[go: up one dir, main page]

JP4246506B2 - Gas-liquid mixed flow injection device - Google Patents

Gas-liquid mixed flow injection device Download PDF

Info

Publication number
JP4246506B2
JP4246506B2 JP2003014194A JP2003014194A JP4246506B2 JP 4246506 B2 JP4246506 B2 JP 4246506B2 JP 2003014194 A JP2003014194 A JP 2003014194A JP 2003014194 A JP2003014194 A JP 2003014194A JP 4246506 B2 JP4246506 B2 JP 4246506B2
Authority
JP
Japan
Prior art keywords
flow
gas
liquid
jet
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003014194A
Other languages
Japanese (ja)
Other versions
JP2004223409A (en
Inventor
真一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP2003014194A priority Critical patent/JP4246506B2/en
Priority to KR1020030096317A priority patent/KR101056529B1/en
Priority to TW093100031A priority patent/TWI290066B/en
Priority to CNB2004100033548A priority patent/CN100336605C/en
Publication of JP2004223409A publication Critical patent/JP2004223409A/en
Application granted granted Critical
Publication of JP4246506B2 publication Critical patent/JP4246506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0425Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid without any source of compressed gas, e.g. the air being sucked by the pressurised liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/044Slits, i.e. narrow openings defined by two straight and parallel lips; Elongated outlets for producing very wide discharges, e.g. fluid curtains

Landscapes

  • Nozzles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体の表面に付着した汚れやその他の付着物に対する洗浄ないし剥離処理などに好適な偏平状気液混合流を噴射するための噴射装置に関する。
【0002】
【従来の技術】
この種の気液混合流の噴射装置に関して、内部空間に設けた加圧液体の噴射口から噴射される液体噴射流とガス入口から流入する気体とを偏平状の混合室を通過させることにより偏平状の気液混合流を形成するものは従来から知られている(特許文献1参照)。しかしながら、この従来技術によれば、偏平状の気液混合流の形成は可能なものの、気液混合流の周辺部と偏平状の混合室の内面との接触による減衰が大きく、噴射速度が低下するという技術的問題があった。また、混合室の内面との接触に基づく抵抗作用によって偏平状混合流の周辺部に生じる部分的な減速により、均一な流速からなる偏平状気液混合流の形成が困難であるという技術的問題もあった。
【0003】
【特許文献1】
特開昭53−18009号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上のような従来の技術的状況に鑑みて発明したもので、加圧液体の噴射口から噴射される液体噴射流をもとに気体吸引口からの気体を混入しながら偏平状の気液混合流を形成する噴射流と流通路の内面との接触に起因する抵抗作用を解消し、前記噴射流の噴射速度の低下を低減し得る気液混合流の噴射装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため、請求項1の発明では、液体と気体からなる気液混合流を形成して噴射する気液混合流の噴射装置において、内部に偏平状の液体噴射流を噴射する加圧液体の噴射口を設けるとともに、その噴射口の下流側に偏平状の流通路を設け、さらに前記液体噴射流により発生する負圧によって気体を前記噴射口の近傍へ流入させる第1の気体吸引口と、該第1の気体吸引口の下流側で、前記液体噴射流に基づいて形成される扇状の噴射流の幅方向の外側に位置する第2の気体吸引口とを設け、前記扇状の噴射流と前記流通路の各内面との間に前記噴射流に沿って気体伴走流が流れるように構成するという技術手段を採用した。すなわち、前記第1の気体吸引口及び第2の気体吸引口から供給される気体によって形成される気体伴走流により、前記噴射流を前記流通路の各内面から離間させて直接接触しないように構成した。したがって、本発明によれば、前記気体伴走流により偏平状の噴射流の周辺部における前記流通路の各内面との接触による抵抗作用が大幅に解消される結果、それらの接触に起因する気液混合流の噴射速度の低下も大幅に低減される。また、噴射流の周辺部における部分的な噴射速度の低下が解消されるので、流速のより均一な偏平状気液混合流の形成が可能である。なお、前記流通路の途中に最小断面積部を設け、その最小断面積部の上流側は噴射流の幅方向と直交する方向に徐々に縮小し、下流側は幅方向に拡大するようにしてもよい(請求項2)。
【0006】
【発明の実施の形態】
本発明に係る噴射装置により形成される偏平状の気液混合流は、物体表面に付着した汚れやその他の付着物に対する洗浄ないし剥離処理に好適であるが、これらに限定されることなく、偏平状の気液混合流の使用可能な場面には広く適用することが可能である。加圧液体として使用される液体の種類に関しては、噴射可能なものであれば特段の制約はなく、水や温水のほか、界面活性剤等の添加剤を加えた洗浄液などの適宜の液体の採用が可能である。気体に関しても同様に特段の制約はなく、研掃材等の粉粒体を混入させることも可能である。なお、研掃材等の粉粒体は、第1の気体吸引口とは別の供給口から供給するように構成してもよい。加圧液体の噴射口と第1の気体吸引口とを設けた内部空間の大きさや具体的形状に関しても特段の制約はなく、下流側に接続される流通路との関係からスムーズに気液混合流が形成できるものであればよい。第1気体吸引口から流入する気体が流通し得る間隙が確保されていれば、加圧液体の噴射口に前記流通路を直接接続する構成も可能である。また、加圧液体の噴射口の具体的構成に関しては、偏平状の液体噴射流の形成が可能なものであればよく、断面形状がスリット状や楕円形の噴射口や、円形の流路の噴射側先端部分に横長の偏平溝を形成したものなどが可能である。
【0007】
前記噴射口からの液体噴射流に基づいて形成される扇状の噴射流の幅方向の外側に設ける第2の気体吸引口の設置個数や設置場所に関しては、その第2の気体吸引口から流入する気体によって形成される気体伴走流によって、前記噴射流が前記流通路の各内面に直接接触しないように構成し得るものであれば、任意の設定が可能である。また、前記流通路に関しては、例えば以下の実施例のように、幅方向に直交する方向が徐々に縮小形成された絞り部と、該絞り部の下流側に接続され、幅方向の寸法が徐々に拡大形成された扇状部とから構成することができる。この場合、絞り部の幅方向あるいは扇状部の厚さ方向に関しては、一定の寸法でもよいし、絞られる形態のものでもよい。なお、流路断面積が最も絞られる最小断面積部の位置に関しては、加圧液体の噴射口近傍では噴射流の幅が小さく気体の吸引力も弱いことから、前記噴射口からある程度は離した位置に設定するのがよい。また、流通路を構成する前記扇状部に関しては、その広がり角度と前記噴射口からの液体噴射流に基づいて形成される扇状の噴射流の広がり角度との関係から、前記噴射流の両側外面と前記扇状部の両側内面との間の隙間を平行あるいは下流側へ向けて徐々に縮小するように設定することも可能である。そして、気液混合流の両側外面と前記扇状部の両側内面との間の隙間を下流側へ向けて徐々に縮小するように設定すれば、扇状部の後端部から外部へ噴射される偏平状気液混合流の両側部に生じやすい外側への余計な広がりを抑制することも可能である。
【0008】
【実施例】
以下、図面を用いて本発明の実施例に関して説明する。図1は本発明の一実施例を示した縦断面図であり、図2はそのA−A断面図である。また、図3〜図7は本実施例に使用された各構成部分を示したもので、図3はノズル本体の縦断面図、図4はその左側面図を示したものであり、図5は液体噴射部の縦断面図、図6はその右側面図、図7は左側面図をそれぞれ示したものである。図1及び図2に示したように、本実施例に係る気液混合流の噴射装置1は、気液混合流の噴射部を構成するノズル本体2の端部に加圧液体噴射用の液体噴射部3を組込むことにより形成される。ノズル本体2は中央部から二分割され、それらの部分2aと部分2bとを溶接等により一体的に結合することにより形成される。その一方の端部には、図3に示したように外部へ開口した空間部4が形成されるように構成されている。そして、前記空間部4に、図5に示したように液体噴射部3の端板5の片側に設けられた液体ノズル部6側を挿入して、前記端板5を介して液体噴射部3をノズル本体2の端部に固定することにより、図1及び図2に示した噴射装置1が形成されることになる。
【0009】
図3に示したように、気液混合流の噴射部を構成するノズル本体2は、一方の端部に前述の空間部4を有しており、その空間部4の下流側は、図2に示したように幅広の偏平状に形成され、上下面が図1及び図3に示したように空間部4の傾斜面に続いてテーパ状に絞られた絞り部7が形成され、さらにその絞り部7の下流側に、高さが一定に形成され、図2に示したように幅方向の寸法が徐々に大きくなるように形成した扇状部8が連続的に形成されている。これらの絞り部7と扇状部8により偏平状の流通路が構成され、それらの絞り部7と扇状部8との接続部が流路断面積の最も小さい最小断面部9を構成している。この最小断面部9の位置は、液体ノズル部6からの液体噴射流をもとに、第1の気体吸引口から流入する気体を巻込みながら気液混合流へと変化していく噴射流10の流れの状態や、第1及び第2の気体吸引口から流入する気体によって前記噴射流10と扇状部8の各内面との間に形成される気体伴走流11の形成状態に着目しながら、速度低下の少ない偏平状の気液混合流からなる外部噴射流12が安定的かつ効率的に形成できるように設定する。
【0010】
そして、本実施例では、前記絞り部7の部分に、図2に示したように前記噴射流10の幅方向の外側に気体吸引口13,14を形成し、これらを第2の気体吸引口として気体を噴射流10と扇状部8の内面との間に供給することにより、前記第1の気体吸引口から流入する気体により形成される気体伴走流11の流量を効果的に増加し得るように構成しており、この点で、本発明としての特徴を有している。この第2の気体吸引口を設けないと、第1の気体吸引口からの気体により形成される気体伴走流11は、下流側へいくに従って噴射流10に巻込まれていき、その気体伴走流11としての厚さが減少し、噴射流10の周辺部が下流側で扇状部8の内面と接してしまうことになる。因みに、第2の気体吸引口に関しては、以上のように絞り部7において前記噴射流10の幅方向の外側に位置するように設けられた場合に限られない。例えば、最小断面部9の上流側あるいは下流側近傍と外部とを連通するようにノズル本体2を横方向に貫通して穿設された1個あるいは複数個の連通孔など、噴射流10の流れの外側に開口して気体を噴射流10と扇状部8の内面との間に供給し得るものであれば構わない。なお、前記ノズル本体2の一方の端部に形成される空間部4の部分は、図4の左側面図に示したように断面矩形状に形成されており、その両側には液体噴射部3の端板5の固定用ボルトに螺合する雌ねじ孔15,16が形成されている。
【0011】
図5に示したように、前記液体噴射部3には、軸心に沿って加圧液体の供給路17が形成され、その下流側端部には前記液体ノズル部6が螺着されている。本実施例の液体ノズル部6の場合には、図6の右側面図に示したように、前記扇状部8に適合した扇状の噴射流10が形成されるように楕円形等の偏平状の噴射口18が形成されている。因みに、本実施例に係る噴射口18では、図2に示したように、該噴射口18から噴射された噴射流10の幅方向の広がり角度αが前記扇状部8の幅方向、すなわち扇状部8の幅方向の内面8a,8b間の広がり角度βより若干大きくなるように設定されており、これにより噴射流10の両側外面と扇状部8の両側内面8a,8bとの間の隙間Sが下流側へ向けて徐々に縮小するように構成している。また、図1に示したように、噴射口18から噴射される噴射流10の幅方向に直交する方向の広がり角度に関しても、その噴射流10が扇状部8の内面に接しないように設定した。
【0012】
前記液体ノズル部6の外形は、その液体噴射部3の端部への着脱時の便宜から六角形に形成し、液体噴射部3の他端部には加圧液体の供給管への接続用の雌ねじを形成した。また、前記端板5は液体噴射部3に対して溶接等により一体的に固着されており、その上下には図7の左側面図に示したように断面矩形状の凹欠部19,20を形成した。この端板5には更に固定用ボルトの挿通孔21,22が形成されており、これらの挿通孔21,22を介して図示しない固定用ボルトを挿通し、ノズル本体2側に形成された前記雌ねじ孔15,16に螺合して締付けることにより、端板5を介して液体噴射部3をノズル本体2側に着脱可能に固定し得るように構成した。したがって、液体噴射部3をノズル本体2から取外すことにより、液体ノズル部6を交換したり取付調整を行うことも可能である。そして、本実施例では、端板5をノズル本体2側へ固定した状態において、該端板5に形成した断面矩形状の凹欠部19,20とノズル本体2側に形成した断面矩形状の空間部4とが重なる部分が外部へ開口され、第1の吸引口を形成するように構成されている。
【0013】
しかして、図1及び図2において、液体噴射部3に形成された供給路17を介して加圧液体が供給されると、その加圧液体は液体ノズル部6の噴射口18から噴射され、噴射流10が形成されるとともに、その噴射流10を囲んで気体伴走流11が形成される。この液体ノズル部6の噴射口18から噴射される噴射流10は、噴射直後は液体のみの細い噴射流であるが、噴射口18から離れるに従って、図2に示したように広がり角度αに沿って噴射幅を徐々に広げるとともに、この噴射流10中に、本実施例では噴射流10自体のエジェクタ作用によって端板5に形成された凹欠部19,20とノズル本体2側に形成された空間部4との重なりによって形成される第1の吸引口を介して吸引される空気等の気体が巻込まれて混入し、徐々に気液混合流を形成しながら、最終的にはノズル本体2から偏平状の気液混合流からなる外部噴射流12として噴射されることになる。また、本実施例においては、絞り部7を形成して最小断面部9を設けるようにしたので、第1の吸引口からの気体の吸引力を強化して噴射流10に対する気体の混入を促進することができ、より均質な高速の気液混合流からなる噴射流を形成することができる。
【0014】
また、本発明の特徴として、噴射流10の幅方向の外側に第2の気体吸引口13,14を形成し、これらの第2の気体吸引口13,14から吸引される気体によって、噴射流10と扇状部8の内面との間に形成される気体伴走流11の流量を効果的に増加するように構成したので、噴射流10と扇状部8の内面との直接接触による噴射流10に対する抵抗作用を大幅に解消することができ、外部噴射流12の周辺部の噴射速度の低下を大幅に低減することができる。なお、図2に示した本実施例の場合のように、前記噴射流10の幅方向の広がり角度αを扇状部8の幅方向の内面8a,8b間の広がり角度βより若干大きく設定し、噴射流10の両側外面と扇状部8の両側内面8a,8bとの間の隙間Sが下流側へ向けて徐々に縮小されるように設定すれば、ノズル本体2から外部へ噴射される偏平状の外部噴射流12の両側部の外側への余計な広がりを抑制してきれいな偏平流を形成することができる。
【0015】
【発明の効果】
本発明によれば、加圧液体の噴射口近傍へ気体を供給する第1の気体吸引口に加えて、液体噴射流に基づいて形成される扇状の噴射流の幅方向の外側に位置する第2の気体吸引口を設けたので、扇状の前記噴射流とその周囲の流通路内面との間に形成される気体伴走流の流量を効果的に増加できることから、とりわけ扇状の噴射流の両側部において問題となる噴射流の周辺部と流通路の各内面との接触に起因する噴射流の速度低下を大幅に低減することができる。その結果、噴射流の周辺部分における部分的な噴射速度の低下が解消されるので、流速のより均一な偏平状噴射流の形成が可能になる。
【図面の簡単な説明】
【図1】 本発明の一実施例を示した縦断面図である。
【図2】 図1のA−A断面図である。
【図3】 ノズル本体の縦断面図である。
【図4】 同ノズル本体の左側面図である。
【図5】 液体噴射部の縦断面図である。
【図6】 同液体噴射部の右側面図である。
【図7】 同液体噴射部の左側面図である。
【符号の説明】
1…噴射装置、2…ノズル本体、3…液体噴射部、4…空間部、5…端板、6…液体ノズル部、7…絞り部、8…扇状部、9…最小断面部、10…噴射流、11…気体伴走流、12…外部噴射流、13,14…気体吸引口、15,16…雌ねじ孔、17…加圧液体の供給路、18…噴射口、19,20…凹欠部、21,22…ボルト挿通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection device for injecting a flat gas-liquid mixed flow suitable for cleaning or peeling treatment of dirt and other attached matters attached to the surface of an object.
[0002]
[Prior art]
With regard to this type of gas-liquid mixed flow injection device, the liquid injection flow injected from the pressurized liquid injection port provided in the internal space and the gas flowing in from the gas inlet are flattened by passing through the flat mixing chamber. What forms a gas-liquid mixed flow is conventionally known (see Patent Document 1). However, according to this prior art, a flat gas-liquid mixed flow can be formed, but the attenuation due to contact between the periphery of the gas-liquid mixed flow and the inner surface of the flat mixing chamber is large, and the injection speed is reduced. There was a technical problem to do. In addition, the technical problem is that it is difficult to form a flat gas-liquid mixed flow having a uniform flow rate due to partial deceleration that occurs in the periphery of the flat mixed flow due to a resistance action based on contact with the inner surface of the mixing chamber. There was also.
[0003]
[Patent Document 1]
JP-A-53-18809 [0004]
[Problems to be solved by the invention]
The present invention was invented in view of the above-described conventional technical situation, and is flattened while mixing gas from a gas suction port based on a liquid jet flow ejected from a pressurized liquid jet port. To provide an injection device for a gas-liquid mixed flow that eliminates the resistance action caused by the contact between the jet flow forming the gas-liquid mixed flow and the inner surface of the flow passage, and can reduce the decrease in the injection speed of the jet flow With the goal.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, according to the first aspect of the present invention, in the gas-liquid mixed flow injection device that forms and injects a gas-liquid mixed flow composed of a liquid and a gas, a flat liquid injection flow is injected inside. A first gas suction is provided in which a pressure liquid injection port is provided, a flat flow passage is provided downstream of the injection port, and gas is caused to flow into the vicinity of the injection port by the negative pressure generated by the liquid injection flow. A second gas suction port located on the outer side in the width direction of the fan-shaped jet formed on the downstream side of the first gas suction port, the fan-shaped jet A technical means is adopted in which a gas-accompanied flow is configured to flow along the jet flow between the jet flow and each inner surface of the flow passage. That is, the jet flow is separated from each inner surface of the flow passage and is not in direct contact with the gas wake flow formed by the gas supplied from the first gas suction port and the second gas suction port. did. Therefore, according to the present invention, as a result of the resistance action caused by the contact with each inner surface of the flow passage in the peripheral portion of the flat jet flow being largely eliminated by the gas entrained flow, the gas-liquid resulting from the contact The decrease in the jet speed of the mixed flow is also greatly reduced. In addition, since a partial decrease in the injection speed in the peripheral portion of the injection flow is eliminated, it is possible to form a flat gas-liquid mixed flow with a more uniform flow velocity. A minimum cross-sectional area is provided in the middle of the flow passage, and the upstream side of the minimum cross-sectional area is gradually reduced in the direction perpendicular to the width direction of the jet flow, and the downstream side is expanded in the width direction. (Claim 2).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The flat gas-liquid mixed flow formed by the injection device according to the present invention is suitable for cleaning or peeling treatment for dirt and other deposits attached to the surface of the object, but is not limited thereto. The present invention can be widely applied to scenes where a gas-liquid mixed flow can be used. The type of liquid used as the pressurized liquid is not particularly limited as long as it can be jetted. Adequate liquids such as water and warm water, as well as cleaning liquids with additives such as surfactants, are used. Is possible. Similarly, there are no particular restrictions on the gas, and it is also possible to mix particles such as abrasives. In addition, you may comprise so that the granular materials, such as an abrasive, may be supplied from the supply port different from a 1st gas suction port. There is no particular restriction on the size and specific shape of the internal space provided with the pressurized liquid injection port and the first gas suction port, and smooth gas-liquid mixing is possible due to the relationship with the flow passage connected downstream. It is sufficient if the flow can be formed. If the gap through which the gas flowing in from the first gas suction port can flow is secured, a configuration in which the flow passage is directly connected to the pressurized liquid injection port is also possible. In addition, the specific configuration of the pressurized liquid injection port may be any as long as it can form a flat liquid injection flow, and the cross-sectional shape may be a slit-like or elliptical injection port or a circular flow channel. It is possible to have a horizontally long flat groove formed at the tip of the ejection side.
[0007]
With respect to the number and location of the second gas suction ports provided on the outer side in the width direction of the fan-shaped jet flow formed based on the liquid jet flow from the jet port, the second gas suction port flows in. Any setting can be used as long as it can be configured so that the jet flow does not directly contact each inner surface of the flow passage by the gas-driven flow formed by the gas. As for the flow passage, for example, as in the following embodiments, a throttle portion that is gradually reduced in the direction perpendicular to the width direction is connected to the downstream side of the throttle portion, and the dimension in the width direction gradually increases. And a fan-shaped portion formed in an enlarged manner. In this case, the width direction of the narrowed portion or the thickness direction of the fan-shaped portion may have a fixed size or a narrowed shape. As for the position of the smallest cross-sectional area where the flow path cross-sectional area is most restricted, the position of the small-area cross-sectional area is some distance away from the jet port because the jet flow width is small and the gas suction force is weak in the vicinity of the jet port It is good to set to. Further, regarding the fan-shaped portion constituting the flow passage, from the relationship between the spread angle and the spread angle of the fan-shaped jet flow formed based on the liquid jet flow from the jet port, It is also possible to set so that the gap between the inner surfaces on both sides of the fan-shaped portion is gradually reduced in parallel or downstream. If the gap between the outer surface on both sides of the gas-liquid mixed flow and the inner surfaces on both sides of the fan-shaped portion is set so as to be gradually reduced toward the downstream side, the flatness injected from the rear end portion of the fan-shaped portion to the outside It is also possible to suppress the outward spread that tends to occur on both sides of the gas-liquid mixture flow.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, and FIG. 2 is an AA sectional view thereof. 3 to 7 show the components used in the present embodiment, FIG. 3 is a longitudinal sectional view of the nozzle body, and FIG. 4 is a left side view thereof. Is a longitudinal sectional view of the liquid ejecting portion, FIG. 6 is a right side view thereof, and FIG. 7 is a left side view thereof. As shown in FIGS. 1 and 2, the gas-liquid mixed flow ejection device 1 according to the present embodiment includes a liquid for pressurized liquid ejection at an end of a nozzle body 2 that constitutes a gas-liquid mixed flow ejection unit. It is formed by incorporating the injection unit 3. The nozzle body 2 is divided into two parts from the central part, and is formed by integrally connecting the parts 2a and 2b by welding or the like. As shown in FIG. 3, a space 4 that opens to the outside is formed at one end. Then, as shown in FIG. 5, the liquid nozzle portion 6 side provided on one side of the end plate 5 of the liquid ejecting portion 3 is inserted into the space portion 4, and the liquid ejecting portion 3 is inserted through the end plate 5. Is fixed to the end of the nozzle body 2 to form the injection device 1 shown in FIGS.
[0009]
As shown in FIG. 3, the nozzle main body 2 constituting the gas-liquid mixed flow injection section has the above-described space section 4 at one end, and the downstream side of the space section 4 is shown in FIG. As shown in FIGS. 1 and 3, a narrowed portion 7 having a tapered shape is formed following the inclined surface of the space portion 4 as shown in FIGS. On the downstream side of the narrowed portion 7, a fan-shaped portion 8 is formed continuously so that the height is constant and the dimension in the width direction is gradually increased as shown in FIG. These throttle portions 7 and fan-shaped portions 8 constitute a flat flow passage, and the connecting portion between the throttle portions 7 and the fan-shaped portions 8 constitutes the smallest cross-sectional portion 9 having the smallest flow path cross-sectional area. The position of the minimum cross-sectional portion 9 is based on the liquid jet flow from the liquid nozzle portion 6 and changes to a gas-liquid mixed flow while entraining the gas flowing in from the first gas suction port. While paying attention to the state of the flow and the formation state of the gas wake 11 formed between the jet 10 and each inner surface of the fan-shaped portion 8 by the gas flowing in from the first and second gas suction ports, It is set so that the external jet flow 12 composed of a flat gas-liquid mixed flow with little speed reduction can be formed stably and efficiently.
[0010]
In the present embodiment, gas suction ports 13 and 14 are formed outside the jet flow 10 in the width direction as shown in FIG. As described above, by supplying the gas between the jet flow 10 and the inner surface of the fan-shaped portion 8, the flow rate of the gas wake 11 formed by the gas flowing in from the first gas suction port can be effectively increased. In this respect, the present invention has a feature as the present invention. If this second gas suction port is not provided, the gas accompanying flow 11 formed by the gas from the first gas suction port is wound into the jet flow 10 as it goes downstream, and the gas accompanying flow 11 As a result, the peripheral portion of the jet flow 10 comes into contact with the inner surface of the fan-shaped portion 8 on the downstream side. Incidentally, the second gas suction port is not limited to the case where the second gas suction port is provided so as to be positioned outside the injection flow 10 in the width direction in the throttle portion 7 as described above. For example, the flow of the injection flow 10 such as one or a plurality of communication holes that are formed by penetrating the nozzle body 2 in the lateral direction so as to communicate the upstream side or the vicinity of the downstream side of the minimum cross section 9 with the outside. Any gas may be used as long as the gas can be supplied between the jet flow 10 and the inner surface of the fan-shaped portion 8. The portion of the space 4 formed at one end of the nozzle body 2 is formed in a rectangular cross section as shown in the left side view of FIG. Female screw holes 15 and 16 are formed to be screwed into the fixing bolts of the end plate 5.
[0011]
As shown in FIG. 5, a pressurized liquid supply path 17 is formed along the axial center of the liquid ejecting section 3, and the liquid nozzle section 6 is screwed to the downstream end thereof. . In the case of the liquid nozzle portion 6 of this embodiment, as shown in the right side view of FIG. 6, a flat shape such as an ellipse is formed so as to form a fan-shaped jet flow 10 adapted to the fan-shaped portion 8. An injection port 18 is formed. Incidentally, in the injection port 18 according to the present embodiment, as shown in FIG. 2, the spread angle α in the width direction of the injection flow 10 injected from the injection port 18 is the width direction of the fan-shaped portion 8, that is, the fan-shaped portion. 8 is set so as to be slightly larger than the spread angle β between the inner surfaces 8a and 8b in the width direction, whereby a gap S between the outer surface on both sides of the jet flow 10 and the inner surfaces 8a and 8b on both sides of the fan-shaped portion 8 is set. It is configured to gradually shrink toward the downstream side. In addition, as shown in FIG. 1, the spread angle in the direction perpendicular to the width direction of the jet stream 10 ejected from the jet port 18 is also set so that the jet stream 10 does not contact the inner surface of the fan-shaped portion 8. .
[0012]
The outer shape of the liquid nozzle portion 6 is formed in a hexagonal shape for the convenience of attachment / detachment to the end portion of the liquid ejecting portion 3, and the other end portion of the liquid ejecting portion 3 is connected to a supply pipe for pressurized liquid. The internal thread was formed. Further, the end plate 5 is integrally fixed to the liquid ejecting portion 3 by welding or the like, and the upper and lower portions thereof are recessed portions 19, 20 having a rectangular cross section as shown in the left side view of FIG. Formed. The end plate 5 is further provided with fixing bolt insertion holes 21 and 22, and through the insertion holes 21 and 22, fixing bolts (not shown) are inserted to form the nozzle body 2 side. The liquid ejecting portion 3 is configured to be detachably fixed to the nozzle body 2 side via the end plate 5 by being screwed into the female screw holes 15 and 16 and tightened. Therefore, by removing the liquid ejecting section 3 from the nozzle body 2, it is possible to replace the liquid nozzle section 6 or perform mounting adjustment. In the present embodiment, in a state where the end plate 5 is fixed to the nozzle body 2 side, the rectangular cross-sectional recesses 19 and 20 formed on the end plate 5 and the rectangular cross section formed on the nozzle body 2 side are provided. A portion where the space portion 4 overlaps is opened to the outside and is configured to form a first suction port.
[0013]
1 and 2, when the pressurized liquid is supplied through the supply path 17 formed in the liquid ejecting unit 3, the pressurized liquid is ejected from the ejection port 18 of the liquid nozzle unit 6, An injection flow 10 is formed, and a gas traveling flow 11 is formed surrounding the injection flow 10. The jet stream 10 jetted from the jet port 18 of the liquid nozzle section 6 is a thin jet stream only of liquid immediately after jetting, but as it moves away from the jet port 18, as shown in FIG. In the present embodiment, the ejection width is gradually increased, and in this embodiment, the ejector action of the ejection flow 10 itself is formed on the nozzle body 2 side with the recessed portions 19 and 20 formed on the end plate 5. A gas such as air sucked through the first suction port formed by overlapping with the space 4 is entrained and mixed, and gradually forms a gas-liquid mixed flow. To the external jet flow 12 consisting of a flat gas-liquid mixed flow. Further, in this embodiment, since the throttle portion 7 is formed and the minimum cross-sectional portion 9 is provided, the suction force of the gas from the first suction port is strengthened and the mixing of the gas into the jet flow 10 is promoted. Therefore, it is possible to form a jet flow composed of a more homogeneous high-speed gas-liquid mixed flow.
[0014]
In addition, as a feature of the present invention, the second gas suction ports 13 and 14 are formed outside the width direction of the jet flow 10, and the jet flow is caused by the gas sucked from these second gas suction ports 13 and 14. 10 and the inner surface of the fan-shaped portion 8, the flow rate of the gas follower flow 11 formed between the fan-shaped portion 8 and the inner surface of the fan-shaped portion 8 is effectively increased. The resistance action can be largely eliminated, and the decrease in the injection speed around the external injection flow 12 can be greatly reduced. As in the case of the present embodiment shown in FIG. 2, the spread angle α in the width direction of the jet flow 10 is set slightly larger than the spread angle β between the inner surfaces 8a and 8b in the width direction of the fan-shaped portion 8, If the gap S between the outer surface on both sides of the jet flow 10 and the inner surfaces 8a and 8b on both sides of the fan-shaped portion 8 is set so as to be gradually reduced toward the downstream side, a flat shape is ejected from the nozzle body 2 to the outside. Therefore, it is possible to suppress the excessive spread of the external jet flow 12 on both sides of the external jet flow 12 to form a clean flat flow.
[0015]
【The invention's effect】
According to the present invention, in addition to the first gas suction port for supplying gas to the vicinity of the pressurized liquid ejection port, the first is located outside in the width direction of the fan-shaped ejection flow formed based on the liquid ejection flow. Since the two gas suction ports are provided , the flow rate of the gas wake flow formed between the fan-shaped jet flow and the inner surface of the surrounding flow passage can be effectively increased. the slowdown of the injection supercritical flow you due to contact with the inner surface of the peripheral portion of a problem jetting flow passage in can be greatly reduced. As a result , since the partial drop in the injection speed in the peripheral portion of the injection flow is eliminated, it is possible to form a flat injection flow with a more uniform flow velocity.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line AA of FIG.
FIG. 3 is a longitudinal sectional view of a nozzle body.
FIG. 4 is a left side view of the nozzle body.
FIG. 5 is a longitudinal sectional view of a liquid ejecting unit.
FIG. 6 is a right side view of the liquid ejecting unit.
FIG. 7 is a left side view of the liquid ejecting unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Injection apparatus, 2 ... Nozzle main body, 3 ... Liquid injection part, 4 ... Space part, 5 ... End plate, 6 ... Liquid nozzle part, 7 ... Constriction part, 8 ... Fan-shaped part, 9 ... Minimum cross-section part, 10 ... Injecting flow, 11 ... Gas-driven flow, 12 ... External injection flow, 13, 14 ... Gas suction port, 15, 16 ... Female screw hole, 17 ... Supply path for pressurized liquid, 18 ... Injection port, 19, 20 ... Notch Part, 21, 22 ... bolt insertion hole

Claims (2)

液体と気体からなる気液混合流を形成して噴射する気液混合流の噴射装置において、内部に偏平状の液体噴射流を噴射する加圧液体の噴射口を設けるとともに、その噴射口の下流側に偏平状の流通路を設け、さらに前記液体噴射流により発生する負圧によって気体を前記噴射口の近傍へ流入させる第1の気体吸引口と、該第1の気体吸引口の下流側で、前記液体噴射流に基づいて形成される扇状の噴射流の幅方向の外側に位置する第2の気体吸引口とを設け、前記扇状の噴射流と前記流通路の各内面との間に前記噴射流に沿って気体伴走流が流れるように構成したことを特徴とする気液混合流の噴射装置。In a gas-liquid mixed flow injection device that forms and injects a gas-liquid mixed flow composed of liquid and gas, a pressurized liquid injection port for injecting a flat liquid injection flow is provided inside, and downstream of the injection port A flat flow passage on the side, and a first gas suction port for allowing gas to flow into the vicinity of the ejection port by the negative pressure generated by the liquid jet flow, and a downstream side of the first gas suction port A second gas suction port located outside in the width direction of the fan-shaped jet formed based on the liquid jet, and between the fan-shaped jet and each inner surface of the flow passage, A gas-liquid mixed flow jetting apparatus, characterized in that a gas accompanying flow flows along the jet flow. 前記流通路の途中に最小断面積部を設け、その最小断面積部の上流側は噴射流の幅方向と直交する方向に徐々に縮小し、下流側は幅方向に拡大するようにした請求項1に記載の気液混合流の噴射装置。  A minimum cross-sectional area portion is provided in the middle of the flow passage, and the upstream side of the minimum cross-sectional area portion is gradually reduced in a direction orthogonal to the width direction of the jet flow, and the downstream side is expanded in the width direction. 2. The gas-liquid mixed flow injection device according to 1.
JP2003014194A 2003-01-23 2003-01-23 Gas-liquid mixed flow injection device Expired - Fee Related JP4246506B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003014194A JP4246506B2 (en) 2003-01-23 2003-01-23 Gas-liquid mixed flow injection device
KR1020030096317A KR101056529B1 (en) 2003-01-23 2003-12-24 Injector of gas-liquid mixture
TW093100031A TWI290066B (en) 2003-01-23 2004-01-02 Ejection device of ejecting gas-liquid mixed flow
CNB2004100033548A CN100336605C (en) 2003-01-23 2004-01-23 Device for spraying gas-liquid mixed fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014194A JP4246506B2 (en) 2003-01-23 2003-01-23 Gas-liquid mixed flow injection device

Publications (2)

Publication Number Publication Date
JP2004223409A JP2004223409A (en) 2004-08-12
JP4246506B2 true JP4246506B2 (en) 2009-04-02

Family

ID=32902309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014194A Expired - Fee Related JP4246506B2 (en) 2003-01-23 2003-01-23 Gas-liquid mixed flow injection device

Country Status (4)

Country Link
JP (1) JP4246506B2 (en)
KR (1) KR101056529B1 (en)
CN (1) CN100336605C (en)
TW (1) TWI290066B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636956B2 (en) 2005-07-07 2011-02-23 シブヤマシナリー株式会社 Internal cleaning device
CN102363148B (en) * 2011-10-25 2013-08-28 杭州电子科技大学 High-pressure water jet cleaning device with gas injection system
JP5374633B1 (en) * 2012-12-25 2013-12-25 株式会社トップス Horizontal drain pipe cleaning equipment
KR102300363B1 (en) * 2015-04-21 2021-09-09 시부야 마시나리 가부시키가이샤 Hongi jet injection device
JP6834072B2 (en) * 2018-06-08 2021-02-24 株式会社オプトクリエーション Fine bubble liquid production equipment, fine bubble liquid production method and ozone fine bubble liquid
US10960441B2 (en) 2018-10-24 2021-03-30 Richard E. Kohler Directed flow pressure washer system, method and apparatus
DE102023119415A1 (en) 2023-07-21 2025-01-23 Alfred Kärcher SE & Co. KG FLAT JET NOZZLE ARRANGEMENT
DE102023120670A1 (en) 2023-08-03 2025-02-06 Alfred Kärcher SE & Co. KG DEVICE FOR SURROUNDING A LIQUID JET WITH AN AIR FLOW AND LIQUID DISPENSING DEVICE WITH SUCH A DEVICE
DE102023120675A1 (en) 2023-08-03 2025-02-06 Alfred Kärcher SE & Co. KG DEVICE FOR SURROUNDING A LIQUID JET WITH AN AIR FLOW AND LIQUID DISPENSING DEVICE WITH SUCH A DEVICE
DE102023124295A1 (en) * 2023-09-08 2025-03-13 Alfred Kärcher SE & Co. KG Nozzle attachment assembly
DE102023135865A1 (en) * 2023-09-27 2025-03-27 Alfred Kärcher SE & Co. KG Dispensing device for discharging a liquid jet surrounded by an air flow

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195779A (en) * 1974-08-30 1980-04-01 Exxon Research & Engineering Co. Mixing apparatus with outlet nozzle and uses thereof
JPS58107159U (en) * 1981-12-30 1983-07-21 アロイ工器株式会社 Pressurized gas-liquid spray device
JPS59183819A (en) * 1983-04-01 1984-10-19 Mitsuo Sohgoh Kenkyusho Kk Method for dispersing other material into liquid and/or gas and bath-cleaning machine and combustion method utilizing said method
US5061406A (en) * 1990-09-25 1991-10-29 Union Carbide Industrial Gases Technology Corporation In-line gas/liquid dispersion
US6267301B1 (en) * 1999-06-11 2001-07-31 Spraying Systems Co. Air atomizing nozzle assembly with improved air cap
JP5105569B2 (en) 2000-06-30 2012-12-26 澁谷工業株式会社 Cleaning nozzle
JP4766622B2 (en) * 2001-02-21 2011-09-07 澁谷工業株式会社 Gas-liquid mixed flow injection device
JP2002263528A (en) * 2001-03-08 2002-09-17 Shibuya Machinery Co Ltd Jet nozzle

Also Published As

Publication number Publication date
KR101056529B1 (en) 2011-08-12
KR20040067822A (en) 2004-07-30
CN100336605C (en) 2007-09-12
CN1517152A (en) 2004-08-04
TW200417417A (en) 2004-09-16
TWI290066B (en) 2007-11-21
JP2004223409A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP4438209B2 (en) Shower equipment
JP4246506B2 (en) Gas-liquid mixed flow injection device
KR20020002300A (en) Cleaning nozzle and cleaning apparatus
JP4341864B2 (en) Gas-liquid mixed flow injection device
JP4141006B2 (en) High pressure cleaning spray nozzle
EP1234611B1 (en) Jetting apparatus for mixed flow of gas and liquid
JPH09220495A (en) Fluid injection nozzle
US20050252539A1 (en) Vehicular washer nozzle
JP2002067887A (en) Variable jet direction diffusion nozzle and liquid jet device
JP2548635Y2 (en) Bathroom shower head
JP2003205256A (en) Nozzle
JP4447726B2 (en) Fluid injection nozzle
JP4766622B2 (en) Gas-liquid mixed flow injection device
JP2014031760A (en) Jet pump and negative pressure forming method by means of composite jet flow type jet pump
JPH0788531A (en) Spray nozzle
JP2010240580A (en) Liquid injection nozzle and shower head
JP2780721B2 (en) Jet pump
JP4246550B2 (en) Injection nozzle
JP4766623B2 (en) Gas-liquid mixed flow injection device
JPH08338058A (en) Washing nozzle device
JP2535203Y2 (en) Liquid injection nozzle
JP2004344689A (en) Two-fluid nozzle
JP3796195B2 (en) Rolled oil header
JP2002263529A (en) Jet nozzle
JPH08240199A (en) Pump device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Ref document number: 4246506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees