrode for a phosphoric acid fuel cell. FIG. 10 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the present manufacturing method. The feature of the present manufacturing method is that, similarly to the above-described manufacturing method shown in FIG. 7, an acid is added to the slurry and the slurry is poured onto porous carbon paper, suctioned, filtered, and then washed with an alkaline solution. There is in the point. That is, in this manufacturing method, as shown in FIG. 10A, the valve 6 of the stirring tank 1 is opened, and the slurry 3 in which acid is added and settled is placed inside the frame 5 in which the slurry 3 is placed on the porous carbon paper 4. To form a catalyst layer 8 on the carbon paper 4 by suction and filtration with a suction machine 7, and then, as shown in FIG. 10B, a diluted alkaline solution 1 such as ammonia or ethanolamine.
2 was poured into the inside of the frame 5, and the surfactant remaining in the catalyst layer 8 was removed by suction and washing by the suction device 7, and then, as shown in FIG. The remaining alkali components are removed by suction and washing by the suction device 7. The drying and firing steps after washing are the same as those in the above-described manufacturing method shown in FIG.
【0006】[0006]
【発明が解決しようとする課題】上述のごとき吸引濾過
法を用いた製造方法は、撥水材のPTFE粒子と触媒粒
子が良好に分散した触媒層が得られ、かつ、製造工数も
少なくてすむので、リン酸型燃料電池用電極の製造方法
として極めて有効である。とはいえ、上記の製造方法も
リン酸型燃料電池用電極の製造方法としては十分ではな
く、製造コストを下げるために更に製造工数の低減が要
求されており、吸引濾過して純水洗浄した後の触媒層8
の水分除去を加熱乾燥により行う方法、さらには、より
緻密で平滑な触媒層を形成するために熱プレス処理を行
う方法等が検討されている。According to the production method using the suction filtration method as described above, a catalyst layer in which PTFE particles of a water-repellent material and catalyst particles are well dispersed can be obtained, and the number of production steps can be reduced. Therefore, it is extremely effective as a method for producing an electrode for a phosphoric acid type fuel cell. Nevertheless, the above-mentioned production method is not sufficient as a method for producing an electrode for a phosphoric acid fuel cell, and further reduction in the number of production steps is required to reduce the production cost. Later catalyst layer 8
A method of removing water by heating and drying, and a method of performing a hot press treatment to form a denser and smoother catalyst layer are being studied.
【0007】しかしながら、上記の製造方法において触
媒層8の水分除去に加熱乾燥を採り入れると、凝集した
触媒粒子間に存在する水分が除去される際に、その毛管
力によって触媒粒子同士の距離が縮まるため、いわゆる
マッドクラックが発生しやすくなる。図11は、マッド
クラックの発生を模式的に説明する断面図である。図1
1(a)に示したごとくカーボンペーパー4の上に吸引
濾過して触媒層8を形成した後、加熱乾燥を行うと、図
11(b)のごとく触媒層8が縮んで割れ、マッドクラ
ックが発生する。このようにマッドクラックが発生する
と、表面の凹凸によってクロスリークが発生する可能性
が大きくなる。However, in the above-described manufacturing method, when heating and drying are employed to remove water from the catalyst layer 8, when moisture present between the aggregated catalyst particles is removed, the distance between the catalyst particles is reduced by the capillary force. Therefore, a so-called mud crack easily occurs. FIG. 11 is a cross-sectional view schematically illustrating generation of a mud crack. FIG.
After forming the catalyst layer 8 by suction filtration on the carbon paper 4 as shown in FIG. 1A, the catalyst layer 8 shrinks and breaks as shown in FIG. appear. When mud cracks occur in this manner, the possibility of cross leakage occurring due to surface irregularities increases.
【0008】また、上記の製造方法において、より緻密
で平滑な触媒層を形成するために熱プレス処理を追加す
ると、溶融したPTFEが、プレス板あるいは保護層と
して挿入する金属箔等に癒着し、多孔材より剥離する現
象が生じ易くなる。図12は剥離の発生を模式的に説明
する断面図である。図12(a)に示したごとくカーボ
ンペーパー4の上に吸引濾過して触媒層8を形成した
後、熱プレス処理を行うと、図12(b)のごとく触媒
層8の一部8aがプレス板20に癒着し、多孔材より剥
離する事態が生じ易くなる。このように剥離を生じる
と、有効面積が低下し電池特性が損なわれることとな
る。In the above-mentioned production method, if a hot press treatment is added to form a denser and smoother catalyst layer, the molten PTFE adheres to a press plate or a metal foil inserted as a protective layer, The phenomenon of peeling from the porous material is likely to occur. FIG. 12 is a cross-sectional view schematically illustrating the occurrence of peeling. After forming the catalyst layer 8 by suction filtration on the carbon paper 4 as shown in FIG. 12A, a hot press treatment is performed, and a part 8a of the catalyst layer 8 is pressed as shown in FIG. It easily adheres to the plate 20 and peels off from the porous material. When such peeling occurs, the effective area is reduced and battery characteristics are impaired.
【0009】すなわち、吸引濾過方式を用いたリン酸型
燃料電池用電極の製造方法においては、加熱乾燥工程の
組み込みにより工程の短縮化、さらには、熱プレス処理
法の導入によるより緻密で平滑な触媒層の形成等が期待
されているが、上述のように従来の製造方法では、電池
特性を低下させる危険性が高くなり、電極の歩留まりを
低下させることとなっていた。That is, in the method for producing an electrode for a phosphoric acid type fuel cell using a suction filtration method, the steps are shortened by incorporating a heating and drying step, and more dense and smooth by introducing a hot press treatment method. Although formation of a catalyst layer and the like are expected, in the conventional manufacturing method as described above, the risk of lowering battery characteristics is increased, and the yield of electrodes is reduced.
【0010】本発明は、上記のごとき従来のリン酸型燃
料電池用電極の製造方法の問題点を考慮してなされたも
ので、本発明の目的は、加熱乾燥、さらには熱プレス処
理に伴う損傷の発生を抑制して、高品質のリン酸型燃料
電池用電極が低コストで短時間に製造可能な製造方法を
提供することにある。The present invention has been made in consideration of the problems of the conventional method for manufacturing an electrode for a phosphoric acid type fuel cell as described above, and an object of the present invention is to carry out heat drying and heat pressing. An object of the present invention is to provide a manufacturing method capable of manufacturing a high-quality phosphoric acid fuel cell electrode at a low cost in a short time by suppressing the occurrence of damage.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、リン酸型燃料電池用電極を、 (1)触媒粒子と撥水材粒子を分散した第1のスラリー
をカーボン多孔材に吸引濾過して触媒層を形成する触媒
層形成工程と、 SiC粒子を分散した第2のスラリーを吸
引濾過して触媒層上に SiC層を形成する SiC層形成工程
と、上面に SiC層を形成した触媒層を加熱焼成する触媒
層加熱焼成工程と、加熱焼成後の触媒層より SiC層を除
去する SiC層除去工程を含むリン酸型燃料電池用電極の
製造方法を用いて製造することとする。In order to achieve the above object, in the present invention, an electrode for a phosphoric acid type fuel cell is provided by: (1) a first slurry in which catalyst particles and water repellent particles are dispersed; A catalyst layer forming step of forming a catalyst layer by suction filtration on a porous carbon material, a SiC layer forming step of forming a SiC layer on the catalyst layer by suction filtering a second slurry in which SiC particles are dispersed, and Manufactured using a method for manufacturing a phosphoric acid fuel cell electrode that includes a catalyst layer heating and firing step in which the catalyst layer on which the SiC layer is formed is heated and fired, and a SiC layer removing step in which the SiC layer is removed from the heated and fired catalyst layer I decided to.
【0012】(2)さらに、上記(1)の第2のスラリ
ーに分散される SiC粒子を、粒径が0.3〜3 μmの SiC
粒子と、粒径が 7〜15μmの SiC粒子の混合物から構成
することとする。 (3)また、上記(1)あるいは(2)の第2のスラリ
ーを形成する SiC粒子の分散溶媒にアルカリ溶液、例え
ばアンモニア溶液あるいはトリエタノールアミン溶液を
用いることとする。(2) Further, the SiC particles dispersed in the second slurry of the above (1) are mixed with SiC particles having a particle size of 0.3 to 3 μm.
It is composed of a mixture of particles and SiC particles having a particle size of 7 to 15 μm. (3) Further, an alkali solution, for example, an ammonia solution or a triethanolamine solution is used as a dispersion solvent of the SiC particles forming the second slurry of the above (1) or (2).
【0013】[0013]
【発明の実施の形態】以下、本発明を実施例を用いて詳
しく説明する。 <実施例1>図1は、本発明の第1の実施例のリン酸型
燃料電池用電極の製造方法を示すフロー図である。ま
た、図2は、本製造方法に用いられる製造装置の基本構
成を示す模式図である。本実施例のリン酸型燃料電池用
電極の製造方法の特徴は、図7に示した従来の電極の製
造方法において、吸引濾過によりカーボンペーパー4の
上に触媒層8を形成して純水洗浄した後に、 SiC層を形
成する工程を組み込み、さらに加熱乾燥したのち SiC層
を除去する工程を組み込んだ点にある。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments. <Embodiment 1> FIG. 1 is a flow chart showing a method for manufacturing an electrode for a phosphoric acid fuel cell according to a first embodiment of the present invention. FIG. 2 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the present manufacturing method. The feature of the method for manufacturing the electrode for the phosphoric acid type fuel cell of this embodiment is that the catalyst layer 8 is formed on the carbon paper 4 by suction filtration and the pure water cleaning is performed in the conventional electrode manufacturing method shown in FIG. After that, a step of forming a SiC layer is incorporated, and further, a step of removing the SiC layer after heating and drying is incorporated.
【0014】すなわち、本製造方法では、従来例と同様
に、まず、アニオン系の界面活性剤3〜10gを純水1000
gに加え、攪拌してアニオン系界面活性剤を約 0.3〜1
wt%含む分散媒を作製し、次いで、この分散媒に、カー
ボン粒子に白金粒子を担持した触媒 1〜10gを加え、図
2(a)のごとく攪拌槽1中で超音波発振器2により超
音波を印加して攪拌・ホモジナイザー分散させて分散液
を得る。次に、この分散液にPTFEの分散液を添加
し、超音波を印加して攪拌し、触媒とPTFEが良好に
分散したスラリー(第1のスラリー)3を作製する。こ
の後、スラリー3に強酸を滴下、混合してpHを3以下
とし、界面活性剤としの能力を除去し、触媒とPTFE
を、それぞれに分離することなく、凝集、沈降させる。
次いで、このスラリー3を、電極の基材となる多孔材の
カーボンペーパー4の上に搭載した枠5の内部へと注
ぎ、カーボンペーパー4の反対面に配した吸引機7によ
って数回に分割して吸引、濾過し、表面の平滑な触媒層
8を形成する。続いて、図2(b)のごとく純水9を枠
の内部へ注ぎ、吸引機7で吸引して洗浄し、酸を除去す
る。That is, in this production method, 3 to 10 g of an anionic surfactant is first added to 1000 ml of pure water as in the conventional example.
g and stirring to add about 0.3 to 1 anionic surfactant.
A dispersion medium containing wt.% is prepared, and then 1 to 10 g of a catalyst in which platinum particles are supported on carbon particles is added to the dispersion medium, and an ultrasonic wave is generated by an ultrasonic oscillator 2 in a stirring tank 1 as shown in FIG. Is applied and the mixture is stirred and homogenized to obtain a dispersion. Next, a PTFE dispersion is added to this dispersion, and ultrasonic waves are applied and stirred to produce a slurry (first slurry) 3 in which the catalyst and PTFE are well dispersed. Thereafter, a strong acid is dropped and mixed into the slurry 3 to adjust the pH to 3 or less, the ability as a surfactant is removed, and the catalyst and PTFE are removed.
Are aggregated and settled without being separated from each other.
Next, the slurry 3 is poured into a frame 5 mounted on a porous carbon paper 4 serving as a base material of an electrode, and divided into several times by a suction device 7 arranged on the opposite surface of the carbon paper 4. To form a catalyst layer 8 having a smooth surface. Subsequently, as shown in FIG. 2B, pure water 9 is poured into the inside of the frame, suctioned by the suction device 7 and washed to remove the acid.
【0015】次いで、図2(c)のごとく SiC粒子を 2
〜10wt%分散した純水10を枠5の内部の触媒層8の上
へと注ぎ、吸引機7によって吸引、濾過して、 SiC層1
1を形成する。この後、窒素雰囲気、240 〜 280℃での
加熱乾燥/焼成により水分と界面活性剤を除去したの
ち、さらに 320〜350 ℃で焼成しPTFEを溶融させて
撥水性を持たせる処理を実施する。なお、焼成の際に熱
プレスを行ってもよい。Next, as shown in FIG.
1010 wt% dispersed pure water 10 is poured onto the catalyst layer 8 inside the frame 5, suctioned and filtered by the suction device 7, and the SiC layer 1
Form one. Thereafter, after removing the water and the surfactant by heating / drying / baking at 240 to 280 ° C in a nitrogen atmosphere, a process of baking at 320 to 350 ° C to melt the PTFE to give water repellency is performed. Note that hot pressing may be performed during firing.
【0016】その後、 SiC層11を除去することにより
電極の作製が完了する。なお、 SiC層11はバインダー
を含んでいないため、ブラッシングや純水洗浄によって
熱処理後の電極から容易に除去される。従来の構成の電
極においては、吸引、濾過して形成した触媒層8を加熱
乾燥/焼成すると触媒粒子同士の距離が縮まり、マッド
クラックが発生する可能性が高かったが、本実施例のご
とく触媒層8の上に SiC層11を形成した電極において
は、 SiCが緻密な層を形成しているため、触媒粒子同士
の距離が縮まる際、これに抵抗する働きを果たすことと
なるので、クラックの発生が大幅に低減されることとな
る。したがって、本構成の電極では、製造工程に加熱乾
燥/焼成工程を組み込むことが可能となり、従来に比べ
て製造時間が短縮され、低コストで電極を作製できるこ
ととなる。After that, the fabrication of the electrode is completed by removing the SiC layer 11. Since the SiC layer 11 does not contain a binder, it can be easily removed from the electrode after the heat treatment by brushing or pure water cleaning. In the electrode having the conventional configuration, when the catalyst layer 8 formed by suction and filtration was heated and dried / fired, the distance between the catalyst particles was reduced, and the possibility of generating a mud crack was high. In the electrode in which the SiC layer 11 is formed on the layer 8, since the SiC forms a dense layer, when the distance between the catalyst particles is reduced, the catalyst particles have a function of resisting the distance. The occurrence will be greatly reduced. Therefore, in the electrode of this configuration, it is possible to incorporate a heating / drying / sintering step into the manufacturing process, so that the manufacturing time is shortened as compared with the related art, and the electrode can be manufactured at low cost.
【0017】なお、上記の純水10に分散する SiC粒子
として、粒子径が 0.3〜3 μmの SiC粒子を 50 〜 70
%、粒径が 7〜15μmの SiC粒子を 30 〜 50 %の割合
で混合して用いれば、吸引濾過が速やかに行われ、さら
には、濾過により形成されるSiC層が緻密となる。 <実施例2>図3は、本発明の第2の実施例のリン酸型
燃料電池用電極の製造方法を示すフロー図である。ま
た、図4は、本製造方法に用いられる製造装置の基本構
成を示す模式図である。本実施例のリン酸型燃料電池用
電極の製造方法の特徴は、図9に示した従来の電極の製
造方法において、吸引濾過によりカーボンペーパー4の
上に触媒層8を形成し、アルカリ溶液洗浄して純水洗浄
した後に、 SiC層を形成する工程を組み込み、さらに加
熱乾燥工程と熱プレス処理工程ののち、 SiC層を除去す
る工程を組み込んだ点にある。As the SiC particles dispersed in the pure water 10, SiC particles having a particle diameter of 0.3 to 3 μm are 50 to 70 μm.
%, And a mixture of SiC particles having a particle size of 7 to 15 μm at a ratio of 30 to 50%, suction filtration is rapidly performed, and the SiC layer formed by the filtration becomes dense. <Embodiment 2> FIG. 3 is a flowchart showing a method of manufacturing an electrode for a phosphoric acid fuel cell according to a second embodiment of the present invention. FIG. 4 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the present manufacturing method. A feature of the method for manufacturing an electrode for a phosphoric acid type fuel cell of this embodiment is that the catalyst layer 8 is formed on the carbon paper 4 by suction filtration in the conventional electrode manufacturing method shown in FIG. After that, a step of forming a SiC layer after washing with pure water and a step of removing the SiC layer after a heating drying step and a hot pressing step are incorporated.
【0018】すなわち、本製造方法では、図9に示した
従来の電極の製造方法と同様に、まず、図4(a)に示
したごとく、攪拌槽1のバルブ6を開けて、酸を加えて
沈降させたスラリー3を多孔材のカーボンペーパー4の
上に配した枠5の内部へと注ぎ、吸引機7によって吸
引、濾過することによってカーボンペーパー4の上に触
媒層8を形成し、そののち、図4(b)に示したごと
く、希薄アルカリ溶液12を枠5の内部に注ぎ、吸引機
7によって吸引、洗浄して、触媒層8中に残留している
界面活性剤を除去し、次いで、図4(c)に示したごと
く、純水9を注ぎ、吸引機7によって吸引、洗浄して、
残留するアルカリ成分を除去する。That is, in this manufacturing method, as shown in FIG. 4A, first, as shown in FIG. 4A, the valve 6 of the stirring tank 1 is opened, and the acid is added. The precipitated slurry 3 is poured into a frame 5 arranged on a porous carbon paper 4, and is suctioned and filtered by a suction machine 7 to form a catalyst layer 8 on the carbon paper 4. Thereafter, as shown in FIG. 4 (b), the diluted alkaline solution 12 is poured into the inside of the frame 5, suctioned and washed by the suction device 7, and the surfactant remaining in the catalyst layer 8 is removed. Then, as shown in FIG. 4 (c), pure water 9 is poured, suctioned and washed by a suction device 7, and
Remove the remaining alkaline components.
【0019】次いで図4(d)に示したごとく、 SiC粒
子を 2〜10 wt %分散した純水10を枠5の内部の触媒
層8の上へと注ぎ、吸引機7によって吸引、濾過して、
SiC層11を形成する。この後、実施例1と同様に、窒
素雰囲気、240 〜 280℃での加熱乾燥/焼成を行って水
分と界面活性剤を除去する。続いて、PTFEを溶融さ
せて撥水性を持たせるために熱プレスによって 320〜35
0 ℃に加熱焼成処理を行う。これらの加熱焼成処理のの
ち、ブラッシングあるいは純水洗浄によって SiC層を除
去することにより電極の作製が完了する。Next, as shown in FIG. 4D, pure water 10 in which 2 to 10 wt% of SiC particles are dispersed is poured onto the catalyst layer 8 inside the frame 5, and is suctioned and filtered by the suction device 7. hand,
The SiC layer 11 is formed. Thereafter, as in the case of Example 1, heating and drying / baking at 240 to 280 ° C. in a nitrogen atmosphere is performed to remove water and the surfactant. Subsequently, 320-35 by hot pressing to melt the PTFE and make it water repellent.
Heat and bake at 0 ° C. After these heating and baking treatments, the electrode is completed by removing the SiC layer by brushing or pure water washing.
【0020】本実施例のごとく製造された電極では、実
施例1と同様に、触媒層8の上に SiC層11が形成され
ているので、加熱乾燥/焼成工程を組み込んでもクラッ
クの発生が少なく、従来に比べて製造時間が短縮され、
低コストで電極を作製できることとなる。また、本実施
例ではPTFEを溶融させて撥水性を持たせる処理の際
に熱プレスを用いているので、緻密で平滑な触媒層が得
られ、優れた電池特性が得られる。In the electrode manufactured as in the present embodiment, the SiC layer 11 is formed on the catalyst layer 8 as in the first embodiment. , The production time is shorter than before,
The electrode can be manufactured at low cost. Further, in the present embodiment, a hot press is used in the process of melting PTFE to impart water repellency, so that a dense and smooth catalyst layer can be obtained, and excellent battery characteristics can be obtained.
【0021】なお、上記の純水10に分散する SiC粒子
として、粒子径が 0.3〜3 μmの SiC粒子を 50 〜 70
%、粒径が 7〜15μmの SiC粒子を 30 〜 50 %の割合
で混合して用いれば、実施例1と同様に、吸引濾過が速
やかに行われ、かつ、濾過により形成される SiC層が緻
密となる。 <実施例3>図5は、本発明の第3の実施例のリン酸型
燃料電池用電極の製造方法を示すフロー図である。ま
た、図6は、本製造方法に用いられる製造装置の基本構
成を示す模式図である。本実施例のリン酸型燃料電池用
電極の製造方法の特徴は、図7に示した従来の電極の製
造方法において、吸引濾過によりカーボンペーパー4の
上に触媒層8を形成したのち、アルカリ溶液洗浄と SiC
層を形成する工程を組み込み、さらに加熱乾燥工程と熱
プレス処理工程ののち、 SiC層を除去する工程を組み込
んだ点にある。As the SiC particles dispersed in the pure water 10, SiC particles having a particle diameter of 0.3 to 3 μm are 50 to 70 μm.
%, And SiC particles having a particle size of 7 to 15 μm are mixed and used at a ratio of 30 to 50%, as in Example 1, suction filtration is rapidly performed, and a SiC layer formed by the filtration is formed. Become elaborate. <Embodiment 3> FIG. 5 is a flowchart showing a method of manufacturing an electrode for a phosphoric acid fuel cell according to a third embodiment of the present invention. FIG. 6 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the present manufacturing method. A feature of the method for manufacturing an electrode for a phosphoric acid type fuel cell of this embodiment is that, in the conventional method for manufacturing an electrode shown in FIG. 7, after forming a catalyst layer 8 on carbon paper 4 by suction filtration, an alkaline solution Cleaning and SiC
The point is that the process for forming the layer is incorporated, and the process for removing the SiC layer after the heating and drying process and the hot pressing process is also incorporated.
【0022】すなわち、本製造方法においては、まず、
アニオン系の界面活性剤 3〜10gを純水1000gに加え、
攪拌してアニオン系界面活性剤を約 0.3〜1 wt%含む分
散媒を作製し、次いで、この分散媒に、カーボン粒子に
白金粒子を担持した触媒 1〜10gを加え、図6(a)の
ごとく攪拌槽1中で超音波発振器2により超音波を印加
して攪拌・ホモジナイザー分散させて分散液を得る。次
に、この分散液にPTFEの分散液を添加し、超音波を
印加して攪拌し、触媒とPTFEが良好に分散したスラ
リー(第1のスラリー)3を作製した後、スラリー3に
強酸を滴下、混合してpHを3以下として触媒とPTF
Eを分離することなく凝集、沈降させる。次いで、この
スラリー3を、電極の基材となる多孔材のカーボンペー
パー4の上に搭載した枠5の内部へと注ぎ、カーボンペ
ーパー4の反対面に配した吸引機7によって数回に分割
して吸引、濾過し、表面の平滑な触媒層8を形成する。That is, in this manufacturing method, first,
Add 3 to 10 g of anionic surfactant to 1000 g of pure water,
By stirring, a dispersion medium containing about 0.3 to 1 wt% of an anionic surfactant is prepared. Then, 1 to 10 g of a catalyst in which platinum particles are supported on carbon particles is added to the dispersion medium, and the dispersion medium shown in FIG. As described above, an ultrasonic wave is applied from the ultrasonic oscillator 2 in the stirring tank 1 to stir and homogenize to obtain a dispersion. Next, a dispersion of PTFE is added to this dispersion, and the mixture is stirred by applying ultrasonic waves to prepare a slurry (first slurry) 3 in which the catalyst and PTFE are well dispersed. The catalyst and PTF were dropped and mixed to adjust the pH to 3 or less.
Aggregate and sediment without separating E. Next, the slurry 3 is poured into a frame 5 mounted on a porous carbon paper 4 serving as a base material of an electrode, and divided into several times by a suction device 7 arranged on the opposite surface of the carbon paper 4. To form a catalyst layer 8 having a smooth surface.
【0023】次いで、図6(b)に示したごとく SiC粒
子を 2〜10 wt %分散した希薄アルカリ溶液13を枠5
の内部の触媒層8の上へと注ぎ、吸引機7によって吸
引、濾過することによって、触媒層8中に残留している
界面活性剤を希薄アルカリ溶液13により洗浄除去する
とともに、触媒層8の上に SiC層11を形成する。次い
で、図6(c)に示したごとく純水9を枠5の内部へ注
ぎ、吸引機7によって吸引、濾過することによって、電
極層中に残留しているアルカリ成分を除去する。Next, as shown in FIG. 6B, a diluted alkaline solution 13 containing 2 to 10 wt% of SiC particles is
The surfactant remaining in the catalyst layer 8 is washed and removed with a dilute alkaline solution 13 by pouring onto the catalyst layer 8 inside the catalyst layer 8 and suctioning and filtering with a suction device 7. The SiC layer 11 is formed thereon. Next, as shown in FIG. 6 (c), pure water 9 is poured into the inside of the frame 5, and the alkali component remaining in the electrode layer is removed by suction and filtration by the suction device 7.
【0024】その後、実施例2と同様に、窒素雰囲気、
240 〜 280℃での加熱乾燥/焼成を行って水分と界面活
性剤を除去し、続いて、PTFEを溶融させて撥水性を
持たせるために熱プレスによって 320〜350 ℃に加熱焼
成処理を行う。これらの加熱焼成処理ののち、ブラッシ
ングあるいは純水洗浄によって SiC層を除去することに
よって、電極の作製が完了する。Then, as in Example 2, a nitrogen atmosphere,
Heat drying / baking at 240 to 280 ° C to remove moisture and surfactant, followed by heat baking to 320 to 350 ° C by hot pressing to melt PTFE and make it water repellent. . After these heating and baking treatments, the electrode is completed by removing the SiC layer by brushing or washing with pure water.
【0025】本実施例のごとく製造された電極では、実
施例1あるいは実施例2と同様に、触媒層8の上に SiC
層11が形成されているので、加熱乾燥/焼成工程を組
み込んでもクラックの発生が少なく、従来に比べて製造
時間が短縮され、低コストで電極を作製できることとな
る。また、本実施例でもPTFEを溶融させて撥水性を
持たせる処理の際に熱プレスを用いているので、緻密で
平滑な触媒層が得られ、優れた電池特性が得られる。In the electrode manufactured as in the present embodiment, SiC is formed on the catalyst layer 8 in the same manner as in the first or second embodiment.
Since the layer 11 is formed, the generation of cracks is small even when the heating / drying / firing step is incorporated, the production time is reduced as compared with the conventional case, and the electrode can be manufactured at low cost. Also, in this example, since hot pressing is used in the process of melting PTFE to impart water repellency, a dense and smooth catalyst layer can be obtained, and excellent battery characteristics can be obtained.
【0026】なお、上記の希薄アルカリ溶液13に分散
する SiC粒子として、粒子径が 0.3〜3 μmの SiC粒子
を 50 〜 70 %、粒径が 7〜15μmの SiC粒子を 30 〜
50%の割合で混合して用いれば、吸引濾過が速やかに
行われ、かつ、濾過により形成される SiC層が緻密とな
る。また、 SiC粒子を分散させるアルカリ溶液として
は、実施例2のアルカリ溶液洗浄にも用いられるアンモ
ニア溶液あるいはトリエタノールアミン溶液が好適であ
る。As the SiC particles dispersed in the diluted alkaline solution 13, 50 to 70% of SiC particles having a particle diameter of 0.3 to 3 μm and 30 to 30% of SiC particles having a particle diameter of 7 to 15 μm are used.
When used by mixing at a ratio of 50%, suction filtration is performed quickly and the SiC layer formed by filtration becomes dense. Further, as the alkaline solution for dispersing the SiC particles, an ammonia solution or a triethanolamine solution which is also used for washing the alkaline solution in Example 2 is preferable.
【0027】[0027]
【発明の効果】上述のように、本発明によれば、触媒粒
子と撥水材粒子を分散した第1のスラリーをカーボン多
孔材に吸引濾過して触媒層を形成する触媒層形成工程
と、 SiC粒子を分散した第2のスラリーを吸引濾過して
触媒層上に SiC層を形成する SiC層形成工程と、上面に
SiC層を形成した触媒層を加熱焼成する触媒層加熱焼成
工程と、加熱焼成後の触媒層より SiC層を除去する SiC
層除去工程を含む製造方法を用いてリン酸型燃料電池用
電極を製造することとしたので、高品質のリン酸型燃料
電池用電極が高い歩留まりで、かつ、短期間に低コスト
で製造できることとなった。As described above, according to the present invention, a catalyst layer forming step of forming a catalyst layer by suction-filtering a first slurry in which catalyst particles and water-repellent material particles are dispersed into a carbon porous material; A step of forming a SiC layer on the catalyst layer by suction-filtering the second slurry in which the SiC particles are dispersed;
A catalyst layer heating and baking step for heating and baking the catalyst layer on which the SiC layer has been formed, and SiC for removing the SiC layer from the catalyst layer after baking.
Since the phosphoric acid fuel cell electrode is manufactured using the manufacturing method including the layer removing step, a high quality phosphoric acid fuel cell electrode can be manufactured at a high yield and at a low cost in a short time. It became.
【図1】本発明の第1の実施例のリン酸型燃料電池用電
極の製造方法を示すフロー図FIG. 1 is a flowchart showing a method for manufacturing a phosphoric acid fuel cell electrode according to a first embodiment of the present invention.
【図2】第1の実施例の製造方法に用いられる製造装置
の基本構成を示す模式図FIG. 2 is a schematic diagram illustrating a basic configuration of a manufacturing apparatus used in the manufacturing method according to the first embodiment.
【図3】本発明の第2の実施例のリン酸型燃料電池用電
極の製造方法を示すフロー図FIG. 3 is a flowchart showing a method for manufacturing an electrode for a phosphoric acid fuel cell according to a second embodiment of the present invention.
【図4】第2の実施例の製造方法に用いられる製造装置
の基本構成を示す模式図FIG. 4 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method according to the second embodiment.
【図5】本発明の第3の実施例のリン酸型燃料電池用電
極の製造方法を示すフロー図FIG. 5 is a flowchart showing a method for manufacturing a phosphoric acid fuel cell electrode according to a third embodiment of the present invention.
【図6】第3の実施例の製造方法に用いられる製造装置
の基本構成を示す模式図FIG. 6 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method according to the third embodiment.
【図7】従来のリン酸型燃料電池用電極の製造方法の一
例を示すフロー図FIG. 7 is a flowchart showing an example of a conventional method for producing an electrode for a phosphoric acid fuel cell.
【図8】図7の製造方法に用いられる製造装置の基本構
成を示す模式図FIG. 8 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method of FIG. 7;
【図9】従来のリン酸型燃料電池用電極の製造方法の他
の一例を示すフロー図FIG. 9 is a flow chart showing another example of a conventional method for producing a phosphoric acid fuel cell electrode.
【図10】図9の製造方法に用いられる製造装置の基本
構成を示す模式図10 is a schematic diagram showing a basic configuration of a manufacturing apparatus used in the manufacturing method of FIG.
【図11】従来例での加熱乾燥に伴うマッドクラックの
発生を模式的に説明する断面図FIG. 11 is a cross-sectional view schematically illustrating generation of a mud crack accompanying heating and drying in a conventional example.
【図12】従来例での熱プレス処理に伴う剥離の発生を
模式的に説明する断面図FIG. 12 is a cross-sectional view schematically illustrating occurrence of peeling due to hot press processing in a conventional example.
1 攪拌槽 2 超音波発振器 3 スラリー 4 カーボンペーパー 5 枠 6 バルブ 7 吸引機 8 触媒層 9 純水 10 純水( SiC粒子分散) 11 SiC層 12 希薄アルカリ溶液 13 希薄アルカリ溶液( SiC粒子分散) DESCRIPTION OF SYMBOLS 1 Stirring tank 2 Ultrasonic oscillator 3 Slurry 4 Carbon paper 5 Frame 6 Valve 7 Suction machine 8 Catalyst layer 9 Pure water 10 Pure water (SiC particle dispersion) 11 SiC layer 12 Dilute alkali solution 13 Dilute alkali solution (SiC particle dispersion)
Claims (4)
ラリーをカーボン多孔材に吸引濾過して触媒層を形成す
る触媒層形成工程と、 SiC粒子を分散した第2のスラリ
ーを吸引濾過して触媒層上に SiC層を形成する SiC層形
成工程と、上面に SiC層を形成した触媒層を加熱焼成す
る触媒層加熱焼成工程と、加熱焼成後の触媒層より SiC
層を除去する SiC層除去工程を含むリン酸型燃料電池用
電極の製造方法。1. A catalyst layer forming step of forming a catalyst layer by suction-filtering a first slurry in which catalyst particles and water-repellent material particles are dispersed on a porous carbon material, and suctioning a second slurry in which SiC particles are dispersed. A SiC layer forming step of filtering and forming an SiC layer on the catalyst layer, a catalyst layer heating and firing step of heating and firing the catalyst layer having the SiC layer formed on the upper surface, and a SiC layer obtained by heating and firing the catalyst layer.
A method for producing an electrode for a phosphoric acid type fuel cell, comprising a step of removing an SiC layer.
スラリーに分散された SiC粒子が、粒径が 0.3〜3 μm
の SiC粒子と、粒径が 7〜15μmの SiC粒子の混合物か
らなることを特徴とする請求項1に記載のリン酸型燃料
電池用電極の製造方法。2. The method according to claim 1, wherein the SiC particles dispersed in the second slurry used in the SiC layer forming step have a particle size of 0.3 to 3 μm.
2. The method for producing an electrode for a phosphoric acid fuel cell according to claim 1, comprising a mixture of the above-mentioned SiC particles and SiC particles having a particle size of 7 to 15 μm. 3.
スラリーを形成するSiC粒子の分散溶媒がアルカリ溶液
であることを特徴とする請求項1または2のいづれかに
記載のリン酸型燃料電池用電極の製造方法。3. The phosphoric acid-type fuel according to claim 1, wherein the dispersion solvent of the SiC particles forming the second slurry used in the step of forming the SiC layer is an alkaline solution. A method for manufacturing a battery electrode.
るいはトリエタノールアミン溶液のいずれかであること
を特徴とする請求項3に記載のリン酸型燃料電池用電極
の製造方法。4. The method according to claim 3, wherein said alkaline solution is one of an ammonia solution and a triethanolamine solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001183557A JP4277463B2 (en) | 2001-06-18 | 2001-06-18 | Method for manufacturing electrode for phosphoric acid fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001183557A JP4277463B2 (en) | 2001-06-18 | 2001-06-18 | Method for manufacturing electrode for phosphoric acid fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002373664A true JP2002373664A (en) | 2002-12-26 |
JP4277463B2 JP4277463B2 (en) | 2009-06-10 |
Family
ID=19023494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001183557A Expired - Fee Related JP4277463B2 (en) | 2001-06-18 | 2001-06-18 | Method for manufacturing electrode for phosphoric acid fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4277463B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007103089A (en) * | 2005-09-30 | 2007-04-19 | Dainippon Printing Co Ltd | Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate |
CN100405654C (en) * | 2005-05-16 | 2008-07-23 | 松下电器产业株式会社 | Direct oxidation fuel cell and manufacturing method thereof |
JP2010257642A (en) * | 2009-04-22 | 2010-11-11 | Fuji Electric Systems Co Ltd | Manufacturing method of gas diffusion electrode |
JP2011150978A (en) * | 2010-01-25 | 2011-08-04 | Toyota Motor Corp | Electrode manufacturing device and electrode manufacturing method |
-
2001
- 2001-06-18 JP JP2001183557A patent/JP4277463B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100405654C (en) * | 2005-05-16 | 2008-07-23 | 松下电器产业株式会社 | Direct oxidation fuel cell and manufacturing method thereof |
JP2007103089A (en) * | 2005-09-30 | 2007-04-19 | Dainippon Printing Co Ltd | Electrode catalyst layer, transfer sheet for manufacturing catalyst layer-electrolyte film laminate, and catalyst layer-electrolyte film laminate |
JP2010257642A (en) * | 2009-04-22 | 2010-11-11 | Fuji Electric Systems Co Ltd | Manufacturing method of gas diffusion electrode |
JP2011150978A (en) * | 2010-01-25 | 2011-08-04 | Toyota Motor Corp | Electrode manufacturing device and electrode manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP4277463B2 (en) | 2009-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1572041A (en) | Improvements in fuel cells and related devices | |
CN109546087A (en) | The manufacturing method of negative electrode tab | |
JPH01189866A (en) | Anode for molten salt fuel cells and its manufacturing method | |
CN113200534B (en) | Preparation method of graphene oxide reduction self-assembly film based on planar base film | |
CN1904144A (en) | Water heat electrophoresis deposition method of gradient iridium silicate coating layer | |
CN113620334B (en) | Dendritic ordered mesoporous copper oxide nano material and preparation method and application thereof | |
CN114408908A (en) | Graphene heat dissipation film and preparation method thereof | |
JP2002373664A (en) | Method for producing electrode for phosphoric acid type fuel cell | |
CN114505483A (en) | Method for preparing aluminum electrolytic capacitor anode foil by mixing mixed slurry into salt | |
CN115763741A (en) | Preparation method of lithium battery anode protective coating slurry | |
CN113981499B (en) | Preparation method of aluminum-silicon alloy surface film | |
JP2010244952A (en) | Manufacturing method of gas diffusion electrode | |
CN116199502B (en) | Alumina ceramic plate film and preparation method and application thereof | |
CN117374313A (en) | Gas diffusion layer of proton exchange membrane fuel cell and preparation method and application thereof | |
CN116805678A (en) | A kind of preparation method of sodium ion battery cathode material | |
CN117810526A (en) | Lithium lanthanum zirconium oxygen-based solid electrolyte, composite solid electrolyte, preparation method of lithium lanthanum zirconium oxygen-based solid electrolyte and solid battery | |
CN116387495A (en) | Oxygen vacancy tungsten oxide coated positive electrode material, preparation method and lithium battery | |
JP2001057216A (en) | Method for producing gas diffusion electrode for phosphoric acid fuel cell | |
CN105810531B (en) | The car cathode material preparation method of diffusing surface containing scandium | |
JPH0845512A (en) | Method for manufacturing phosphoric acid fuel cell electrode | |
JPH07240206A (en) | Preparation of cathode for fuel cell | |
JP2001332269A (en) | Method for manufacturing polymer electrolyte fuel cell | |
CN116014125B (en) | Negative electrode with dual gradient change of particle size and pore, and preparation method and application thereof | |
CN117832596B (en) | A solid electrolyte membrane, battery and preparation method thereof | |
JP4031346B2 (en) | Method for producing coating material for catalyst layer of polymer electrolyte fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081211 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081215 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090217 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090302 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |