[go: up one dir, main page]

JP4168983B2 - Cold cathode discharge tube electrode material - Google Patents

Cold cathode discharge tube electrode material Download PDF

Info

Publication number
JP4168983B2
JP4168983B2 JP2004185653A JP2004185653A JP4168983B2 JP 4168983 B2 JP4168983 B2 JP 4168983B2 JP 2004185653 A JP2004185653 A JP 2004185653A JP 2004185653 A JP2004185653 A JP 2004185653A JP 4168983 B2 JP4168983 B2 JP 4168983B2
Authority
JP
Japan
Prior art keywords
discharge tube
electrode
cold cathode
cathode discharge
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004185653A
Other languages
Japanese (ja)
Other versions
JP2006012505A (en
Inventor
一哉 坂口
繁 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004185653A priority Critical patent/JP4168983B2/en
Publication of JP2006012505A publication Critical patent/JP2006012505A/en
Application granted granted Critical
Publication of JP4168983B2 publication Critical patent/JP4168983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Description

この発明は冷陰極放電管用電極材料、特に耐スパッタ性が高く、電極としての寿命が高寿命でしかも加工性に優れた電極材料に関する。   The present invention relates to an electrode material for a cold cathode discharge tube, and particularly to an electrode material having high sputtering resistance, a long life as an electrode, and excellent workability.

従来より、液晶ディスプレイのバックライト用光源等として冷陰極放電管が広く用いられている。
この冷陰極放電管は、細いガラス管内に水銀蒸気を含む希ガスを封入するとともに、一対の電極をガラス管の両端に且つ管軸方向に対向する状態で取り付け、またガラス管の内壁に蛍光膜を形成塗着したもので、この冷陰極放電管では、冷状態の電極(陰極)から2次電子が放出されて放電が持続され、そしてその放電により他方の電極(陽極)に引かれる電子と管内の水銀分子が衝突することによって水銀分子から紫外線が放射される。この紫外線が蛍光膜に当って蛍光膜を励起し、蛍光膜から可視光線が発光される。
Conventionally, cold cathode discharge tubes have been widely used as light sources for backlights of liquid crystal displays.
In this cold cathode discharge tube, a rare gas containing mercury vapor is enclosed in a thin glass tube, and a pair of electrodes are attached to both ends of the glass tube in the state of facing the tube axis, and a fluorescent film is attached to the inner wall of the glass tube. In this cold cathode discharge tube, secondary electrons are emitted from the cold electrode (cathode) and the discharge is continued, and the electrons drawn to the other electrode (anode) by the discharge Ultraviolet rays are emitted from the mercury molecules when the mercury molecules in the tube collide. The ultraviolet rays hit the fluorescent film to excite the fluorescent film, and visible light is emitted from the fluorescent film.

この冷陰極放電管において、電極(陰極)からの2次電子の放出は、放電により発生した陽イオン等が電極(陰極)に衝突することによって発生する。また放電の開始は、ガラス管中に僅かに存在する電子が電圧の印加により電極(陽極)に引かれることで始まる。   In this cold cathode discharge tube, the emission of secondary electrons from the electrode (cathode) occurs when cations generated by discharge collide with the electrode (cathode). The start of discharge starts when electrons slightly present in the glass tube are attracted to the electrode (anode) by applying a voltage.

この冷陰極放電管用電極は、従来冷間加工によって所要の形状に成形されているが、このものはもともと形状的に小さくて薄いものである。
このような電極は、電極材料自体が加工性の良いものでないと良好に加工成形することができず、また冷間加工金型が損傷してしまう。
The cold cathode discharge tube electrode is conventionally formed into a required shape by cold working, but this is originally small and thin in shape.
Such an electrode cannot be satisfactorily molded unless the electrode material itself has good workability, and the cold work mold is damaged.

そこで従来かかる電極用材料として、軟らかくて冷間加工性に優れ、量産が容易で材料価格も安価なNiが主として使用されている。   Therefore, as such an electrode material, Ni which is soft and excellent in cold workability, is easy to mass-produce, and is inexpensive is mainly used.

ところで、冷陰極放電管用電極は使用を続けるうちに電極がスパッタにより消耗し、寿命に到る問題がある。またスパッタによって電極を構成する金属原子又は分子が放電管内に放出されると、これらが放電管内に充填された放電ガスに含まれる水銀と結合して水銀アマルガムを形成するため、放電管内の水銀が消耗し、放電管の寿命が短くなる。
この点Niから成る電極は耐スパッタ性が十分でなく、電極寿命や放電管の寿命が短い問題があった。
By the way, there is a problem that the electrode for the cold cathode discharge tube is consumed by sputtering as it continues to be used, and the life is reached. Further, when metal atoms or molecules constituting the electrode are released into the discharge tube by sputtering, these combine with mercury contained in the discharge gas filled in the discharge tube to form mercury amalgam, so that the mercury in the discharge tube It is consumed and the life of the discharge tube is shortened.
In this regard, the electrode made of Ni has a problem that the sputtering resistance is not sufficient, and the electrode life and the discharge tube life are short.

他方かかる冷陰極放電管用の電極材料としてMoを用いた電極材料も公知である(例えば下記特許文献1)。
しかしながらMoは極めて高価な材料であり、また加工性の点でもMoは難加工材であって電極への加工が難しく、全体として電極製造のためのコストが高いといった問題があった。
On the other hand, an electrode material using Mo as an electrode material for such a cold cathode discharge tube is also known (for example, Patent Document 1 below).
However, Mo is an extremely expensive material, and Mo is difficult to process from the viewpoint of workability, so that it is difficult to process the electrode, and the cost for manufacturing the electrode as a whole is high.

特開2000−133201号公報JP 2000-133201 A

本発明はこのような事情を背景とし、耐スパッタ性が高くて電極寿命を長寿命化することができ、尚且つ素材に要するコストも低く抑え得て、加工性も良好な冷陰極放電管用電極材料を提供することを目的としてなされたものである。   In the background of the present invention, the present invention is a cold cathode discharge tube electrode that has high sputter resistance, can extend the life of the electrode, can keep the cost of the material low, and has good workability. It was made for the purpose of providing materials.

而して請求項1は、電極材料を質量%でMoを6%〜35%含有し、残部不可避的不純物及びNiの組成を有するNi−Mo合金で構成することを特徴とする。   Thus, claim 1 is characterized in that the electrode material is composed of Ni-Mo alloy containing 6% to 35% of Mo by mass% and the balance of inevitable impurities and Ni.

発明の作用・効果Effects and effects of the invention

以上のように請求項1は、冷陰極放電管用電極材料を、Moを6%〜35%(望ましくは10%〜27%)含有するNi−Mo合金で構成したものである。
本発明者は、冷陰極放電管用電極の寿命を高寿命化する研究を行う中で、電極用材料としてNiとMoの合金に着目し、Niに対してMoを様々な量で合金化して電極を構成したところ、比較的少量のMoをNiに合金化することで耐スパッタ性が純Moに匹敵する程度まで高まる事実を知得した。
即ち、Moを質量%で6%以上Niに加え、合金化することで耐スパッタ性が急激に高まり、更にMoの添加量を僅かに増加させるだけで純Moに匹敵する程度まで高まる事実が判明した。
更にMoの含有量を一定以上に増加してもその効果はほぼ飽和してしまう事実も判明した。
As described above, according to the first aspect, the electrode material for a cold cathode discharge tube is composed of a Ni-Mo alloy containing 6% to 35% (preferably 10% to 27%) of Mo.
The present inventor, while conducting research to increase the life of the cold cathode discharge tube electrode, focused on an alloy of Ni and Mo as an electrode material, and alloyed Mo in various amounts with respect to Ni. As a result, it was found that sputtering resistance was increased to a level comparable to pure Mo by alloying a relatively small amount of Mo with Ni.
In other words, the fact that Mo is added to Ni by mass 6% or more and alloying makes it possible to rapidly increase the spatter resistance, and the fact that it increases to a level comparable to pure Mo by slightly increasing the amount of Mo added. did.
It was also found that the effect would be almost saturated even if the Mo content was increased above a certain level.

特にMoの含有量を35%より多量にすると、耐スパッタ性がMo含有量の増大の割りには高くならないだけでなく寧ろ加工性が極度に悪化し、電極製造に際しての加工が困難となることが分った。
その理由は明確には確認されていないが、Niにある量以上のMoを合金化することでNiとMoとの金属間化合物が電極表面に析出し、その金属間化合物が加工性を悪化させているものと考えられる。
即ち、Moの含有量が多くなるのに伴って金属間化合物が多く析出し、そしてその金属間化合物が材料自体の硬度を高くして冷間加工性を損なうものと考えられる。
In particular, if the Mo content is higher than 35%, not only the spatter resistance will not be high for the increase of the Mo content, but also the workability will be extremely deteriorated, making it difficult to process during electrode production. I found out.
The reason is not clearly confirmed, but by alloying more than a certain amount of Mo in Ni, an intermetallic compound of Ni and Mo precipitates on the electrode surface, and the intermetallic compound deteriorates workability. It is thought that.
That is, it is considered that as the Mo content increases, more intermetallic compounds are precipitated, and the intermetallic compounds increase the hardness of the material itself and impair cold workability.

かかる本発明によれば、耐スパッタ性が高く、従って冷陰極放電管用電極を高寿命化でき、しかも加工性も良好で電極の量産が容易な冷陰極放電管用電極材料を提供することができる。   According to the present invention, it is possible to provide an electrode material for a cold cathode discharge tube which has a high sputtering resistance, and therefore can extend the life of the electrode for a cold cathode discharge tube, has good workability and can be easily mass-produced.

次に本発明の実施形態を以下に詳述する。
冷陰極放電管用電極材料の特性を評価するため、形状及び寸法が5×10×10mmのテストピース(このテストピースは鍛造素材から切り出したものである)を表1に示す種々の量でMoをNiに含有させて成るNi−Mo合金にて作製し、そのテストピースに対し、以下に示す測定装置を用いてミリング量の測定を行った。
Next, embodiments of the present invention will be described in detail below.
In order to evaluate the characteristics of the electrode material for the cold cathode discharge tube, a test piece having a shape and dimensions of 5 × 10 × 10 mm (this test piece was cut out from the forging material) was used in various amounts as shown in Table 1. A Ni—Mo alloy contained in Ni was used to measure the milling amount of the test piece using the following measuring device.

IBE測定条件
a.機種 日立製作所製IML-250
b.処理条件 加速電圧 500V
加速電流 210mA
減速電圧 250V
入射角度 45°
ガス Ar
真空度 2×10−6torr
IBE measurement conditions a. Model IML-250 made by Hitachi, Ltd.
b. Processing conditions Acceleration voltage 500V
Acceleration current 210mA
Deceleration voltage 250V
Incident angle 45 °
Gas Ar
Degree of vacuum 2 × 10 −6 torr

具体的には、テストピースに対して所定時間(60分)Arイオンを当て続け、スパッタにより生じた孔の深さを測定することによってミリング量を測定し、そのミリング量に基づいてスパッタレート(1分当りのミリング量)を算出した。
そして純Niを基準(100%)として、その純Niに対するスパッタレートの比率を算出した結果を表1に併せて示してある。
Specifically, Ar ion is continuously applied to the test piece for a predetermined time (60 minutes), and the milling amount is measured by measuring the depth of the hole generated by sputtering, and the sputtering rate ( The amount of milling per minute) was calculated.
Table 1 also shows the results of calculating the ratio of the sputter rate with respect to pure Ni with reference to pure Ni (100%).

Figure 0004168983
Figure 0004168983

図1は、表1の結果に基いて横軸にMo含有量を、縦軸にスパッタレート比率をとってそれらの関係を表したもので、これら表1及び図1の結果から、僅か6%のMoをNiに含有させ合金化することで、スパッタレート比率が純Niに較べて急激に減少し、特に10%まで含有させることで純Moに匹敵するレベルまで低減し、その後はMo含有量を増加してもスパッタレート比率はそれ程には下がらず、Moの含有効果はほぼ飽和することが分る。   FIG. 1 shows the relationship between the Mo content on the horizontal axis and the sputter rate ratio on the vertical axis based on the results of Table 1. From the results of Table 1 and FIG. Sputtering rate ratio is drastically reduced compared with pure Ni by alloying Mo in Ni and alloying is reduced to a level comparable to pure Mo by inclusion up to 10%, then Mo content It can be seen that the sputter rate ratio does not drop so much even if the content of Si is increased, and the Mo content effect is almost saturated.

次に、表2及び図2はMoの含有量と硬さ(焼鈍後の硬さ)との関係を示したもので、これら表2及び図2に示しているようにMoの含有量を増加するに従ってその硬さは増加している。その硬さの増加はMo含有量が35%まではほぼ比例的であり、Mo含有量が更に増して40%となったところで硬さは飛躍的に高くなって加工限界を超えたものとなっている。   Next, Table 2 and FIG. 2 show the relationship between the Mo content and hardness (hardness after annealing). As shown in Table 2 and FIG. 2, the Mo content is increased. As it goes on, its hardness increases. The increase in hardness is almost proportional until the Mo content reaches 35%, and when the Mo content further increases to 40%, the hardness increases dramatically and exceeds the processing limit. ing.

実際に量産化を考えたときの硬さとしてはHv230以下であることが望ましく、この意味においてMoの含有量としては35%以下、特に27%以下とするのが望ましい。   The hardness when actually considering mass production is preferably Hv 230 or less. In this sense, the Mo content is preferably 35% or less, particularly preferably 27% or less.

Figure 0004168983
Figure 0004168983

このようにMoを含有させてNiと合金化させることにより耐スパッタ性が向上し、またMoの含有による合金化によって硬さも高くなるが、これは前述したように金属間化合物の形成によるものと考えられる。   Sputtering resistance is improved by adding Mo and alloying with Ni as described above, and hardness is increased by alloying by containing Mo. This is due to the formation of intermetallic compounds as described above. Conceivable.

但しMo含有による耐スパッタ性の向上効果は、Mo:6%で急激に現われ、更に10%で純Moに匹敵するレベルとなり、その後はMo含有量を増加してもそれほどには耐スパッタ性の向上効果は上がっていないのに較べて、硬さの方はMoの含有量が増すにつれて高くなっている。
そしてこれら耐スパッタ性の向上効果と硬さの上昇とを総合勘案した場合、Moの含有量即ち合金化の量としては6%〜35%の範囲とする必要があり、望ましくはMo:10〜27%である。
However, the effect of improving the spatter resistance due to the Mo content appears sharply at Mo: 6%, and at the level of 10%, it is comparable to pure Mo. Compared with the improvement effect not increasing, the hardness increases as the Mo content increases.
When considering the effect of improving the spatter resistance and the increase in hardness, the Mo content, that is, the amount of alloying, needs to be in the range of 6% to 35%, preferably Mo: 10 to 27%.

以上本発明の実施形態を詳述したが、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, the present invention can be implemented in various modifications without departing from the spirit of the present invention.

本発明の実施形態において得られたMo含有量とスパッタレート比率との関係を表す図である。It is a figure showing the relationship between Mo content obtained in the embodiment of the present invention, and a sputtering rate ratio. 本発明の実施形態において得られたMo含有量と硬さとの関係を表す図である。It is a figure showing the relationship between Mo content and hardness obtained in embodiment of this invention.

Claims (1)

質量%でMoを6%〜35%含有し、残部不可避的不純物及びNiの組成を有するNi−Mo合金で構成して成る冷陰極放電管用電極材料。   An electrode material for a cold cathode discharge tube comprising 6% to 35% of Mo by mass and the balance being composed of a Ni—Mo alloy having the composition of inevitable impurities and Ni.
JP2004185653A 2004-06-23 2004-06-23 Cold cathode discharge tube electrode material Expired - Fee Related JP4168983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185653A JP4168983B2 (en) 2004-06-23 2004-06-23 Cold cathode discharge tube electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185653A JP4168983B2 (en) 2004-06-23 2004-06-23 Cold cathode discharge tube electrode material

Publications (2)

Publication Number Publication Date
JP2006012505A JP2006012505A (en) 2006-01-12
JP4168983B2 true JP4168983B2 (en) 2008-10-22

Family

ID=35779516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185653A Expired - Fee Related JP4168983B2 (en) 2004-06-23 2004-06-23 Cold cathode discharge tube electrode material

Country Status (1)

Country Link
JP (1) JP4168983B2 (en)

Also Published As

Publication number Publication date
JP2006012505A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4367954B2 (en) Electrode material
JP4831481B2 (en) Alloys for cold cathode discharge tube electrodes
CN1873876B (en) Electrode material
JP4168983B2 (en) Cold cathode discharge tube electrode material
JP4091508B2 (en) Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube
JP4994989B2 (en) Electrode alloy for cold cathode fluorescent discharge tube, electrode for cold cathode fluorescent discharge tube formed with the electrode alloy, and cold cathode fluorescent discharge tube provided with the electrode
JP2008123722A (en) Electrode material for cold cathode fluorescent lamp
JP4394748B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP2009215646A (en) Alloy for cold cathode discharge tube electrode
JP5629148B2 (en) Cold cathode discharge tube electrode and cold cathode discharge tube using the same
JP2008300043A (en) Electrode for discharge tube and cold cathode fluorescent tube using the same
JP4902706B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP2009197319A (en) Alloy for cold cathode discharge tube electrode
JP4267039B2 (en) Cold cathode fluorescent lamp
JP2007220669A (en) Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display
JP4934156B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
US20090108731A1 (en) Electrode for cold-cathode fluorescent lamp
JP4531125B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP2009161852A (en) Alloy for electrode for cold cathode discharge tube
JP4612748B2 (en) Electrode material
JP2010013694A (en) Alloy for cold cathode discharge tube electrode
JP2008050690A (en) Alloy for cold cathode discharge tube electrode
JP5224281B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP2011181275A (en) Electrode for cold cathode ultraviolet tube, and cold cathode ultraviolet tube using the same
JP2008204837A (en) Cold cathode fluorescent lamp electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees