JP4272267B2 - Capacitance type sensor circuit - Google Patents
Capacitance type sensor circuit Download PDFInfo
- Publication number
- JP4272267B2 JP4272267B2 JP17954997A JP17954997A JP4272267B2 JP 4272267 B2 JP4272267 B2 JP 4272267B2 JP 17954997 A JP17954997 A JP 17954997A JP 17954997 A JP17954997 A JP 17954997A JP 4272267 B2 JP4272267 B2 JP 4272267B2
- Authority
- JP
- Japan
- Prior art keywords
- terminal
- voltage
- switch
- capacitance
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/0825—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
- G01P2015/0828—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
【0001】
【発明の技術分野】
本発明は、静電容量型センサの容量変化を電圧変化として出力するための静電容量型センサ回路に関し、特に、センサ自体の製造上のバラツキを容易に補正することができる静電容量型センサ回路に関する。
【0002】
【従来の技術】
静電容量型センサは、高感度でかつ衝撃に強いことから加速度センサ等として広く用いられており、機械的外力が加わるとその静電容量が変化し、該静電容量の変化を電圧の変化として取り出すことができるように構成されている。このような静電容量型センサは、製造時等のバラツキによって外圧に対する容量変化(容量/外圧特性)が一定ではなく、該バラツキを外付けの機械的及び電子的手段によって較正することが試みられている。
【0003】
図3は、このような較正手段を付加した静電容量型センサ素子を、加速度センサとして用いた場合の従来例を示している。該従来例においては、シリコンカンチレバー11の先端部にシリコン微細加工技術によって可動電極12を設け、該可動電極12を一対の固定電極13及び14の間に配置している。そして、加速度Gの大きさ及び方向に依存して可動電極12が変位しようとするが、フィードバック制御により、可動電極12と一方の固定電極との間の距離dが一定となるように、これら電極間に静電気力を作用させ、該作用させた静電気力の大きさから、カンチレバーに加わった加速度を検出するようにしている。そして、図3の従来例においては、静電気力は、静電サーボ回路15を用いて、パルス幅変調方式で制御されるか、またはバイアス静電気成分を含むように制御される。
【0004】
【発明が解決しようとする課題】
しかしながら、図3の従来例においては、センサ素子自体の特性のバラツキを補正するために、パルス幅変調を実行する静電サーボ機構等を必要とし、そのため、センサ回路が比較的大規模であり、かつ複雑である。そして、回路の規模を小さくするために、上記した従来例のような静電サーボ機構を用いない場合は、センサ素子のバラツキ等により出力誤差が大きくなる、という問題点がある。
本発明の目的は、このような従来例の問題点を解決して、静電容量型のセンサ素子の容量変化を、簡単な回路で、しかも製造時のバラツキに依存せずに高精度な出力信号として取り出すことができる静電容量型センサ回路を提供することである。
【0005】
【課題を解決するための手段】
上記した目的を達成するために、本発明の静電容量型センサ回路においては、(a)入力電圧を発生する入力電圧発生手段と、(b)発生された入力電圧が第1の端子に供給される静電容量型センサ素子と、(c)該センサ素子の第2の端子に入力端子が接続された増幅器と、(d)該増幅器の入力端子と出力端子との間に接続された帰還コンデンサと、(e)調整電圧を発生する調整電圧発生手段と、(f)発生された調整電圧が第1の端子に供給され、第2の端子にセンサ素子の第2の端子が接続された調整用コンデンサとを備え、調整用電圧を調整することにより、センサ素子のバラツキを較正可能にしたことを特徴としている。
【0006】
本発明はさらに、上記した構成に加えて、(g)センサ素子の第1の端子と入力電圧発生手段との間に接続された第1のスイッチと、(h)センサ素子の第1の端子と基準電位との間に接続され、第1のスイッチと相補的にオン/オフされる第2のスイッチと、(i)帰還コンデンサに並列接続され、第2のスイッチと同期してオン/オフされる第3のスイッチと、(j)調整用コンデンサの第1の端子と調整電圧発生手段との間に接続され、第1のスイッチと同期してオン/オフされる第4のスイッチと、(k)調整用コンデンサの第1の端子と基準電位との間に接続され、第2のスイッチと同期してオン/オフされる第5のスイッチとを備えていることを特徴とし、第2、第3及び第5のスイッチをオンさせて静電容量型センサ回路を初期化し、その後、これらのスイッチをオフしかつ第1及び第4のスイッチをオンさせて、センサ回路として動作させることができるようにしている。これにより、回路のコンデンサの両端の電圧をゼロに初期化してから動作させることができるので、より高精度の測定が実行できる。
本発明の静電容量型センサ回路においては、増幅器としてオペアンプを用いることが好適である。
【0007】
【実施の態様】
図1は、本発明の一実施例の静電容量型センサ回路が示されており、該図において、Csは静電容量型センサ素子(センサ・コンデンサ)であり、センサ・コンデンサCsの第1の端子には、入力電圧発生回路1からの入力電圧Vinが、スイッチS1を介して供給され、また、該第1の端子は、第1のスイッチS1と相補的にオン/オフされる第2のスイッチS2を介してアース、すなわち基準電位に接続される。センサ・コンデンサCsの第2の端子には、オペアンプ2の反転入力端子が接続され、該反転入力端子とオペアンプ2の出力端子との間には、スイッチS2に同期してオン/オフされるスイッチS3とコンデンサCfとの並列回路が接続されている。オペアンプ2の出力端子から、センサ出力が出力電圧Voutとして取り出される。
【0008】
センサ・コンデンサCsの第2の端子にはさらに、調整電圧発生回路3から、スイッチS1と同期してオン/オフされるスイッチS4、及び調整用コンデンサCmを介して、調整電圧Vmが供給され、また、スイッチS4と相補的にオン/オフされるスイッチS5を介して、基準電位に接続される。
以上から明らかなように、スイッチS2、S3、S5は同期してオン/オフされ、また、スイッチS1、S4は同期してオン/オフされる。そして、これら2つのスイッチのグループは、相補的にオン/オフされる。
【0009】
図1に示した回路の動作を説明する。
まず、回路を初期化するために、スイッチS1、S4をオフし、スイッチS2、S3、S5をオンする。このオン/オフ状態は、図1に示したオン/オフ状態と反対である。これにより、センサ・コンデンサCs、帰還コンデンサCf、調整用コンデンサCmのそれぞれの両端の電圧がゼロになる。なお、オペアンプ2は、その反転入力端子と非反転入力端子の電位を等しくするよう作用する(すなわち、反転入力端子と非反転入力端子とは、イマージナル・ショート状態にある)ので、非反転入力端子の電位Vfも基準電位(Vf=0)となり、したがって、センサ・コンデンサCs及び調整用コンデンサCmそれぞれの両端の電圧がゼロになる。このような初期化の後に、スイッチのオン/オフ状態を反転して、スイッチS2、S3、S5をオフし、スイッチS1、S4をオンすると、センサ・コンデンサCsの第1の端子に入力電圧Vinが印加され、また調整用コンデンサCmの第1の端子に調整用電圧Vmが印加される。
【0010】
スイッチS1、S4がオンの時の回路の入出力伝達特性は、以下の式(1)で表される。なお、以下の式においては、コンデンサそれぞれの容量値を対応するコンデンサの符号を用いて表すとする。
【数1】
Vout
=−(Cs/Cf)(Vin−Vf)−(Cm/Cf)(Vm−Vf)+Vf (1)
説明を簡単にするため、固定値であるCm、CfをCm=Cfに設定すると、式(1)は、以下のように表される。
【数2】
Vout
=−(Cs/Cf)(Vin−Vf)−(Vm−Vf)+Vf (2)
【0011】
Cs/Cfの値をパラメータとして、式(2)をグラフで表せば、図2に示すように、直線L0、L1、L2で表される。ただし、これら直線L0〜L2においては、Vmは、Vm=Vm(0)なる固定値に設定している。直線L0は、Cs=Cfの場合を表しており、Cfの値を規格上の標準的なセンサ・コンデンサの容量値Cs(0)に一致するよう設定することにより、直線L0は標準的なセンサ・コンデンサを用いた場合の入出力伝達特性を示すことができる。
また、直線L1はCs=Cs(1)>Cfの場合の一例を、直線L2はCs=Cs(2)<Cfの場合の一例を示しており、センサ・コンデンサの容量値が標準値よりも大きい場合及び小さい場合の入出力伝達特性を示している。
【0012】
センサ・コンデンサが標準容量値の場合(Cs=Cf=Cs(0))、ある所定の入力電圧Vin(0)が供給された状態で、出力電圧Vout(0)が出力される。ところが、Cs(1)>Cfの場合、直線L1から明らかなように、入力電圧Vin(0)に対応する出力電圧は、Vout(0)よりも小さい値の
【数3】
Vout(1)=Vout(0)−△V (3)
となる。そこで、出力電圧VoutがVout(1)から△Vだけ大きくなるように直線L1を直線L1′にシフトすれば、Cs=Cs(1)>Cfなる容量値のセンサ・コンデンサを用いた場合でも、標準容量値Cs(0)のセンサ・コンデンサを用いた場合と同一の出力電圧Vout(0)が得られることが分かる。
【0013】
このように直線L1を平行移動させて直線L1′とするために、調整電圧VmをVm(0)から変化させればよいことは、式(2)及びグラフから明らかであり、変化させた後の調整電圧Vm(1)は、以下の式(4)から演算することができる。
【数4】
Vm(1)
=Vm(0)−(Cs(1)−Cf)(Vin(0)−Vf)/Cf (4)
上記においては、センサ・コンデンサCsの容量値が標準値よりも大きいの場合の出力の較正について説明したが、標準値よりも小さい容量値Cs(2)の場合、調整電圧Vm(2)は、
【数5】
Vm(2)
=Vm(0)−(Cs(2)−Cf)(Vin(0)−Vf)/Cf (5)
で表される。
【0014】
以上、説明したように、図1の回路においては、調整電圧Vmを調整することにより、用いるセンサ素子の容量値Csにバラツキがあったとしても、出力電圧Voutにバラツキが生じることがない。したがって、本発明においては、容量値が標準値と相違するセンサ・コンデンサを用いた場合に、式(4)または式(5)にCs(1)またはCs(2)を代入して調整電圧Vm(1)またはVm(2)を演算し、調整電圧発生回路3から出力する調整電圧Vmを決定すればよい。
なお、用いているセンサ・コンデンサの容量値Csが不明の場合は、標準容量値Cs(0)のものを用いて得られた回路の入出力伝達特性を予めメモリに記憶しておき、該入出力伝達特性と一致するように、フィードバック制御により当該回路の調整電圧Vmを可変制御してもよい。
【0015】
また、式(4)及び(5)に基づくことなく、調整電圧Vmを適宜に制御すれば、任意の入出力伝達特性を得ることができる。
さらに、式(4)及び式(5)は、Cm=Cfの前提に基づいて得られた式であるが、Cm、CfにバラツキがありかつCm≠Cfの場合でも、式(1)におけるCm/Cfは、入出力伝達特性を表す直線を平行移動させるだけであるから、Cm、Cfのバラツキによる出力電圧のバラツキを、調整電圧Vmの調整により低減させることができる。
さらにまた、式(1)及び(2)から明らかなように、Vinを変化させることにより、図2の直線L(1)またはL(2)におけるの出力電圧を増加あるいは減少させることができる。したがって、調整電圧の制御を行う代わりに、入力電圧及び基準電圧を調整しても、静電容量型センサ素子のバラツキを較正することができる。
【0016】
図1の実施例においては、センサ・コンデンサCsの第2の端子にオペアンプ2を接続しているが、オペアンプの代わりに、他の任意のリニア増幅器を用いることができることは言うまでもない。
また、スイッチS1〜S5は、電子的スイッチであっても機械的スイッチであっても、任意のスイッチを用いることができることは当業者に明らかであろう。さらに、スイッチS1、S2、S4、S5を用いる代わりに、センサ・コンデンサCs、及び調整用コンデサCmのそれぞれの両端にスイッチを並列接続して、これらのスイッチを初期化時にのみ、スイッチS3とともにオンさせるようにしてもよい。なお、必要に応じて、並列接続されたスイッチそれぞれに、放電電流を制限するための抵抗を接続してもよい。
【0017】
以上のように、本発明においては、従来例のような静電気力をフィードバック制御するためのサーボ制御機構を用いることなく、静電容量型センサの容量値を高精度に検出することができるとともに、センサ素子の容量値及び回路中のコンデンサの容量値にバラツキがあっても、出力電圧のバラツキを低減するよう調整することができる。また、容量検出部と出力調整部とを同一の回路で構成できるため、回路が簡略化され、小型化できる。
【図面の簡単な説明】
【図1】本発明の一実施例の静電容量型センサ回路を示すブロック図である。
【図2】図1に示された回路の入出力伝達特性に基づいて、出力電圧の調整原理を説明するためのグラフである。
【図3】従来例の加速度センサの構造を示す断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a capacitance sensor circuit for outputting a capacitance change of a capacitance sensor as a voltage change, and in particular, a capacitance sensor capable of easily correcting variations in manufacturing of the sensor itself. Regarding the circuit.
[0002]
[Prior art]
Capacitance sensors are widely used as acceleration sensors because of their high sensitivity and resistance to impacts. When a mechanical external force is applied, the capacitance changes, and the change in capacitance changes the voltage. It is comprised so that it can take out as. In such a capacitance type sensor, a change in capacitance with respect to an external pressure (capacity / external pressure characteristics) is not constant due to variations at the time of manufacture or the like, and it is attempted to calibrate the variations by external mechanical and electronic means. ing.
[0003]
FIG. 3 shows a conventional example in which a capacitive sensor element to which such a calibration means is added is used as an acceleration sensor. In the conventional example, a
[0004]
[Problems to be solved by the invention]
However, the conventional example of FIG. 3 requires an electrostatic servo mechanism or the like that performs pulse width modulation in order to correct variations in characteristics of the sensor element itself, and therefore the sensor circuit is relatively large-scale, And complex. If the electrostatic servo mechanism as in the conventional example described above is not used to reduce the circuit scale, there is a problem that the output error increases due to variations in sensor elements.
The object of the present invention is to solve such problems of the conventional example, and to change the capacitance of the capacitance type sensor element with a simple circuit and high accuracy output without depending on manufacturing variations. It is an object to provide a capacitive sensor circuit that can be extracted as a signal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the capacitive sensor circuit of the present invention, (a) an input voltage generating means for generating an input voltage, and (b) the generated input voltage is supplied to the first terminal. A capacitive sensor element, (c) an amplifier having an input terminal connected to the second terminal of the sensor element, and (d) a feedback connected between the input terminal and the output terminal of the amplifier. A capacitor, (e) an adjustment voltage generating means for generating an adjustment voltage, and (f) the generated adjustment voltage is supplied to the first terminal, and the second terminal of the sensor element is connected to the second terminal. An adjustment capacitor is provided, and the variation of the sensor element can be calibrated by adjusting the adjustment voltage.
[0006]
The present invention further includes (g) a first switch connected between the first terminal of the sensor element and the input voltage generating means, and (h) a first terminal of the sensor element. And a reference potential, and a second switch that is turned on / off complementarily with the first switch, and (i) connected in parallel to the feedback capacitor and turned on / off in synchronization with the second switch. (J) a fourth switch connected between the first terminal of the adjustment capacitor and the adjustment voltage generating means, and turned on / off in synchronization with the first switch; (K) including a fifth switch connected between the first terminal of the adjustment capacitor and the reference potential and turned on / off in synchronization with the second switch; Turn on the 3rd and 5th switches for the first time to start the capacitive sensor circuit. However, then, these switches are turned on the first and fourth switches off vital, so that it can be operated as a sensor circuit. As a result, since the voltage across the capacitor of the circuit can be initialized to zero before operation, more accurate measurement can be performed.
In the capacitive sensor circuit of the present invention, it is preferable to use an operational amplifier as an amplifier.
[0007]
Embodiment
FIG. 1 shows a capacitive sensor circuit according to an embodiment of the present invention, in which C s is a capacitive sensor element (sensor capacitor), and the sensor capacitor C s the first terminal, the input voltage V in from the input
[0008]
The second terminal of the sensor capacitor C s is further supplied from the adjustment voltage generation circuit 3 via the switch S 4 that is turned on / off in synchronization with the switch S 1 and the adjustment capacitor C m. m is supplied, also via a switch S 5 is complementarily turned on / off switch S 4, is connected to a reference potential.
As is clear from the above, the switches S 2 , S 3 , S 5 are turned on / off synchronously, and the switches S 1 , S 4 are turned on / off synchronously. These two switch groups are complementarily turned on / off.
[0009]
The operation of the circuit shown in FIG. 1 will be described.
First, in order to initialize the circuit, the switches S 1 and S 4 are turned off, and the switches S 2 , S 3 and S 5 are turned on. This on / off state is opposite to the on / off state shown in FIG. As a result, the voltage across each of the sensor capacitor C s , the feedback capacitor C f , and the adjustment capacitor C m becomes zero. Note that the
[0010]
The input / output transfer characteristics of the circuit when the switches S 1 and S 4 are on are expressed by the following equation (1). In the following equation, the capacitance value of each capacitor is represented using the corresponding capacitor sign.
[Expression 1]
V out
= − (C s / C f ) (V in −V f ) − (C m / C f ) (V m −V f ) + V f (1)
In order to simplify the description, when C m and C f which are fixed values are set to C m = C f , Expression (1) is expressed as follows.
[Expression 2]
V out
= − (C s / C f ) (V in −V f ) − (V m −V f ) + V f (2)
[0011]
If the value of C s / C f is used as a parameter and Expression (2) is represented in a graph, it is represented by straight lines L 0 , L 1 , and L 2 as shown in FIG. However, in these straight lines L 0 to L 2 , V m is set to a fixed value of V m = V m (0) . The straight line L 0 represents the case of C s = C f , and the straight line L 0 is set by setting the value of C f to coincide with the standard capacitance value C s (0) of the standard sensor capacitor. 0 indicates the input / output transfer characteristics when a standard sensor capacitor is used.
The straight line L 1 shows an example when C s = C s (1) > C f , and the straight line L 2 shows an example when C s = C s (2) <C f. The input / output transfer characteristics when the capacitance value is larger and smaller than the standard value are shown.
[0012]
When the sensor capacitor has a standard capacitance value (C s = C f = C s (0) ), the output voltage V out (0) is output while a certain input voltage V in (0) is supplied. The However, when C s (1) > C f , the output voltage corresponding to the input voltage V in (0) is smaller than V out (0) , as is apparent from the straight line L 1.
V out (1) = V out (0) -△ V (3)
It becomes. Therefore, if a shift to the straight line L 1 'the straight line L 1 so that the output voltage V out increases from V out (1) △ V only, the sensor of the C s = C s (1) > C f becomes capacitance value It can be seen that even when a capacitor is used, the same output voltage Vout (0) as when a sensor capacitor having a standard capacitance value C s (0) is used can be obtained.
[0013]
It is clear from the equation (2) and the graph that the adjustment voltage V m may be changed from V m (0) in order to translate the straight line L 1 into the straight line L 1 ′ in this way. The adjusted voltage V m (1) after the change can be calculated from the following equation (4).
[Expression 4]
V m (1)
= V m (0) - ( C s (1) -C f) (V in (0) -V f) / C f (4)
In the above description, the output calibration when the capacitance value of the sensor capacitor C s is larger than the standard value has been described. However, when the capacitance value C s (2) is smaller than the standard value, the adjustment voltage V m (2 )
[Equation 5]
V m (2)
= V m (0) - ( C s (2) -C f) (V in (0) -V f) / C f (5)
It is represented by
[0014]
As described above, in the circuit of FIG. 1, by adjusting the adjustment voltage V m , the output voltage V out may vary even if the capacitance value C s of the sensor element used varies. Absent. Therefore, in the present invention, when a sensor capacitor having a capacitance value different from the standard value is used, adjustment is performed by substituting C s (1) or C s (2) into Equation (4) or Equation (5). The voltage V m (1) or V m (2) may be calculated to determine the adjustment voltage V m output from the adjustment voltage generation circuit 3.
If the capacitance value C s of the sensor capacitor used is unknown, the input / output transfer characteristics of the circuit obtained using the standard capacitance value C s (0) are stored in the memory in advance. The adjustment voltage V m of the circuit may be variably controlled by feedback control so as to coincide with the input / output transfer characteristics.
[0015]
In addition, any input / output transfer characteristic can be obtained by appropriately controlling the adjustment voltage V m without being based on the equations (4) and (5).
Furthermore, although the equations (4) and (5) are equations obtained based on the premise that C m = C f , even when C m and C f vary and C m ≠ C f , Since C m / C f in equation (1) only translates the straight line representing the input / output transfer characteristics, variation in output voltage due to variation in C m and C f is reduced by adjusting adjustment voltage V m. Can be made.
Furthermore, as apparent from the equations (1) and (2), by changing V in , the output voltage on the straight line L (1) or L (2) in FIG. 2 can be increased or decreased. . Therefore, even if the input voltage and the reference voltage are adjusted instead of controlling the adjustment voltage, the variation of the capacitive sensor element can be calibrated.
[0016]
In the embodiment of FIG. 1, although the
It will be apparent to those skilled in the art that the switches S 1 to S 5 can be any switches, whether they are electronic switches or mechanical switches. Further, instead of using a switch S 1, S 2, S 4 , S 5, the sensor capacitor C s, and the switch to both ends of the adjusting Condesa C m are connected in parallel, these switches during initialization only it may be turned on with the switch S 3. If necessary, a resistor for limiting the discharge current may be connected to each of the switches connected in parallel.
[0017]
As described above, in the present invention, the capacitance value of the capacitive sensor can be detected with high accuracy without using a servo control mechanism for feedback control of electrostatic force as in the conventional example, Even if there is a variation in the capacitance value of the sensor element and the capacitance value of the capacitor in the circuit, it can be adjusted to reduce the variation in the output voltage. In addition, since the capacitance detection unit and the output adjustment unit can be configured by the same circuit, the circuit can be simplified and downsized.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a capacitive sensor circuit according to an embodiment of the present invention.
2 is a graph for explaining an adjustment principle of an output voltage based on input / output transfer characteristics of the circuit shown in FIG. 1; FIG.
FIG. 3 is a cross-sectional view showing a structure of a conventional acceleration sensor.
Claims (1)
入力電圧を発生する入力電圧発生手段と、
発生された入力電圧が第1の端子に供給される静電容量型センサ素子と、
該静電容量型センサ素子の第2の端子に第1の入力端子が接続された演算増幅器と、
該演算増幅器の第1の入力端子と出力端子との間に接続された帰還コンデンサと、
可変制御可能な調整電圧を発生する調整電圧発生手段であって、静電容量型センサ素子の容量が基準容量値であるときに印加すべき調整電圧をVm(0)、静電容量型センサ素子の容量をCs、帰還コンデンサの容量をCf、入力電圧をVin、演算増幅器の第2の入力端子の電圧をVfとしたとき、
Vm=Vm(0)−(Cs−Cf)(Vin−Vf)/Cf
によって表される調整電圧Vmを発生する調整電圧発生手段と、
発生された調整電圧が第1の端子に供給され、第2の端子に静電容量型センサ素子の第2の端子が接続され、帰還コンデンサと容量値が等しい調整用コンデンサと、
静電容量型センサ素子の第1の端子と入力電圧発生手段との間に接続された第1のスイッチと、
静電容量型センサ素子の第1の端子と基準電位との間に接続され、第1のスイッチと相補的にオン/オフされる第2のスイッチと、
帰還コンデンサに並列接続され、第2のスイッチと同期してオン/オフされる第3のスイッチと、
調整用コンデンサの第1の端子と調整電圧発生手段との間に接続され、第1のスイッチと同期してオン/オフされる第4のスイッチと、
調整用コンデンサの第1の端子と基準電位との間に接続され、第2のスイッチと同期してオン/オフされる第5のスイッチと
を備え、調整電圧を調整することにより、静電容量型センサ素子のバラツキを較正可能にしたことを特徴とする静電容量型センサ回路。In a capacitance type sensor circuit that outputs a change in capacitance as an electrical signal,
An input voltage generating means for generating an input voltage;
A capacitive sensor element to which the generated input voltage is supplied to the first terminal;
An operational amplifier having a first input terminal connected to a second terminal of the capacitive sensor element;
A feedback capacitor connected between a first input terminal and an output terminal of the operational amplifier;
An adjustment voltage generation means for generating an adjustment voltage that can be variably controlled, wherein V m (0) is an adjustment voltage to be applied when the capacitance of the capacitance type sensor element is a reference capacitance value, and the capacitance type sensor When the capacitance of the element is C s , the capacitance of the feedback capacitor is C f , the input voltage is V in , and the voltage at the second input terminal of the operational amplifier is V f ,
V m = V m (0) - (C s -C f) (V in -V f) / C f
Adjusting voltage generating means for generating the adjusting voltage V m represented by:
The generated adjustment voltage is supplied to the first terminal, the second terminal of the capacitive sensor element is connected to the second terminal, and the adjustment capacitor having the same capacitance value as the feedback capacitor;
A first switch connected between the first terminal of the capacitive sensor element and the input voltage generating means;
A second switch connected between the first terminal of the capacitive sensor element and the reference potential and turned on / off in a complementary manner with the first switch;
A third switch connected in parallel to the feedback capacitor and turned on / off in synchronization with the second switch;
A fourth switch connected between the first terminal of the adjustment capacitor and the adjustment voltage generating means and turned on / off in synchronization with the first switch;
It is connected between the first terminal and a reference potential of the control capacitor, by synchronously with the second switch and a fifth switch which is turned on / off, adjusting the regulated voltage, the electrostatic capacitance Capacitance type sensor circuit characterized in that the variation of the type sensor element can be calibrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17954997A JP4272267B2 (en) | 1997-07-04 | 1997-07-04 | Capacitance type sensor circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17954997A JP4272267B2 (en) | 1997-07-04 | 1997-07-04 | Capacitance type sensor circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1123608A JPH1123608A (en) | 1999-01-29 |
JP4272267B2 true JP4272267B2 (en) | 2009-06-03 |
Family
ID=16067697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17954997A Expired - Fee Related JP4272267B2 (en) | 1997-07-04 | 1997-07-04 | Capacitance type sensor circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4272267B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6720777B2 (en) * | 2002-02-15 | 2004-04-13 | Rosemount Inc. | Bridged capacitor sensor measurement circuit |
JP4310695B2 (en) * | 2004-03-30 | 2009-08-12 | アイシン精機株式会社 | Capacitance change detection device |
JP2006229336A (en) * | 2005-02-15 | 2006-08-31 | Act Lsi:Kk | Capacitive microphone |
US7583088B2 (en) * | 2007-01-26 | 2009-09-01 | Freescale Semiconductor, Inc. | System and method for reducing noise in sensors with capacitive pickup |
JP4797075B2 (en) | 2009-02-12 | 2011-10-19 | 株式会社豊田中央研究所 | Capacitive sensor device |
JP4752956B2 (en) | 2009-06-16 | 2011-08-17 | 株式会社デンソー | Electrostatic occupant detection device |
CN108614161B (en) * | 2018-07-27 | 2024-04-16 | 青岛澳科仪器有限责任公司 | Capacitance measuring system |
-
1997
- 1997-07-04 JP JP17954997A patent/JP4272267B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1123608A (en) | 1999-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3498318B2 (en) | Capacitance detection system and method | |
JP4671305B2 (en) | Physical quantity sensor | |
JP2936286B2 (en) | Precision capacitive transducer circuit and method | |
JP4797075B2 (en) | Capacitive sensor device | |
JP3339974B2 (en) | Feedback control method and apparatus for asymmetric differential pressure transducer | |
US10338022B2 (en) | Sensor circuit and method for measuring a physical or chemical quantity | |
JPH11326409A (en) | Capacity detection circuit | |
JP4441495B2 (en) | Differential switched capacitor CV conversion circuit | |
EP3474028A1 (en) | A readout circuit for resistive and capacitive sensors | |
KR20030077232A (en) | Integral capacity-voltage converter | |
EP0716308A2 (en) | Calibration circuit for capacitive sensors | |
JP4272267B2 (en) | Capacitance type sensor circuit | |
CN116735074A (en) | Method for operating a pressure measuring cell of a capacitive pressure sensor | |
JP2011107086A (en) | Capacitance detection circuit, pressure detector, acceleration detector and transducer for microphone | |
JP2972552B2 (en) | Detection circuit and detection method for capacitive sensor | |
JPH1123609A (en) | Capacitive sensor circuit | |
JP2005140657A (en) | Capacity change detecting circuit for electrostatic capacity type sensor | |
JP3282360B2 (en) | Capacitive sensor | |
US5744717A (en) | Circuit arrangement for a capacitive acceleration sensor | |
JP2006292469A (en) | Capacitance-type physical quantity sensor | |
JP3804242B2 (en) | Electrostatic servo physical quantity detector | |
JPH11258074A (en) | Electrostatic capacity type dynamic amount detecting device | |
JP2913395B2 (en) | Capacitive sensor | |
JPH10170544A (en) | C/v conversion circuit and acceleration sensor using the c/v conversion circuit | |
JP2005246498A (en) | Electronic component device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070423 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070507 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150306 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |