[go: up one dir, main page]

JP4181492B2 - 制御監視用通信システムおよび変調方式の設定方法 - Google Patents

制御監視用通信システムおよび変調方式の設定方法 Download PDF

Info

Publication number
JP4181492B2
JP4181492B2 JP2003428871A JP2003428871A JP4181492B2 JP 4181492 B2 JP4181492 B2 JP 4181492B2 JP 2003428871 A JP2003428871 A JP 2003428871A JP 2003428871 A JP2003428871 A JP 2003428871A JP 4181492 B2 JP4181492 B2 JP 4181492B2
Authority
JP
Japan
Prior art keywords
communication
monitoring
communication means
control
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428871A
Other languages
English (en)
Other versions
JP2005191784A (ja
Inventor
良和 石井
節男 有田
祐治 一ノ瀬
直 齋藤
大輔 新間
康弘 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003428871A priority Critical patent/JP4181492B2/ja
Priority to US11/018,355 priority patent/US7570748B2/en
Priority to EP04030744A priority patent/EP1548969A3/en
Publication of JP2005191784A publication Critical patent/JP2005191784A/ja
Application granted granted Critical
Publication of JP4181492B2 publication Critical patent/JP4181492B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • H04L5/0046Determination of the number of bits transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、発電プラントの機械室や商店街など、制御や監視の対象となる設備のある現場と、運転員や監視員が居る制御室や監視室とを接続し、その間の通信を行う制御監視用通信システムおよび変調方式の設定方法に関する。
火力を初めとする各種プラントでは、既設のプラントに対する遠隔監視や遠隔保守のニーズが高くなってきている。また、商店街や大規模店舗などでも、セキュリティ強化の観点から監視カメラの設置や増設のニーズが高まっている。
このため、現場と監視室や制御室との間に新たに専用ケーブルを敷設して、現場における、ネットワークに接続されていなかったセンサ、アクチュエータや、新設の監視カメラ、センサ、アクチュエータなどが取得する情報を監視室や制御室との間で伝送する必要が生じてきている。一方、現場には、大型機器やインバータ機器があり、その駆動によって生じる電磁ノイズの影響を抑制する必要もある。既存設備の通信に対する影響回避やノイズ対策のために専用ケーブルを敷設する工事費は、プラント建設時に組み込んだ計測制御点の通信線工事費より高いものとなってしまう。
また、火力プラントなどでは、タービン室、ボイラ室などの現場が数百メートルないし1km程度の範囲に分散しているのが普通であり、商店街などでも、屋外の比較的広い空間に分散するように監視カメラを敷設する必要がある。このような用途に一対一通信用のモデムを用いる場合、個々の現場(商店街の例では、監視カメラ)と監視室との間に個別の通信回線を敷設するスター型ネットワークとする必要があるが、このようなネットワークでは、ネットワーク全体の敷設コストや保守コストが高くなる。
これらに対応するために、現場と監視室との間に予め敷設されている通信線のうち、未使用の回線または周波数帯を用いることによって、新たな専用線の敷設やそのノイズ対策に関わるコストを抑制する方式が提案されている(特許文献1参照)。
特許文献1は、複数のモデムを一つの通信線に接続する通信形態についても開示しているが、一般的に知られた調停方法(一台が親になり送信権を割り当てる方式、トークンパッシング、衝突検知、時分割多重、周波数分割多重の4つの方式名)を列挙しているに過ぎない。通信の物理層の詳細に関しては、xDSL(x Digital Subscriber Line)の参考文献を参照する形となっており、具体的に記載されていない。xDSLの物理層の詳細に関しては、例えば、非特許文献1などに詳細に記載されている。非特許文献1は、xDSLの代表的なものであるADSL(Asymmetric Digital Subscriber Line)の物理層に関する文献であり、送受信を行うモデム間では、ノイズや減衰に対応するためのトレーニングと、そのトレーニングに基づいた通信設定の調整(キャリアごとの変調方式の決定)とが必要であること、および、その実現方式が示されている。ここで、キャリアとは、搬送波信号の周波数を示す。
特開2001−25000号公報(段落0026〜0035、図1、図2) "Draft American National Standard for Telecommunications - Network and Customer Installation Interfaces - Asymmetric Digital Subscriber Line (ADSL) Metallic Interface"、(米国)、米国規格協会(American National Standards Institute, Inc.)、ANSI(R) T1.413−1998、p.95−135
しかしながら、特許文献1が示す方式では、一つの現場から監視室までは1つの空き回線が必要となる。ところが、前記のようなプラントにおいて、現場ごとに監視室と接続するための空き回線が予め用意されている場合は必ずしも多くない。また、昨今は、現場と監視室との間には、トークンリング型のLANを敷設し、その間に空き回線がない場合も多い。このため、特許文献1が示す方式を、火力プラントのような比較的大規模なプラントや、トークンリング型LANを導入しているようなプラントに適用するのは難しいという問題がある。
更に、高周波の信号を流すことを予め想定していない既設設備によるデータ通信においては、減衰、反射、群遅延などによって、送信信号に対して、受信信号の波形が歪んだり、受信信号のパワーが非常に小さくなったりする。このため、トークンを適切に授受できない場合や信号の衝突を検知できない場合が生じ得る。また、タイミング信号の授受もできないため、データ送受信のペアで適切に時分割処理を行うことも難しい。このように多対多または少なくとも一対多の通信を行う場合に必要となる調停と、このような一対一通信のための通信設定の調整とは、それぞれ独立して実施することはできない。このため、単にトークンパッシングなどの調停方式をxDSLのような技術に追加すれば、多対多通信ができるというわけではない。更に、制御用途では、全てのモデムに設計通りのアクセス権を保証したり、同報でデータを送受信できるようにすることも重要である。
そこで、本発明は、前記問題に鑑み、既設の通信線や特にノイズ対策を実施しない通信線を用いて、現場において、ネットワークに接続されていなかった機器や新設の機器が取得した情報を監視室や制御室との間で伝送するとき、アクセス権を保証した形で、同報通信や調停のための一対多通信を行う手段を提供することを課題とする。
前記課題を解決する本発明は、所定の領域内に存在する現場に配置された機器と制御室との間の通信を行う制御監視用通信システムおよび変調方式の設定方法であって、親局から子局への、または、子局から親局へのデータ送信に先立ち、これからデータの送受信を行う相手先に関する情報を、その相手先以外の子局も識別できるように、「全てのモデムが高い確率で復調可能な変調方式」によって通信を行うことを特徴とする。なお、「所定の領域」とは、プラントや工場の敷地、商店街などのことをいう。また、「データの送受信を行う相手先に関する情報」は、一般にヘッダ部に格納される。
また、本発明の親局モデムは、この「全てのモデムが高い確率で復調可能な変調方式」を、子局モデムの初期化シーケンスにおける伝送路のS/N比の計測結果に基づいて計算する機能を有することを特徴とすると共に、全ての子局モデムの初期化シーケンスの実施後に、全ての子局モデムに対してその計算結果を転送することを特徴とする。なお、S/N比の代わりに、データ伝送誤り率を計測するようにしてもよい。
ヘッダを、ユーザデータとは異なり、「全てのモデムが高い確率で復調可能な変調方式」によって通信することにより、シールドなどの物理的なノイズ対策や終端抵抗などの物理的な伝送路特性の調整を行うことなく、全ての局で、これから通信を行う相手先を高い確率で識別することができるため、複数の局が一つの物理的な伝送線路上に接続される構成であっても、適切に調停を行うことができる。
以下、本発明の実施の形態について図面を参照して詳細に説明する。
≪制御監視用通信システムの構成≫
図1は、本発明の実施の形態に係る制御監視用通信システムをプラント制御・監視システムに適用した構成を示す。プラントの制御対象機器は、具体的に記載せず、制御・監視システムとその配置を示している。プラントの制御・監視システムは、中央操作室101および現場の操作室102、103、104にある制御装置109、110、111、112、ならびに、これらをシリアルに接続する通信線121から構成される。中央操作室101にある制御装置109は、親局モデム105を介して、現場の操作室の制御装置110、111、112は、それぞれ子局モデム106、107、108を介して、通信線121と接続される。制御装置110には、現場の入出力機器113が接続されている。図1の制御装置111、112には、現場の入出力機器を記載していないが、これらの制御装置にも同様の現場の入出力機器が接続されているものとする。なお、中央操作室101は、請求項における「制御室」に相当する。
≪モデムの構成≫
次に、図11を参照してモデムの構成を説明する。図11は、図1で示したモデム105の基本的な構成を示す。なお、他のモデム106、107および108も同じ構成を持つ。モデム105は、BPフィルタ(バンドパスフィルタ)1101、1112、受信アンプ1102、送信アンプ1111、A/D変換器(アナログ/ディジタル変換器)1103、D/A変換器(ディジタル/アナログ変換器)1110、等化器1104、復調器1105、変調器1109、アクセスコントローラ1107およびプロトコル変換器1108から構成されている。
≪モデムの基本的な動作≫
以下に、モデム105と他のモデムとの通信の基本的な動作を説明するが、その動作は別のモデムにおいても同様である。モデム105は、制御装置109とのインタフェースをとるために、プロトコル変換器1108を設けている。制御装置109は、例えば、PC(Personal Computer)をベースとした装置で構成することもできる。これによって、各種汎用ソフトウエアを利用することができ、情報管理やデータ処理などを容易に行うことができる。これに対応して、プロトコル変換器1108は、例えば、イーサネット(R)やUSB(Universal Serial Bus)などの外部接続インタフェースを持つ。プロトコル変換器1108は、制御装置109から別の制御装置へ転送すべきデータを受信すると、その受信したデータをモデム105で扱う所定のフォーマットの通信パケットに変換し、その変換した通信パケットをアクセスコントローラ1107に送信する。アクセスコントローラ1107は、プロトコル変換器1108から通信パケットを受信すると、その受信した通信パケット内のデータを変調器1109に出力する。変調器1109は、アクセスコントローラ1107から別途入力している各周波数帯の搬送波信号へのデータ割付量情報1106bに基づいて、各搬送波信号にアクセスコントローラ1107から入力したデータを割付ける。これをビット割付という。そのデータが割付けられた搬送波信号は、D/A変換器1110によってアナログ信号に変換され、送信アンプ1111によって増幅され、BPフィルタ1112を介して放送線などの通信線121に出力され、他のモデムに送信される。
一方、他のモデム(以下ではモデム107を例に示す)からモデム105に送信されてきた信号は、BPフィルタ1101によって所定の通信帯域の信号に制限されて受信アンプ1102に出力される。受信アンプ1102は、BPフィルタ1101から入力した信号を増幅してA/D変換器1103に出力する。A/D変換器1103は、受信アンプ1102から入力した信号をディジタル信号に変換して等化器1104に出力する。等化器1104は、通信線121の通信路歪(伝送路歪ともいう)を補正するためのものであり、A/D変換器1103から入力した信号に対して通信路歪の補正処理を行い、その補正処理を行った信号を復調器1105に出力する。復調器1105は、アクセスコントローラ1107から別途入力している各周波数帯の搬送波信号へのデータ割付量情報1106aに基づいて、各搬送波信号に割付けられているデータを取り出し、アクセスコントローラ1107に出力する。アクセスコントローラ1107は、復調器1105から入力したデータを所定のフォーマットの通信パケットに変換し、その変換した通信パケットをプロトコル変換器1108に出力する。プロトコル変換器1108は、アクセスコントローラ1107から入力した通信パケットに対して、制御装置109とのインタフェース(例えば、イーサネット(R)やUSBなど)に合わせてプロトコル変換を行い、そのプロトコル変換した情報を制御装置109に出力する。
アクセスコントローラ1107は、復調器1105および変調器1109にそれぞれデータ割付量情報1106aおよび1106b(後記するキャリア割付情報)を出力する。これらの情報で示されるデータ割付量は常に一定ではなく、所定の時間ごとにモデム105とモデム107との間の通信特性に対するトレーニング(学習)を行って、各周波数帯の搬送波信号ごとにS/N比を推定し、または、通信時のデータ伝送誤り率(ビットエラー率)を評価し、これらの結果に応じて、各周波数帯の搬送波信号ごとまたは全搬送波信号に対するデータ割付量を変更する。なお、S/N比の推定結果およびデータ伝送誤り率の評価結果の両方を、データ割付量に反映させてもよい。
≪モデム間通信の概要≫
図2は、モデム間通信のシーケンス図を示している。シーケンス114を初期化シーケンスということにする。なお、この手順の詳細は後記する。破線矢印(凡例119)は、「通信線121(図1参照)で接続されている全てのモデム(以下、簡単に「全てのモデム」という)が復調可能であるが、伝送路の特性を考慮しない変調方式」で変調すると共に、強い誤り訂正能力を持つ符号化方式で符号化したヘッダ、トレーニングデータ、トレーニング結果(後記する方法で求めた各キャリアの最適な変調方式に関する情報、すなわち、キャリア割付情報)の送受信を示す。ここで、キャリアとは、搬送波信号の周波数を示す。なお、破線矢印115は、変調方式としては他の破線と同じであるが、後記する方法で求めた「全てのモデムが高い確率で復調可能な変調方式」に関する情報の送信を示している。シーケンス116は、親局モデムからの子局モデムへのデータ送信処理兼子局モデムに対するポーリング処理、および子局モデムからのデータ送信処理を示す。実線矢印(凡例117)は、「全てのモデムが高い確率で復調可能な変調方式」に基づくヘッダの送受信処理を示す。二重線矢印(凡例118)は、親局モデムと子局モデムとの間の伝送路特性やノイズ特性に応じた「最適な変調方式」で変調したユーザデータの送受信処理を示す。なお、凡例の矢印117、118および119は、いずれも根元(図2では、○)から矢尻へのデータ送信を示している。また、破線矢印115のデータ送信処理は、通信線121(図1参照)で接続されている全ての子局モデム(以下、簡単に「全ての子局モデム」という)に対して一度にデータを送信する形式にしているが、各子局モデムに対して、個別に送信してもよい。その場合は、シーケンス116の親局モデムから子局モデムへのデータ送信処理兼子局モデムに対するポーリング処理、および子局モデムからのデータ送信処理と違い、ヘッダは、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」で変調し、強い誤り訂正能力を持つ符号化方式で符号化する。
なお、このように親局モデムから一度に複数の子局モデムに情報を転送することを同報通信またはブロードキャストという。前記の例は、ネットワークの制御のために同報通信を利用したものであるが、このような通信システムを利用する上位のアプリケーションのレベルで、同報通信を必要とする場合もある。特に、制御用途では複数の機器を同時に制御する場合がある。このような場合に送受信される制御情報も、本発明の制御監視用通信システムから見たときには、ユーザデータの一つである。従って、ユーザデータであっても同報通信が必要な場合があり、シーケンス116の部分でも、矢印115のような同報通信を行う場合がある。この場合には、後記する「全てのモデムが高い確率で復調可能な変調方式」でデータを変復調することによって、全ての子局モデムに所定値以下のデータ伝送誤り率でデータを伝えることが可能となる。このようにデータを確実(所定値以上の確率という意味で)に伝達できることは、特に、制御監視用途において不可欠である。
≪第1の変調方式の設定方法≫
次に、図3ないし図8を参照して、「全てのモデムが高い確率で復調可能な変調方式」の設定方法について説明する。この設定方法は、ユーザデータを送受信する親局モデムおよび子局モデムの間で、ヘッダやユーザデータを確実に伝達するために、全てのモデムに共通の変調方式を設定するものである。なお、この設定方法は、後記する親局モデムおよび子局モデムmの動作における「全てのモデムが高い確率で復調可能な変調方式」の設定(図9のステップS914)の具体的な方法を示すものである。
まず、第1の設定方法について説明する。図3は、変調方式ごとにキャリアのパワーとノイズとの比(キャリアパワー/ノイズ、C/N比)およびビットエラー率の関係を示したものである。変調方式としては、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAMおよび256QAMがある。BPSKおよびQPSKは、位相変調方式であり、1キャリアで伝送可能なデータ量は、それぞれ1ビットおよび2ビットである。16QAM、64QAMおよび256QAMは、位相・振幅変調方式であり、1キャリアで伝送可能なデータ量は、それぞれ4ビット、6ビットおよび8ビットである。図4は、複数のモデムを接続した非ツイストタイプのペア線の減衰特性を示す。以下、このペア線を通信線という。図5は、図4と同じ通信線のノイズ特性を示す。図6は、送信パワーを90dBμVにしたときの、各周波数に割付可能なビット数601を示す。なお、図6は、図4、図5のような伝送路特性の場合のものである。また、ビットエラー率の基準値は10-5である。
ノイズや減衰は、通信線の分岐の仕方や計測位置などで差が生じるため、モデムの設置位置に応じて、図6に示したように、キャリアに割付可能なビット数601は変化する。このため、図6の受信信号のパワー602と受信信号に重畳するノイズ603との差(図6における右側の縦軸の「パワー」は電圧値の対数なので、「差」であるが、電圧値の大きさとしては「比」である)を予めトレーニング期間に計測し、その計測した差に応じて各キャリアに何ビット割付可能かを計算し、各キャリアへの割付可能なビット数601を送信相手に伝えておくことで、送信側がこの割付に従ってキャリアにデータを割付けて送信すれば、「最適な変調方式」による通信が実現できる。ここで、「最適」とは、ビットエラー率が基準値以下で、かつ最大のスループット(単位時間あたりのデータ伝送量)を得ることができることを示す。
前記のように、ノイズや減衰は、データの送受信を行うモデム間でその計測位置などによって差が生じるため、全てのモデムが高い確率で復調することを可能とするためには、受信信号のパワーとノイズとの差の最小値を求め、その最小値に対して各キャリアの多値変調方式を最適となるように決定すればよい。各キャリアに割付可能なビット数は、受信パワーとノイズとの差を量子化した値とみなすことができるので、図2の破線矢印(凡例119)で示したデータのうち、親局側に集まった親局モデムからの子局モデムへのデータ転送時のキャリア割付情報、および子局モデムからの親局モデムへのデータ転送のためのトレーニング結果(キャリア割付情報)を用いて、それらの全ての組合せに対して、割付可能なビット数の最小値を用いることにすれば、「全てのモデムが高い確率で復調可能な変調方式」を決定することができる。
図7および図8に、キャリアに割付可能なビット数を示す。図7は、図6に示した特定のモデム間の最適なキャリアへのビット割付701と、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」の例として、1キャリアで1ビットのデータを伝送可能なBPSKで変調を行う場合のキャリアへのビット割付702とを示す。一方、図8は、全てのモデム間に関して最適なビット割付を求め、その求めたビット割付を示すグラフの下側の包絡線(割付可能なビット数の最小値)を示している。実線801は、送信電圧が90dBμVの場合を示し、破線802は、送信電圧が120dBμVの場合を示す。なお、キャリアの変調方式は、1キャリアで8ビットのデータを伝送可能な256QAMまでとしている。
図7は、前記のように特定のモデム間の最適なキャリアへのビット割付を示している。割付可能なビット数がゼロとなる周波数が点在しており、その近傍の周波数を利用するキャリアは、ビット割付を行わないほうがよいことがわかる。しかし、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」を用いた場合、そのようなキャリアにもビット割付が行われるため、そのときには、受信信号のパワーよりノイズの方が大きくなる。このため、正しく復号化できない可能性が大きい。また、このようなキャリアは必ずしもごく少数ではない。従って、このような変調方式では、符号化の段階で、強い誤り訂正能力を持つ符号化方式を用いなければ、全てのモデムがヘッダを解読することができず、公平な調停ができない可能性が大きくなる。特定のモデムだけが送信権を獲得できる可能性が小さいという状況は、プラントの制御・監視用途では許されない。これに対して、本発明の「全てのモデムが高い確率で復調可能な変調方式」によれば、全てのモデムがヘッダを解読できる確率を所定値以上にすることができるので、送信権を獲得できる確率を所定値以上に保証することができる。
≪第2の変調方式の設定方法≫
次に、図8を参照して、「全てのモデムが高い確率で復調可能な変調方式」の設定方法のうち、第2の設定方法について説明する。図8の破線802は、送信電圧を120dBμVとした場合であるが、この条件においては、全てのキャリアに最低1ビットを割付けることが可能なことがわかる。従って、この例のように、全てのキャリアをBSPKで変調するというような変調方式を予め決めておき、そのような割付が可能な送信電圧を決定し、図2の破線矢印115の同報通信によって、その情報を全モデムで共有するようにすればよい。なお、そのためには、破線矢印115に先立つ破線矢印のシーケンス114において、モデム間における最適なキャリアへのビット割付以外に、決められた変調方式(この例ではBPSK)が可能な最小の送信電圧値を計算する必要がある。また、その計算結果は、子局モデムから親局モデムへ通知する必要もある。親局モデムでは、全ての子局モデムから通知された最小送信電圧値および自局で計算した最小送信電圧値のうち、最大の電圧値を破線矢印115の同報通信によって送信する電圧値とする。
≪第3の変調方式の設定方法≫
更に、「全てのモデムが高い確率で復調可能な変調方式」の設定方法のうち、第3の設定方法について説明する。この設定方法では、この変調方式で送信できるビット数の所定値を予め設定しておく。そして、受信信号のパワーとノイズとの差の最小値を各キャリアについて求め、その求めたS/N比で送信可能なビット数の合計値を求める。これが前記所定値に満たなければ、送信パワーを所定の微小量だけ高くし(受信信号のパワーとノイズとの差に、この微小量を加算するだけでよく、実際の通信は必要ない)、その条件で送信可能なビット数の合計値を求める。その合計値と前記所定値との比較を、送信可能なビット数の合計値が前記所定値を超えるまで繰り返す。このような計算を行った結果を、図2の破線矢印115の同報通信によって、全モデムで共有するようにすればよい。なお、そのためには、破線矢印115に先立つ破線矢印の初期化シーケンス114において、モデム間における最適なキャリアへのビット割付以外に、決められたビット数を達成可能な最小の送信電圧値を計算する必要がある。また、その計算結果は、子局モデムから親局モデムに通知する必要もある。親局モデムでは、全ての子局モデムから通知された最小送信電圧値および自局で計算した最小送信電圧値のうち、最大の電圧値を破線矢印115の同報通信によって送信する電圧値とする。
なお、モデム間における送信権取得の公平性は、プラントだけに必要な機能ではない。例えば、ショッピングモールの監視カメラ画像などの動画データにも定時性が重要であり、このような送信権取得の公平性やその確率的な保証が重要なアプリケーションである。ただし、カメラ側に、画像処理機能があり、以前の撮影時刻からの差分情報を計算する機能や画像における特定の変化を検出する機能などがある場合には、画像の取得時刻を特定することができるので、必ずしも定時性を必要としない。
≪親局モデムおよび子局モデムの動作≫
図9は、親局モデムおよび子局モデムmの動作を示す。ここで、子局モデムmとは、全ての子局モデムのうちの一つの子局モデムであり、子局モデムmの動作を全ての子局モデムが実施するものとする。また、親局モデムは、子局モデムmに対する動作を、全ての子局モデムに対して実施するものとする。なお、基本的に、受信側は、先に受信したヘッダの内容を参照することによって、次に受信するデータの変調方式を認識するものとする。
親局モデムは、まず、電源投入後の初期化処理を行い(ステップS901)、それが終了すると、全ての子局モデムに対してトレーニングを実施する。一方、子局モデムmは、まず、電源投入後の初期化処理を行い(ステップS902)、それが終了すると、自分宛のトレーニング信号ヘッダを受信するまで、親局モデムからの信号の受信を繰り返す。
そのトレーニングにおいては、親局モデムと、全ての子局モデムとの間でステップS903ないしステップS913の処理が行われる。最初に、親局モデムは、子局モデムmに対して、トレーニング信号ヘッダを送信する(ステップS903)。この送信は、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」によって行う。続いて、親局モデムは、子局モデムmに対してトレーニング信号をn回連続して送信する(ステップS904)。トレーニング信号の送信回数nは、予め定められているものとする。送信回数nの詳細に関しては後記する。一方、子局モデムmは、親局モデムからトレーニング信号ヘッダを受信したとき、引き続いて、親局モデムからのトレーニング信号をn回連続して受信する。なお、トレーニング信号は、送信すべきデータを持たないので符号化は行われず、決められた位相パターンの信号が各キャリアに設定された信号となる。
子局モデムmは、トレーニング信号のn回の受信が終了した時点で、受信信号のS/N比を計算する。S/N比は、図6で示した受信信号のパワー602と受信信号に重畳するノイズ603との差に相当するため、これに基づいて各キャリアに割付可能なビット数601を決定する。すなわち、親局モデムからデータを受信する際のキャリア割付計算を行う(ステップS905)。そして、その計算結果であるキャリア割付情報を親局モデムに送信する(ステップS906)。この時点でも、送信信号は、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」を用いて変調する。親局モデムは、そのキャリア割付情報を受信した後、その受信確認メッセージを子局モデムmに送信する(ステップS907)。続いて、親局モデムは、子局モデムmに対してトレーニング要求メッセージを送信する(ステップS908)。
受信確認メッセージを受信した子局モデムmは、続いて、トレーニング要求メッセージを受信し、これを受けて、トレーニング信号ヘッダを親局モデムに送信する(ステップS909)。更に、子局モデムmは、トレーニング信号をn回連続して送信し(ステップS910)、親局モデムからキャリア割付情報が送信されてくるのを待つ。
一方、子局モデムmに対してトレーニング要求メッセージを送信した(ステップS908)親局モデムは、子局モデムmからトレーニング信号ヘッダおよびトレーニング信号を受信し、子局モデムmのステップS905と同様にしてキャリア割付を計算し(ステップS911)、その計算結果であるキャリア割付情報を子局モデムmに送信する(ステップS912)。
キャリア割付情報を受信した子局モデムmは、受信確認メッセージを送信する(ステップS913)。親局モデムは、その受信確認メッセージを受信することによって、子局モデムmに対する初期化シーケンスを完了する。親局モデムは、この初期化シーケンスを、全ての子局モデムに対して実施した後、前記変調方式の設定方法に従って「全てのモデムが高い確率で復調可能な変調方式」を設定し(ステップS914)、その設定した変調方式に関する情報を全ての子局モデムに送信する(ステップS915)。この情報の送信(ステップS915)および初期化シーケンス(ステップS903ないしS913)においては、「全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式」を用いるものとする。
更に、親局モデムは、ステップS916ないしS919の動作を全ての子局モデムに対して繰り返す。親局モデムと子局モデムmとの間の動作として説明すると、まず、親局モデムは、子局モデムmに対してヘッダ兼ポーリング用ヘッダの送信を行う(ステップS916)。これは、ステップS915で送信した情報が示す「全てのモデムが高い確率で復調可能な変調方式」で実施する。続いて、ステップS906で子局モデムmから送信されたキャリア割付情報に従って、「最適な変調方式」でデータ兼ポーリング用データを変調して送信する(ステップS917)。ここで、ステップS916およびS917においては、ヘッダやデータの送信とポーリング(送信要求の確認)とを兼ねた手順になっている。
子局モデムmは、データ兼ポーリング用データの受信が終了した時点で、送信権を獲得したことになる。そこで、子局モデムmは、親局モデムにヘッダの送信(ステップS918)およびデータの送信(ステップS919)を行う。このとき、ヘッダの送信においては、ステップS915で親局モデムから送信された情報が示す「全てのモデムが高い確率で復調可能な変調方式」を用いる。また、データの送信においては、ステップS912で親局モデムから送信されたキャリア割付情報に従った「最適な変調方式」を用いる。
ここで、ノイズについては、プラントの機器の動作状況などで変わる場合が多く、定期的にトレーニングを実施するときは、例えば、1秒に1回などの頻度でトレーニングを行う必要がある。また、プラントの制御監視用途においては、オーバヘッドを極力抑制する観点から、少ないトレーニングシンボル数でトレーニングをすることも重要となる。トレーニングシンボル数、シンボル周期および端末数(子局モデムの数)が定まると、トレーニングによるオーバヘッドは、次の式1で示される。
トレーニングによるオーバヘッド = 端末数×トレーニングシンボル数×シンボル周期 ・・・式1
このオーバヘッドに、例えば、トレーニングの間隔である1秒に対して5%以下、すなわち、50[msec]以下といった設計基準を設け、その設計基準を満たすようにトレーニングシンボル数を設定すればよい。図12に、シンボル周期が1/35[msec](シンボル周波数が35[kHz])の場合のトレーニングシンボル数、端末数およびオーバヘッドの関係を示す。端末数を多くしたり、オーバヘッドの許容値を小さくし過ぎたりすると、トレーニングシンボル数が少なくなり、各キャリアのS/N比の計測精度が低下するため、トレーニングシンボル数の最小値についても設計基準を設けるとよい。
≪その他の実施の形態≫
以上本発明について好適な実施の形態について一例を示したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。例えば、以下のような実施の形態が考えられる。
(1)図2のシーケンス116におけるユーザデータの通信は、「最適な変調方式」で変調するように記載したが、ヘッダの通信と同様に、「全てのモデムが高い確率で復調可能な変調方式」で変調してもよい。
(2)図10は、商店街や防災放送のための放送線1009を用いた防犯監視システムに、本発明の制御監視用通信システムを適用した実施の形態である。商店街の事務局1003や役所に設置された画像蓄積装置1002側に親局モデム1001を、電柱などに設置されたスピーカ1008にカメラユニット1006および1007を設置している。画像蓄積装置1002は、監視カメラ1005が取得した画像データの蓄積、圧縮、分析などを行う装置であり、PCやサーバなどによって実現される。なお、必ずしも既存のスピーカ近傍にカメラユニットを設置する必要はなく、スピーカのない電柱部で、放送線を加工し、カメラユニットを設置してもよい。子局のカメラユニット1006および1007は、それぞれ子局モデム1004と画像データを取得する監視カメラ1005とで構成される。
本発明の実施の形態に係る制御監視用通信システムの構成を示す図である。 本発明の実施の形態に係る制御監視用通信システムの通信手順を示す図である。 本発明の実施の形態に係る変調方式ごとのC/N比(キャリアパワー/ノイズ)およびビットエラー率の関係を示す図である。 本発明の実施の形態に係る放送線の減衰特性の一例を示す図である。 本発明の実施の形態に係る放送線のノイズ特性の一例を示す図である。 本発明の実施の形態に係る放送線への割付可能ビット数の一例を示す図である。 本発明の実施の形態に係る放送線への割付可能ビット数の一例(全てのモデムが復調可能であるが、伝送路の特性を考慮しない変調方式)を示す図である。 本発明の実施の形態に係る放送線への割付可能ビット数の一例(96dBμVおよび120dBμV印加時)を示す図である。 本発明の実施の形態に係る親局モデムおよび子局モデムの動作を示すフローチャートである。 本発明の実施の形態に係る制御監視用通信システムを利用した防犯監視システムの一例を示す図である。 本発明の実施の形態に係るモデムの構成を示す図である。 本発明の実施の形態に係るトレーニングシンボル数、端末数およびオーバヘッドの関係を示す図である。
符号の説明
105 親局モデム(通信手段)
106、107、108 子局モデム(通信手段)
109、110、111、112 制御装置
121 通信線
114 初期化シーケンス
115 全てのモデムが高い確率で復調可能な変調方式に関する情報の送信
116 ユーザデータの送受信シーケンス

Claims (9)

  1. 所定の領域内に存在する現場に配置された機器と制御室との間の通信を行う複数の通信手段からなる制御監視用通信システムにおいて
    前記通信手段は、複数存在する現場ごとに設置され、その通信手段のうち、一つが親局となり、それ以外が子局となって、その親局と全ての子局との間の通信におけるS/N比を測定し、その測定したS/N比から搬送波信号に割付けるデータ量を設定して通信を行うことを特徴とする制御監視用通信システム。
  2. 前記通信手段は、前記測定したS/N比から、前記搬送波信号の各周波数帯における最小のS/N比を求め、その求めた最小のS/N比に応じてその搬送波信号に割付けるデータ量を設定して通信を行うことを特徴とする請求項1に記載の制御監視用通信システム。
  3. 前記通信手段は、前記測定したS/N比から、各周波数帯の搬送波信号に割付けるデータ量が所定値以上となる送信電圧を求め、その求めた送信電圧によって通信を行うことを特徴とする請求項に記載の制御監視用通信システム。
  4. 前記通信手段は、前記測定したS/N比から、各周波数帯の搬送波信号に割付けるデータ量の合計値が所定値以上となる送信電圧と、各周波数帯の搬送波信号への割付データ量とを求め、その求めた送信電圧および割付データ量によって通信を行うことを特徴とする請求項に記載の制御監視用通信システム。
  5. 前記通信手段は、前記通信手段間の調停または制御に係るデータ送受信において前記通信を行うことを特徴とする請求項ないし請求項のいずれか一項に記載の制御監視用通信システム。
  6. 前記通信手段は、前記現場に配置された機器であり、画像データを取得する監視カメラと、前記制御室に設置され、その監視カメラが取得した画像データの蓄積、圧縮および分析を行うサーバとからなる監視システムにおいて、前記監視カメラと前記サーバとの間の通信を行うことを特徴とする請求項1ないし請求項のいずれか一項に記載の制御監視用通信システム。
  7. 所定の領域内に存在する現場に配置された機器と制御室との間の通信を行う複数の通信手段からなる制御監視用通信システムにおいて、親局となる通信手段と、子局となる通信手段とが行う変調方式の設定方法であって、
    前記通信手段が、
    前記親局と全ての子局との間の通信におけるS/N比を測定するステップと、
    その測定したS/N比から搬送波信号の各周波数帯における最小のS/N比を求めるステップと、
    その求めた最小のS/N比に応じてその搬送波信号に割付けるデータ量を設定するステップと、
    を実行することを特徴とする変調方式の設定方法。
  8. 所定の領域内に存在する現場に配置された機器と制御室との間の通信を行う複数の通信手段からなる制御監視用通信システムにおいて、親局となる通信手段と、子局となる通信手段とが行う変調方式の設定方法であって、
    前記通信手段が、
    前記親局と全ての子局との間の通信におけるS/N比を測定するステップと、
    その測定したS/N比から、各周波数帯の搬送波信号に割付けるデータ量が所定値以上となる送信電圧を設定するステップと、
    を実行することを特徴とする変調方式の設定方法。
  9. 所定の領域内に存在する現場に配置された機器と制御室との間の通信を行う複数の通信手段からなる制御監視用通信システムにおいて、親局となる通信手段と、子局となる通信手段とが行う変調方式の設定方法であって、
    前記通信手段が、
    前記親局と全ての子局との間の通信におけるS/N比を測定するステップと、
    その測定したS/N比から、各周波数帯の搬送波信号に割付けるデータ量の合計値が所定値以上となる送信電圧および各周波数帯の搬送波信号への割付データ量を設定するステップと、
    を実行することを特徴とする変調方式の設定方法。
JP2003428871A 2003-12-25 2003-12-25 制御監視用通信システムおよび変調方式の設定方法 Expired - Fee Related JP4181492B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003428871A JP4181492B2 (ja) 2003-12-25 2003-12-25 制御監視用通信システムおよび変調方式の設定方法
US11/018,355 US7570748B2 (en) 2003-12-25 2004-12-22 Control and monitoring telecommunication system and method of setting a modulation method
EP04030744A EP1548969A3 (en) 2003-12-25 2004-12-23 Control and monitoring of a telecommunication system, and method of setting a modulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428871A JP4181492B2 (ja) 2003-12-25 2003-12-25 制御監視用通信システムおよび変調方式の設定方法

Publications (2)

Publication Number Publication Date
JP2005191784A JP2005191784A (ja) 2005-07-14
JP4181492B2 true JP4181492B2 (ja) 2008-11-12

Family

ID=34544991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428871A Expired - Fee Related JP4181492B2 (ja) 2003-12-25 2003-12-25 制御監視用通信システムおよび変調方式の設定方法

Country Status (3)

Country Link
US (1) US7570748B2 (ja)
EP (1) EP1548969A3 (ja)
JP (1) JP4181492B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10144813A1 (de) * 2001-09-12 2003-03-27 Alstom Switzerland Ltd Verfahren zum Optimieren einer großtechnischen Anlage, insbesondere eines Kraftwerks
JP2007221614A (ja) * 2006-02-20 2007-08-30 Hitachi Ltd 自動車内通信装置
US7673084B2 (en) * 2007-02-20 2010-03-02 Infineon Technologies Ag Bus system and methods of operation using a combined data and synchronization line to communicate between bus master and slaves
US7796675B1 (en) * 2008-03-12 2010-09-14 Recon Dynamics, Llc Burst spread spectrum radio system and method for site monitoring
CN105484604B (zh) * 2015-12-28 2017-03-22 沈阳宝通航空机电有限公司 一种机库大门控制系统及方法
CN112106338B (zh) * 2018-05-21 2022-06-21 三菱电机株式会社 调制解调器

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804964A (en) * 1985-08-09 1989-02-14 Nissan Motor Company, Limited Loran-C signal receiving apparatus
IL82539A0 (en) * 1987-05-15 1987-11-30 Medaon Ltd Video communication system and phase or frequency modulator included therein
US5357251A (en) * 1988-03-23 1994-10-18 Central Institute For The Deaf Electronic filters, signal conversion apparatus, hearing aids and methods
US4947480A (en) * 1988-10-31 1990-08-07 The United States Of America As Represented By The United States Department Of Energy Multichannel signal enhancement
US5371853A (en) * 1991-10-28 1994-12-06 University Of Maryland At College Park Method and system for CELP speech coding and codebook for use therewith
US5675572A (en) * 1993-07-28 1997-10-07 Sony Corporation Orthogonal frequency division multiplex modulation apparatus and orthogonal frequency division multiplex demodulation apparatus
JP3222001B2 (ja) * 1993-12-14 2001-10-22 ユニデン株式会社 チャンネル切替制御方法およびそれを用いたコードレス電話機
CA2440667A1 (en) 1994-06-02 1995-12-14 Krista S. Jacobsen Method and apparatus for coordinating multi-point to point communications in a multi-tone data transmission system
US6181453B1 (en) * 1995-12-28 2001-01-30 Lucent Technologies, Inc. Method and apparatus for laser performance enhancement
JP3449457B2 (ja) * 1996-04-18 2003-09-22 勝元 崔 無線通信システムで干渉を最小化して雑音の影響を減らすための信号処理装置及び方法
US6987856B1 (en) * 1996-06-19 2006-01-17 Board Of Trustees Of The University Of Illinois Binaural signal processing techniques
US6141317A (en) 1996-08-22 2000-10-31 Tellabs Operations, Inc. Apparatus and method for bandwidth management in a multi-point OFDM/DMT digital communications system
JP3381580B2 (ja) * 1996-11-22 2003-03-04 株式会社豊田中央研究所 アダプティブ通信装置
FI116181B (fi) * 1997-02-07 2005-09-30 Nokia Corp Virheenkorjausta ja virheentunnistusta hyödyntävä informaationkoodausm enetelmä ja laitteet
JP4143158B2 (ja) * 1997-04-16 2008-09-03 聯華電子股▲ふん▼有限公司 データキャリア
US5930312A (en) * 1997-04-24 1999-07-27 Tut Systems, Inc. Apparatus and method for selecting different communication speeds on a data signal line
US6052336A (en) * 1997-05-02 2000-04-18 Lowrey, Iii; Austin Apparatus and method of broadcasting audible sound using ultrasonic sound as a carrier
US6564009B2 (en) * 1997-05-19 2003-05-13 Sony Corporation Apparatus for recording and/or reproducing data onto and/or from an optical disk and method thereof
JP3330587B2 (ja) 1998-12-17 2002-09-30 三菱電機株式会社 通信方法および通信装置
JP2001025000A (ja) 1999-07-09 2001-01-26 Toshiba Corp 監視システム
US6584205B1 (en) * 1999-08-26 2003-06-24 American Technology Corporation Modulator processing for a parametric speaker system
US6639537B1 (en) * 2000-03-31 2003-10-28 Massachusetts Institute Of Technology Highly linear analog-to-digital conversion system and method thereof
DE10017600A1 (de) * 2000-04-08 2001-10-11 Bodenseewerk Geraetetech Regler, insbesondere Lenkregler für Flugkörper
US6637033B1 (en) * 2000-07-10 2003-10-21 Arris International, Inc. Signal splitter and gain adjustment system for a cable data system
US6665546B2 (en) * 2001-05-02 2003-12-16 Trex Enterprises Corporation High speed, point-to-point, millimeter wave dated communication system
US6556836B2 (en) * 2001-05-02 2003-04-29 Trex Enterprises Corporation Point-to-point, millimeter wave, dual band free space gigabit per second communication link
US6611696B2 (en) * 2001-05-02 2003-08-26 Trex Enterprises Corporation Method and apparatus for aligning the antennas of a millimeter wave communication link using a narrow band oscillator and a power detector
US7158563B2 (en) 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20030193889A1 (en) 2002-04-11 2003-10-16 Intel Corporation Wireless device and method for interference and channel adaptation in an OFDM communication system
US6966262B2 (en) * 2003-07-15 2005-11-22 Special Devices, Inc. Current modulation-based communication from slave device
US7647063B2 (en) * 2003-10-17 2010-01-12 Telefonaktiebolaget L M Ericsson (Publ) Method and system for outer loop power control

Also Published As

Publication number Publication date
US7570748B2 (en) 2009-08-04
EP1548969A2 (en) 2005-06-29
JP2005191784A (ja) 2005-07-14
US20050141683A1 (en) 2005-06-30
EP1548969A3 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5079071B2 (ja) 電力線を通してのデータ通信のためのシステム
KR101484798B1 (ko) 공유 매체에의 분산형 액세스의 관리
US8258649B2 (en) Communicating over power distribution media
CN101326768B (zh) 在电力线网络中对调度表和网络信息进行通信的方法和设备
US7804763B2 (en) Power line communication device and method
US9148385B2 (en) Contention groups for hidden nodes
CN101167322B (zh) 用于具有新前导码结构的ofdm通信系统的发射设备、接收设备和通信方法
EP1065818A1 (en) Transmitting method and transmitting device
US10009688B2 (en) Digital communication system for loudspeakers
CN102769523A (zh) 通信系统、发送装置以及通信方法
US8614961B1 (en) Efficient communication over a shared medium
JP4181492B2 (ja) 制御監視用通信システムおよび変調方式の設定方法
US20200351542A1 (en) Catv return band sweeping using data over cable service interface specification carriers
JP4211164B2 (ja) 電力線通信システム
EP1817874A2 (en) A hybrid telephone, non-telephone network
EP1075103A1 (en) Communication device and communication method
US20080298318A1 (en) Apparatus and method for requesting bandwidth and allocating uplink resources based on group in wireless communication system
JP4735316B2 (ja) 電力線通信システム、電力線通信装置、および、それらの送信制御方法
JPWO2020222272A5 (ja) 端末、無線通信方法、基地局及びシステム
JP2010088079A (ja) 電力線搬送通信装置
JP5205605B2 (ja) 電力線搬送通信装置
EP1146659A1 (en) Communication method and communication device
US7082158B2 (en) ADSL modem apparatus
KR101275135B1 (ko) 광대역 무선통신 시스템에서 추가 데이터를 송수신하기위한 장치 및 방법
KR101025789B1 (ko) 데이터 처리 장치 및 신호 충돌 방지 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Ref document number: 4181492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees