JP4190076B2 - Pneumatic tire and its mounting method - Google Patents
Pneumatic tire and its mounting method Download PDFInfo
- Publication number
- JP4190076B2 JP4190076B2 JP02985499A JP2985499A JP4190076B2 JP 4190076 B2 JP4190076 B2 JP 4190076B2 JP 02985499 A JP02985499 A JP 02985499A JP 2985499 A JP2985499 A JP 2985499A JP 4190076 B2 JP4190076 B2 JP 4190076B2
- Authority
- JP
- Japan
- Prior art keywords
- rib
- pneumatic tire
- width
- vehicle
- chamfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Tires In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、超高性能タイプの乗用車などに好適な空気入りタイヤとその装着方法に関する。
【0002】
【従来の技術】
超高性能タイプの乗用車などには、タイヤ外側からの横力入力時に、タイヤが最適な接地形状になるように、一般にフロントタイヤにネガティブキャンバーが付いている。一方、従来の空気入りタイヤのトレッドにおける溝角は、トレッドの外郭半径(R)上に位置していた。即ち、トレッドの周方向に3本の主溝が直線状に延びている場合には、これら3本の溝角はひとつの半径(R)でカバーされていた。
【0003】
【発明が解決しようとする課題】
従来、トレッドの外郭R上に溝角が位置するトレッドパターンを有する空気入りタイヤをネガティブキャンバーが付いた車両に装着して走行した場合、内側寄りの溝角が横力の入力側になり、かつ接地圧も高いため、そちら側だけが摩耗し、外側は全く摩耗が進んでいないにもかかわらず、内側は溝底面まで先に摩耗して、タイヤの寿命が早期に終わってしまうという問題があった。また、操縦安定性の面では、溝角の接地圧ばかり高く、接地形状も溝角部のみ接地長が長く、リブ中央部はその分接地長が短い形状となっており、バランスよく接地しているとは言い難かった。
【0004】
そこで本発明の目的は、溝角に集中している接地圧を分散させ、偏った摩耗を低減させると同時に、接地形状のいびつさを減らし、操縦安定性を改善したクラウン形状を有する空気入りタイヤを提供することにある。
また、本発明の他の目的は、上記空気入りタイヤの車両、特には超高性能系乗用車への最適な装着方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の空気入りタイヤは、トレッドの周方向に直線状に延びる、複数であるN本の主溝と、該主溝間および該主溝とトレッド端との間に形成されたN+1本のリブ列とを備えたトレッドパターンを有する空気入りタイヤにおいて、
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X4、X5・・・XN+1、面取り深さを同順番にY2、Y3、Y4、Y5・・・YN+1とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR4、WR5・・・WRN+1、高さを同順番にDR2、DR3、DR4、DR5・・・DRN+1としたとき、各面取り幅X2、X3、X4、X5・・・XN+1は、対応する各リブ列幅WR2、WR3、WR4、WR5・・・WRN+1の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y4、Y5・・・YN+1は、対応する各リブ高さDR2、DR3、DR4、DR5・・・DRN+1の、夫々5〜20%の範囲内であることを特徴とするものである。
【0006】
本発明の好適な空気入りタイヤは、トレッドの周方向に直線状に延びる4本の主溝と、該主溝間および該主溝とトレッド端との間に形成された5本のリブ列とを備えたトレッドパターンを有する空気入りタイヤにおいて、
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X4、X5、面取り深さを同順番にY2、Y3、Y4、Y5とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR4、WR5、高さを同順番にDR2、DR3、DR4、DR5としたとき、各面取り幅X2、X3、X4、X5は、対応する各リブ列幅WR2、WR3、WR4、WR5の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y4、Y5は、対応する各リブ高さDR2、DR3、DR4、DR5の、夫々5〜20%の範囲内であることを特徴とするものである。
【0007】
また、本発明の他の好適な空気入りタイヤは、トレッドの周方向に直線状に延びる3本の主溝と、該主溝間および該主溝とトレッド端との間に形成された4本のリブ列とを備えたトレッドパターンを有する空気入りタイヤにおいて、
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X5、面取り深さを同順番にY2、Y3、Y5とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR5、高さを同順番にDR2、DR3、DR5としたとき、各面取り幅X2、X3、X5は、対応する各リブ列幅WR2、WR3、WR5の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y5は、対応する各リブ高さDR2、DR3、DR5の、夫々5〜20%の範囲内であることを特徴とするものである。
【0008】
さらに、本発明は、空気入りタイヤの車両への装着方法に関し、上記空気入りタイヤをネガティブキャンバーが付いている車両に装着することを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1に、本発明の一実施の形態である空気入りタイヤのトレッド部1の断面を示す。かかる空気入りタイヤは、周方向に直線状に延びる4本の主溝2a〜2dと、該主溝間および該主溝とトレッド端との間に形成された5本のリブ列3a〜3eとを備えたトレッドパターンを有する。なお、図1では、車両装着時の外側より内側に向けてリブ列の幅を順番に夫々WR1、WR2、WR3、WR4、WR5とし、かつリブの高さを同順番にDR1、DR2、DR3、DR4、DR5として示してある。
【0010】
この空気入りタイヤは左右非対称タイヤであり、車両装着時の外側より内側に向けて2番目以降のリブ列の、車両装着時外側のリブエッヂが面取りされている。このリブ列の面取り幅を図示するように車両装着時の外側より内側に向けて順番にX2、X3、X4、X5、面取り深さを同順番にY2、Y3、Y4、Y5としたとき、各面取り幅X2、X3、X4、X5は、対応する各リブ列幅WR2、WR3、WR4、WR5の、夫々10〜50%、好ましくは15〜30%の範囲内にある。また、各面取り深さY2、Y3、Y4、Y5は、対応する各リブ高さDR2、DR3、DR4、DR5の、夫々5〜20%、好ましくは5〜10%の範囲内にある。上記範囲内で面取りすることにより溝角での偏摩耗を効果的に抑制することができる。
【0011】
前記面取り幅は、次式、
X5>X2、X2>X3、X2>X4
で表される関係にあることが好ましく、また前記面取り幅が次式、
(X5−X2)/X5=0.1〜0.3、
(X5−X3)/X5=0.3〜0.5、
(X5−X4)/X5=0.3〜0.5
で表される関係を満たすことが好ましい。
【0012】
さらに、前記面取り深さが次式、
Y5≧Y2≧Y3、Y4
で表される関係にあることが好ましく、また前記面取り深さが次式、
(Y5−Y3)/Y3=0〜1、
(Y5−Y4)/Y4=0〜1
で表される関係を満たすことが好ましい。面取りの幅および深さを上記関係とすることにより、操縦安定性との両立を図ることができる。
【0013】
図2に、本発明の他の実施の形態である空気入りタイヤのトレッド部の断面を示す。かかる空気入りタイヤのトレッドは、周方向に直線状に延びる3本の主溝と、該主溝間および該主溝とトレッド端との間に形成された4本のリブ列とを備えたトレッドパターンを有する。なお、図2では、車両装着時の外側より内側に向けてリブ列の幅を順番に夫々WR1、WR2、WR3、WR5とし、かつリブの高さを同順番にDR2、DR3、DR5として示してある。
【0014】
この空気入りタイヤも左右非対称タイヤであり、車両装着時の外側より内側に向けて2番目以降のリブ列の、車両装着時外側のリブエッヂが面取りされている。このリブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X5、面取り深さを同順番にY2、Y3、Y5としたとき、各面取り幅X2、X3、X5は、対応する各リブ列幅WR2、WR3、WR5の、夫々10〜50%、好ましくは15〜30%の範囲内にある。また、各面取り深さY2、Y3、Y5は、対応する各リブ高さDR2、DR3、DR5の、夫々5〜20%、好ましくは5〜10%の範囲内にある。4本の主溝の場合と同様に上記範囲内で面取りすることにより溝角での偏摩耗を効果的に抑制することができる。
【0015】
前記面取り幅は、次式、
X5>X2、X2>X3
で表される関係にあることが好ましく、また前記面取り幅が次式、
(X5−X2)/X5=0.1〜0.3、
(X5−X3)/X5=0.3〜0.5、
で表される関係を満たすことが好ましい。
【0016】
さらに、前記面取り深さが次式、
Y5≧Y2≧Y3
で表される関係にあることが好ましく、また前記面取り深さが次式、
(Y5−Y3)/Y3=0〜1、
で表される関係を満たすことが好ましい。これらの関係も4本の主溝の場合と同様に面取りの幅および深さを上記関係とすることにより、操縦安定性との両立を図ることができる。
【0017】
本発明の空気入りタイヤにおいては、前記面取りがスムーズにリブ表面に連接していることが好ましい。
【0018】
本発明の装着方法においては、上述の本発明の空気入りタイヤをネガティブキャンバーが付いている車両に、好ましくはフロントタイヤとして装着するものであり、車両としては超高性能系乗用車が好適である。
【0019】
【実施例】
以下、本発明を実施例に基づき説明する。
タイヤセンターで左右対称にトレッドの周方向に直線状に延びる3本の主溝を有するポルシェ用空気入りタイヤにおいて、従来タイヤとしては全くリブ列に面取りがなされてないものを、また実施タイヤとしては下記の表1に示す条件で面取りがなされた図2に示すタイプのものを夫々試作した。なお、表中の符号は図2中のものに対応する。
【0020】
【表1】
【0021】
タイヤサイズが205/50R16であるこれら供試タイヤについて、最内側溝角接地長、リブ中央接地長、CP、摩耗量に関する試験を次のようにして実施した。
【0022】
まず、供試タイヤに内圧2.00kg/cm2を充填し、ネガティブキャンバーを1°付与し、400kgの負荷をかけた時のフットプリント(図3参照)を作成して、最内側溝角接地長Lおよび前記最内側溝角接地長Lを測定した箇所と主溝を挟んで対向するリブの中央の接地長Cを測定し、夫々の値を指数にて評価した。
【0023】
また、操縦安定性は、ネガティブキャンバーを1°付与し、400kgの負荷をかけた時のCP(kgf/deg.)を測定し、その値を指数で評価した。外径1,500mmのドラム上に内圧2.00kg/cm2に充填した試験タイヤを設置し、荷重400kgを負荷させた後30km/hrの速度で30分間予備走行させ、無負荷状態で、内圧を2.00kg/cm2に再充填し、再度400kgの荷重を負荷し、同一直径の前記ドラム上で同一速度にてスリップアングルを最大±14°まで正負連続してつける。正負各角度でのコーナリングフォース(CF)を測定し、次式に従いコーナリングパワー(CP)を決めた。
CP(kg/deg)={CF(1°)(kg)+CF(2°)(kg)/2+CF(3°)(kg)/3+CF(4°)(kg)/4}/4
【0024】
さらに、耐偏摩耗性の評価として、同一車両を用い、従来タイヤおよび実施タイヤの2種類を前輪に装着して、一般路を1万km走行後に、各溝角の段差量を測定して平均した数値を算出し、その値を指数にて評価した。
得られた結果を下記の表2に示す。
【0025】
【表2】
【0026】
従来タイヤにおいては、3本の溝はひとつのR(R▲1▼)でカバーされている。これに対し実施例では各リブ溝において、断面内で外側に向かってダブルクラウンR(r▲1▼、▲2▼、▲3▼)をとり、溝深さ方向に段差(Y2,Y3,Y5)が生じている。このダブルクラウンRの幅X2、X3、X5はX5>X2>X3の順に大きく、また段差はY5>Y2>Y3の順に大きくなっている。接地圧の高い順、つまり内側より順にX5>X3>X2、Y5>Y3>Y2の順で面取りすれば、溝角での偏摩耗を効果的に抑制することはできるが、センター部X3の面取りが比較的大きいため、センターのリブ中央接地長が減少してしまい、操縦安定性の面でのマイナス面も大きかった。これに対し、実施例のタイヤにおいては耐偏摩耗性と操縦安定性とを良好に両立させることができた。
【0027】
【発明の効果】
本発明によれば、溝角に集中する偏摩耗を抑制することができ、タイヤ寿命を延ばすことができると同時に、操縦安定性の向上をはかることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る空気入りタイヤのトレッド部の断面図である。
【図2】本発明の他の実施の形態に係る空気入りタイヤのトレッド部の断面図である。
【図3】タイヤの接地形状を示す平面図である。
【符号の説明】
1 トレッド部
2a〜2d 主溝
3a〜3e リブ列
C リブ中央接地長
L 最内側溝角接地長[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire suitable for an ultra-high performance type passenger car and the like and a mounting method thereof.
[0002]
[Prior art]
Ultra-high-performance passenger cars, etc., generally have a negative camber on the front tire so that the tire will have an optimal grounding shape when lateral force is input from the outside of the tire. On the other hand, the groove angle in the tread of the conventional pneumatic tire is located on the outer radius (R) of the tread. That is, when the three main grooves extend linearly in the circumferential direction of the tread, these three groove angles are covered with one radius (R).
[0003]
[Problems to be solved by the invention]
Conventionally, when a pneumatic tire having a tread pattern in which a groove angle is located on the outer surface R of the tread is mounted on a vehicle with a negative camber, the inner groove angle becomes an input side of lateral force, and Since the contact pressure is high, there is a problem that only the side wears and the outside wears out at all, but the inside wears down to the groove bottom first, and the tire life ends early. It was. Also, in terms of handling stability, only the contact pressure at the groove angle is high, and the contact shape is also long at the groove corner, and the contact length at the center of the rib is shortened accordingly, so that the ground is well balanced. It was hard to say.
[0004]
Accordingly, an object of the present invention is to disperse the contact pressure concentrated on the groove angle, reduce uneven wear, and at the same time, reduce the ground contact shape distorting and improve the handling stability of the pneumatic tire having a crown shape. Is to provide.
Another object of the present invention is to provide an optimal method for mounting the pneumatic tire on a vehicle, particularly an ultra-high performance passenger car.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a pneumatic tire according to the present invention includes a plurality of N main grooves extending linearly in the circumferential direction of the tread, and between the main grooves and between the main grooves and the tread ends. In a pneumatic tire having a tread pattern with N + 1 rib rows formed in
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X4, X5... XN + 1, the chamfering depth is Y2, Y3, Y4, Y5... YN + 1 in the same order, and the width of the rib row is WR2, WR3, WR4, WR5 in the same order. ... WRN + 1, when the height is DR2, DR3, DR4, DR5 ... DRN + 1 in the same order, each chamfer width X2, X3, X4, X5 ... XN + 1 is the corresponding rib row width WR2, WR3, WR4, WR5... WRN + 1 are within a range of 10 to 50%, and the chamfering depths Y2, Y3, Y4, Y5... YN + 1 are the corresponding rib heights DR2, DR3, DR4, DR5 Of ·· DRN + 1, it is characterized in that in the range of respective 5-20%.
[0006]
A preferable pneumatic tire according to the present invention includes four main grooves extending linearly in the circumferential direction of the tread, and five rib rows formed between the main grooves and between the main grooves and the tread ends. In a pneumatic tire having a tread pattern with
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X4, X5, the chamfering depth are Y2, Y3, Y4, Y5 in the same order, and the width of the rib row is the same order, WR2, WR3, WR4, WR5, the height is the same order, DR2. , DR3, DR4, DR5, each chamfer width X2, X3, X4, X5 is within a range of 10 to 50% of each corresponding rib row width WR2, WR3, WR4, WR5, and each The chamfering depths Y2, Y3, Y4, and Y5 are characterized by being in the range of 5 to 20% of the corresponding rib heights DR2, DR3, DR4, and DR5, respectively.
[0007]
In addition, another preferable pneumatic tire of the present invention includes three main grooves extending linearly in the circumferential direction of the tread, and four formed between the main grooves and between the main grooves and the tread ends. In a pneumatic tire having a tread pattern with rib rows of
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X5, the chamfering depth are Y2, Y3, Y5 in the same order, and the width of the rib row is WR2, WR3, WR5, and the height is DR2, DR3, DR5 in the same order. Each chamfer width X2, X3, X5 is within a range of 10-50% of each corresponding rib row width WR2, WR3, WR5, and each chamfer depth Y2, Y3, Y5 corresponds. Each rib height DR2, DR3, DR5 is within a range of 5 to 20%, respectively.
[0008]
Furthermore, the present invention relates to a method for mounting a pneumatic tire on a vehicle, wherein the pneumatic tire is mounted on a vehicle having a negative camber.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, the cross section of the tread part 1 of the pneumatic tire which is one embodiment of this invention is shown. The pneumatic tire includes four main grooves 2a to 2d extending linearly in the circumferential direction, and five rib rows 3a to 3e formed between the main grooves and between the main grooves and the tread ends. Having a tread pattern. In FIG. 1, the width of the rib row is set to WR1, WR2, WR3, WR4, WR5 in order from the outside to the inside when the vehicle is mounted, and the rib height is set to DR1, DR2, DR3, in the same order. It is shown as DR4, DR5.
[0010]
This pneumatic tire is a left-right asymmetric tire, and the rib edge on the outer side when the vehicle is mounted is chamfered from the outer side when the vehicle is mounted toward the inner side. As shown in the figure, the chamfer width of the rib row is X2, X3, X4, X5 in order from the outside to the inside when the vehicle is mounted, and the chamfering depth is Y2, Y3, Y4, Y5 in the same order. The chamfer widths X2, X3, X4, and X5 are in the range of 10 to 50%, preferably 15 to 30%, of the corresponding rib row widths WR2, WR3, WR4, and WR5, respectively. Further, the chamfering depths Y2, Y3, Y4, and Y5 are in the range of 5 to 20%, preferably 5 to 10%, of the corresponding rib heights DR2, DR3, DR4, and DR5, respectively. By chamfering within the above range, uneven wear at the groove angle can be effectively suppressed.
[0011]
The chamfer width is the following formula:
X5> X2, X2> X3, X2> X4
Preferably, the chamfer width is expressed by the following formula:
(X5-X2) /X5=0.1-0.3,
(X5-X3) /X5=0.3-0.5,
(X5-X4) /X5=0.3-0.5
It is preferable to satisfy | fill the relationship represented by these.
[0012]
Furthermore, the chamfer depth is the following equation:
Y5 ≧ Y2 ≧ Y3, Y4
Preferably, the chamfer depth is expressed by the following formula:
(Y5-Y3) / Y3 = 0-1
(Y5-Y4) / Y4 = 0-1
It is preferable to satisfy | fill the relationship represented by these. By making the width and depth of chamfering the above relationship, it is possible to achieve both steering stability.
[0013]
In FIG. 2, the cross section of the tread part of the pneumatic tire which is other embodiment of this invention is shown. A tread of such a pneumatic tire includes a tread having three main grooves extending linearly in the circumferential direction, and four rib rows formed between the main grooves and between the main grooves and the tread ends. Has a pattern. In FIG. 2, the width of the rib row is indicated as WR1, WR2, WR3, WR5 in order from the outside to the inside when the vehicle is mounted, and the height of the rib is indicated as DR2, DR3, DR5 in the same order. is there.
[0014]
This pneumatic tire is also a left-right asymmetric tire, and the rib edges on the outer side when the vehicle is mounted are chamfered from the outer side when the vehicle is mounted toward the inner side. When the chamfering width of this rib row is X2, X3, X5 in order from the outside when the vehicle is mounted, and the chamfering depth is Y2, Y3, Y5 in the same order, each chamfering width X2, X3, X5 is The corresponding rib row widths WR2, WR3, and WR5 are in the range of 10 to 50%, preferably 15 to 30%, respectively. Further, the chamfering depths Y2, Y3, and Y5 are in the range of 5 to 20%, preferably 5 to 10%, of the corresponding rib heights DR2, DR3, and DR5, respectively. As in the case of the four main grooves, uneven wear at the groove angle can be effectively suppressed by chamfering within the above range.
[0015]
The chamfer width is the following formula:
X5> X2, X2> X3
Preferably, the chamfer width is expressed by the following formula:
(X5-X2) /X5=0.1-0.3,
(X5-X3) /X5=0.3-0.5,
It is preferable to satisfy | fill the relationship represented by these.
[0016]
Furthermore, the chamfer depth is the following equation:
Y5 ≧ Y2 ≧ Y3
Preferably, the chamfer depth is expressed by the following formula:
(Y5-Y3) / Y3 = 0-1
It is preferable to satisfy | fill the relationship represented by these. Similar to the case of the four main grooves, these relations can also be compatible with steering stability by making the chamfer width and depth the above relation.
[0017]
In the pneumatic tire of the present invention, it is preferable that the chamfer is smoothly connected to the rib surface.
[0018]
In the mounting method of the present invention, the pneumatic tire of the present invention described above is mounted on a vehicle equipped with a negative camber, preferably as a front tire, and an ultra-high performance passenger car is suitable as the vehicle.
[0019]
【Example】
Hereinafter, the present invention will be described based on examples.
In a pneumatic tire for Porsche having three main grooves extending linearly in the circumferential direction of the tread symmetrically at the tire center, a conventional tire that is not chamfered in rib rows as a conventional tire, A prototype of the type shown in FIG. 2 that was chamfered under the conditions shown in Table 1 below was made. The reference numerals in the table correspond to those in FIG.
[0020]
[Table 1]
[0021]
For these test tires having a tire size of 205 / 50R16, tests on the innermost groove angle contact length, rib center contact length, CP, and wear amount were performed as follows.
[0022]
First, fill the test tire with an internal pressure of 2.00 kg / cm 2 , apply a negative camber of 1 °, create a footprint when a 400 kg load is applied (see Fig. 3), and ground the innermost groove angle The contact length C at the center of the rib facing the portion where the length L and the innermost groove angle contact length L were measured and the main groove was measured, and each value was evaluated by an index.
[0023]
Steering stability was measured by CP (kgf / deg.) When a negative camber was applied at 1 ° and a load of 400 kg was applied, and the value was evaluated by an index. A test tire filled with an internal pressure of 2.00 kg / cm 2 is installed on a drum having an outer diameter of 1,500 mm, and after a load of 400 kg is applied, the vehicle is preliminarily run at a speed of 30 km / hr for 30 minutes. Is recharged to 2.00 kg / cm 2 , a load of 400 kg is applied again, and a slip angle is continuously applied to the maximum of ± 14 ° at the same speed on the drum having the same diameter. The cornering force (CF) at each positive and negative angle was measured, and the cornering power (CP) was determined according to the following equation.
CP (kg / deg) = {CF (1 °) (kg) + CF (2 °) (kg) / 2 + CF (3 °) (kg) / 3 + CF (4 °) (kg) / 4} / 4
[0024]
Furthermore, as an evaluation of uneven wear resistance, the same vehicle was used, two types of conventional tires and actual tires were mounted on the front wheels, and after traveling 10,000 km on a general road, the step amount of each groove angle was measured and averaged. The calculated numerical value was calculated, and the value was evaluated by an index.
The obtained results are shown in Table 2 below.
[0025]
[Table 2]
[0026]
In the conventional tire, the three grooves are covered with one R (R 1). In contrast, in the embodiment, in each rib groove, a double crown R (r (1), (2), (3)) is taken outward in the cross section, and a step (Y2, Y3, Y5) is formed in the groove depth direction. ) Has occurred. The widths X2, X3, and X5 of the double crown R are increased in the order of X5>X2> X3, and the steps are increased in the order of Y5>Y2> Y3. By chamfering in descending order of contact pressure, that is, in the order of X5>X3> X2 and Y5>Y3> Y2 from the inside, uneven wear at the groove angle can be effectively suppressed, but the chamfering of the center part X3 Is relatively large, the center contact length of the rib at the center is reduced, and the negative aspect of handling stability is also large. On the other hand, in the tires of the examples, the uneven wear resistance and the steering stability could be well balanced.
[0027]
【The invention's effect】
According to the present invention, uneven wear concentrated on the groove angle can be suppressed, the tire life can be extended, and at the same time, the steering stability can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tread portion of a pneumatic tire according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a tread portion of a pneumatic tire according to another embodiment of the present invention.
FIG. 3 is a plan view showing a ground contact shape of a tire.
[Explanation of symbols]
1 tread portion 2a to 2d main groove 3a to 3e rib row C rib center ground contact length L innermost groove corner ground contact length
Claims (11)
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X4、X5・・・XN+1、面取り深さを同順番にY2、Y3、Y4、Y5・・・YN+1とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR4、WR5・・・WRN+1、高さを同順番にDR2、DR3、DR4、DR5・・・DRN+1としたとき、各面取り幅X2、X3、X4、X5・・・XN+1は、対応する各リブ列幅WR2、WR3、WR4、WR5・・・WRN+1の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y4、Y5・・・YN+1は、対応する各リブ高さDR2、DR3、DR4、DR5・・・DRN+1の、夫々5〜20%の範囲内であることを特徴とする空気入りタイヤ。A tread pattern comprising a plurality of N main grooves extending linearly in the circumferential direction of the tread, and N + 1 rib rows formed between the main grooves and between the main grooves and the tread ends. In a pneumatic tire having
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X4, X5... XN + 1, the chamfering depth is Y2, Y3, Y4, Y5... YN + 1 in the same order, and the width of the rib row is WR2, WR3, WR4, WR5 in the same order. ... WRN + 1, when the height is DR2, DR3, DR4, DR5 ... DRN + 1 in the same order, each chamfer width X2, X3, X4, X5 ... XN + 1 is the corresponding rib row width WR2, WR3, WR4, WR5... WRN + 1 are within a range of 10 to 50%, and the chamfering depths Y2, Y3, Y4, Y5... YN + 1 are the corresponding rib heights DR2, DR3, DR4, DR5 · The DRN + 1, the pneumatic tire being in the range of respective 5-20%.
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X4、X5、面取り深さを同順番にY2、Y3、Y4、Y5とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR4、WR5、高さを同順番にDR2、DR3、DR4、DR5としたとき、各面取り幅X2、X3、X4、X5は、対応する各リブ列幅WR2、WR3、WR4、WR5の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y4、Y5は、対応する各リブ高さDR2、DR3、DR4、DR5の、夫々5〜20%の範囲内である請求項1記載の空気入りタイヤ。A pneumatic tire having a tread pattern including four main grooves extending linearly in the circumferential direction of the tread, and five rib rows formed between the main grooves and between the main grooves and the tread ends. In
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X4, X5, the chamfering depth are Y2, Y3, Y4, Y5 in the same order, and the width of the rib row is the same order, WR2, WR3, WR4, WR5, the height is the same order, DR2. , DR3, DR4, DR5, each chamfer width X2, X3, X4, X5 is within a range of 10 to 50% of each corresponding rib row width WR2, WR3, WR4, WR5, and each The pneumatic tire according to claim 1, wherein the chamfering depths Y2, Y3, Y4, and Y5 are within a range of 5 to 20% of the corresponding rib heights DR2, DR3, DR4, and DR5.
X5>X2、X2>X3、X2>X4
で表される関係にあり、かつ次式、
(X5−X2)/X5=0.1〜0.3、
(X5−X3)/X5=0.3〜0.5、
(X5−X4)/X5=0.3〜0.5
で表される関係を満たす請求項2記載の空気入りタイヤ。The chamfer width is the following formula:
X5> X2, X2> X3, X2> X4
And the following formula:
(X5-X2) /X5=0.1-0.3,
(X5-X3) /X5=0.3-0.5,
(X5-X4) /X5=0.3-0.5
The pneumatic tire according to claim 2, satisfying a relationship represented by:
Y5≧Y2≧Y3、Y4
で表される関係にあり、かつ次式、
(Y5−Y3)/Y3=0〜1、
(Y5−Y4)/Y4=0〜1
で表される関係を満たす請求項2または3記載の空気入りタイヤ。The chamfer depth is the following formula,
Y5 ≧ Y2 ≧ Y3, Y4
And the following formula:
(Y5-Y3) / Y3 = 0-1
(Y5-Y4) / Y4 = 0-1
The pneumatic tire according to claim 2 or 3, satisfying a relationship represented by:
車両装着時の外側より内側に向けて2番目以降の前記リブ列の、車両装着時外側のリブエッヂが面取りされており、該リブ列の面取り幅を車両装着時の外側より内側に向けて順番にX2、X3、X5、面取り深さを同順番にY2、Y3、Y5とし、かつ該リブ列の幅を同順番に夫々WR2、WR3、WR5、高さを同順番にDR2、DR3、DR5としたとき、各面取り幅X2、X3、X5は、対応する各リブ列幅WR2、WR3、WR5の、夫々10〜50%の範囲内であり、かつ各面取り深さY2、Y3、Y5は、対応する各リブ高さDR2、DR3、DR5の、夫々5〜20%の範囲内である請求項1記載の空気入りタイヤ。A pneumatic tire having a tread pattern including three main grooves extending linearly in the circumferential direction of the tread and four rib rows formed between the main grooves and between the main grooves and the tread ends. In
The rib edges on the outer side of the second and subsequent rib rows are chamfered from the outer side when the vehicle is mounted to the inner side, and the chamfer width of the rib row is set in order from the outer side to the inner side when the vehicle is mounted. X2, X3, X5, the chamfering depth are Y2, Y3, Y5 in the same order, and the width of the rib row is WR2, WR3, WR5, and the height is DR2, DR3, DR5 in the same order. Each chamfer width X2, X3, X5 is within a range of 10-50% of each corresponding rib row width WR2, WR3, WR5, and each chamfer depth Y2, Y3, Y5 corresponds. The pneumatic tire according to claim 1, wherein each of the rib heights DR2, DR3, DR5 is within a range of 5 to 20%.
X5>X2、X2>X3
で表される関係にあり、かつ次式、
(X5−X2)/X5=0.1〜0.3、
(X5−X3)/X5=0.3〜0.5
で表される関係を満たす請求項5記載の空気入りタイヤ。The chamfer width is the following formula:
X5> X2, X2> X3
And the following formula:
(X5-X2) /X5=0.1-0.3,
(X5-X3) /X5=0.3-0.5
The pneumatic tire according to claim 5, satisfying a relationship represented by:
Y5≧Y2≧Y3
で表される関係にあり、かつ次式、
(Y5−Y3)/Y3=0〜1
で表される関係を満たす請求項5または6記載の空気入りタイヤ。The chamfer depth is the following formula,
Y5 ≧ Y2 ≧ Y3
And the following formula:
(Y5-Y3) / Y3 = 0-1
The pneumatic tire according to claim 5 or 6, satisfying a relationship represented by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02985499A JP4190076B2 (en) | 1999-02-08 | 1999-02-08 | Pneumatic tire and its mounting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02985499A JP4190076B2 (en) | 1999-02-08 | 1999-02-08 | Pneumatic tire and its mounting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000225811A JP2000225811A (en) | 2000-08-15 |
JP4190076B2 true JP4190076B2 (en) | 2008-12-03 |
Family
ID=12287564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02985499A Expired - Fee Related JP4190076B2 (en) | 1999-02-08 | 1999-02-08 | Pneumatic tire and its mounting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4190076B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4295498B2 (en) | 2002-12-13 | 2009-07-15 | 住友ゴム工業株式会社 | Radial tire for ATV |
JP4661260B2 (en) * | 2005-02-21 | 2011-03-30 | 横浜ゴム株式会社 | Pneumatic tire |
JP4626333B2 (en) * | 2005-02-21 | 2011-02-09 | 横浜ゴム株式会社 | Pneumatic tire |
WO2007023759A1 (en) * | 2005-08-23 | 2007-03-01 | Kabushiki Kaisha Bridgestone | Pneumatic tire |
JP4217266B1 (en) * | 2007-08-07 | 2009-01-28 | 住友ゴム工業株式会社 | Pneumatic tire |
JP5232696B2 (en) * | 2009-03-17 | 2013-07-10 | 株式会社ブリヂストン | Pneumatic tire |
-
1999
- 1999-02-08 JP JP02985499A patent/JP4190076B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000225811A (en) | 2000-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1992504B1 (en) | Motorcycle tire for off-road traveling | |
JPH05319029A (en) | Pneumatic radial tire for heavy load | |
JP4690852B2 (en) | Pneumatic tire | |
JP3869102B2 (en) | Pneumatic tire | |
JP2008120351A (en) | Pneumatic tire for off-road traveling | |
JP4733502B2 (en) | Pneumatic tire for running on rough terrain | |
JP2013216208A (en) | Pneumatic tire for running on rough terrain | |
JP3569056B2 (en) | Pneumatic tire | |
JPS62103205A (en) | Heavy load pneumatic tyre | |
JP4488593B2 (en) | Pneumatic tire | |
JPH0891023A (en) | Radial tire for taxi | |
JP4190076B2 (en) | Pneumatic tire and its mounting method | |
JP5530046B2 (en) | tire | |
JP4442039B2 (en) | Pneumatic radial tire | |
JP3570182B2 (en) | Heavy duty pneumatic tires | |
JP2001354010A (en) | Pneumatic tire | |
JP3591991B2 (en) | Flat pneumatic radial tire for light trucks | |
JP2006082586A (en) | Pneumatic tire | |
JPH0885308A (en) | Pneumatic radial tire | |
JP4290481B2 (en) | Pneumatic tire | |
JP3717988B2 (en) | Pneumatic radial tire | |
JPH05319028A (en) | Pneumatic radial tire for heavy load | |
JP2005028954A (en) | Pneumatic tire | |
JP5623865B2 (en) | Pneumatic tire | |
JP4241366B2 (en) | Tires for vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |