JP4091508B2 - Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube - Google Patents
Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube Download PDFInfo
- Publication number
- JP4091508B2 JP4091508B2 JP2003321509A JP2003321509A JP4091508B2 JP 4091508 B2 JP4091508 B2 JP 4091508B2 JP 2003321509 A JP2003321509 A JP 2003321509A JP 2003321509 A JP2003321509 A JP 2003321509A JP 4091508 B2 JP4091508 B2 JP 4091508B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- discharge tube
- cold cathode
- cathode discharge
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/067—Main electrodes for low-pressure discharge lamps
- H01J61/0675—Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/067—Main electrodes for low-pressure discharge lamps
- H01J61/0675—Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
- H01J61/0677—Main electrodes for low-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/06—Main electrodes
- H01J61/073—Main electrodes for high-pressure discharge lamps
- H01J61/0735—Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
- H01J61/0737—Main electrodes for high-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/06—Sources
- H01J2237/08—Ion sources
- H01J2237/0815—Methods of ionisation
- H01J2237/082—Electron beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2893/00—Discharge tubes and lamps
- H01J2893/0064—Tubes with cold main electrodes (including cold cathodes)
- H01J2893/0065—Electrode systems
- H01J2893/0066—Construction, material, support, protection and temperature regulation of electrodes; Electrode cups
Landscapes
- Discharge Lamp (AREA)
Description
この発明は冷陰極放電管用電極、特に耐スパッタ性を高めて高寿命となした電極及び冷陰極放電管用電極組立体に関する。 The present invention relates to an electrode for a cold cathode discharge tube, and more particularly to an electrode and an electrode assembly for a cold cathode discharge tube that have improved spatter resistance and have a long life.
従来より、液晶ディスプレイのバックライト用光源等として冷陰極放電管が広く用いられている。
この冷陰極放電管は、細いガラス管内に水銀蒸気を含む希ガスを封入するとともに、一対の電極をガラス管の両端に且つ管軸方向に対向する状態で取り付け、またガラス管の内壁に蛍光膜を形成塗着したもので、この冷陰極放電管では、冷状態の電極(陰極)から2次電子が放出されて放電が持続され、そしてその放電により他方の電極(陽極)に引かれる電子と管内の水銀分子が衝突することによって水銀分子から紫外線が放射される。この紫外線が蛍光膜に当って蛍光膜を励起し、蛍光膜から可視光線が発光される。
Conventionally, cold cathode discharge tubes have been widely used as light sources for backlights of liquid crystal displays.
In this cold cathode discharge tube, a rare gas containing mercury vapor is enclosed in a thin glass tube, and a pair of electrodes are attached to both ends of the glass tube in the state of facing the tube axis, and a fluorescent film is attached to the inner wall of the glass tube. In this cold cathode discharge tube, secondary electrons are emitted from the cold electrode (cathode) and the discharge is continued, and the electrons drawn to the other electrode (anode) by the discharge Ultraviolet rays are emitted from the mercury molecules when the mercury molecules in the tube collide. The ultraviolet rays hit the fluorescent film to excite the fluorescent film, and visible light is emitted from the fluorescent film.
この冷陰極放電管において、電極(陰極)からの2次電子の放出は、放電により発生した陽イオン等が電極(陰極)に衝突することによって発生する。また放電の開始は、ガラス管中に僅かに存在する電子が電圧の印加により電極(陽極)に引かれることで始まる。 In this cold cathode discharge tube, the emission of secondary electrons from the electrode (cathode) occurs when cations generated by discharge collide with the electrode (cathode). The start of discharge starts when electrons slightly present in the glass tube are attracted to the electrode (anode) by applying a voltage.
この冷陰極放電管用電極は、従来冷間加工によって所要の形状に成形されているが、このものはもともと形状的に小さくて薄いものである。
また電極をカップ形状、即ち筒状体の一端の開放端を閉塞した形状にすると、輝度の高い負グローを電極内の空間に閉じ込めることができ、グロー放電を増強することができる。
このような電極は、電極材料自体が加工性の良いものでないと良好に加工成形することができず、また冷間加工金型が損傷してしまう。
The cold cathode discharge tube electrode is conventionally formed into a required shape by cold working, but this is originally small and thin in shape.
Further, when the electrode has a cup shape, that is, a shape in which the open end of one end of the cylindrical body is closed, a high-brightness negative glow can be confined in the space in the electrode, and glow discharge can be enhanced.
Such an electrode cannot be satisfactorily molded unless the electrode material itself has good workability, and the cold work mold is damaged.
そこで従来かかる電極用材料として、軟らかくて冷間加工性に優れ、量産が容易で材料価格も安価なNiが主として使用されている。
このNiはまた、電極に接合されるリードとの溶接性も良好である。特に、タングステン等から成るリードは紫外線遮断率の高いガラス材料との密着性に優れているが、Niから成る電極はこのようなリードに対しても良好に溶接できる。
Therefore, as such an electrode material, Ni which is soft and excellent in cold workability, is easy to mass-produce, and is inexpensive is mainly used.
This Ni also has good weldability with the lead joined to the electrode. In particular, a lead made of tungsten or the like is excellent in adhesion to a glass material having a high ultraviolet blocking rate, but an electrode made of Ni can be well welded to such a lead.
ところで、冷陰極放電管用電極は使用を続けるうちに電極がスパッタにより消耗し、寿命に到る問題がある。またスパッタによって電極を構成する金属原子又は分子が放電管内に放出されると、これらが放電管内に充填された放電ガスに含まれる水銀と結合して水銀アマルガムを形成するため、放電管内の水銀が消耗し、放電管の寿命が短くなる。
この点Niから成る電極は耐スパッタ性が十分でなく、電極寿命や放電管の寿命が短い問題があった。
By the way, there is a problem that the electrode for the cold cathode discharge tube is consumed by sputtering as it continues to be used, and the life is reached. Further, when metal atoms or molecules constituting the electrode are released into the discharge tube by sputtering, these combine with mercury contained in the discharge gas filled in the discharge tube to form mercury amalgam, so that the mercury in the discharge tube It is consumed and the life of the discharge tube is shortened.
In this regard, the electrode made of Ni has a problem that the sputtering resistance is not sufficient, and the electrode life and the discharge tube life are short.
そこで仕事関数が比較的小さく、且つ耐スパッタ性が高く、電極寿命を高寿命化することのできる材料が現在様々に研究開発されている。その中で耐スパッタ性が高く仕事関数の小さいNbが電極材料として注目されているが(例えば下記特許文献1)、Nbは極めて高価な材料であり(例えばNiがkg当り約2,000円程度であるのに対し、Nbの場合にはkg当り40,000円程度と高価)、電極材料としてNbを用いた場合には電極コストが高くなるといった問題があった。 Thus, various materials are currently being researched and developed that have a relatively small work function, high sputtering resistance, and a long electrode life. Among them, Nb having high sputtering resistance and a small work function is attracting attention as an electrode material (for example, Patent Document 1 below), but Nb is an extremely expensive material (for example, Ni is about 2,000 yen per kg). On the other hand, in the case of Nb, there is a problem that the cost of the electrode becomes high when Nb is used as the electrode material.
またNbは軟らかい材料であるが比較的融点が高く、且つ金属の酸化温度が融点に比較して非常に低い。このため、電極にリードをレーザ溶接等で融着しようとすれば、融点に達する前に金属酸化が生じ、溶接を良好に行うことができないといった問題があった。
本発明はこのような事情を背景とし、耐スパッタ性が高くて電極寿命を長寿命化することができ、尚且つ素材に要するコストも低く抑え得て加工性も良好な冷陰極放電管用電極及び冷陰極放電管用電極組立体を提供することを目的としてなされたものである。 In the background of the present invention, the present invention provides an electrode for a cold cathode discharge tube that has high sputtering resistance and can prolong the life of the electrode, and can keep the cost required for the material low and has good workability. The object of the present invention is to provide an electrode assembly for a cold cathode discharge tube.
而して請求項1は冷陰極放電管用電極に関するもので、重量%でNbを6%〜32%未満含有し、残部不可避的不純物及びNiの組成を有するNi-Nb合金で冷陰極放電管用電極を構成することを特徴とする。 Accordingly, claim 1 relates to an electrode for a cold cathode discharge tube, which is an Ni-Nb alloy containing Nb in an amount of less than 6% to less than 32% by weight, the balance being inevitable impurities and Ni, and the electrode for the cold cathode discharge tube. It is characterized by comprising.
請求項2は冷陰極放電管用電極組立体に関するもので、重量%でNbを6%〜32%未満含有し、残部不可避的不純物及びNiの組成を有するNi-Nb合金から成るカップ形状の電極と、該電極の底面に固着されたリードとを有することを特徴とする。 Claim 2 relates to an electrode assembly for a cold cathode discharge tube, which contains a cup-shaped electrode comprising Ni-Nb alloy containing Nb in an amount of less than 6% to less than 32% by weight and having the balance of inevitable impurities and Ni. And a lead fixed to the bottom surface of the electrode.
以上のように請求項1は、冷陰極放電管用電極をNbを6%〜32%未満含有するNi-Nb合金で構成したものである。
本発明者は、冷陰極放電管用電極の寿命を高寿命化する研究を行う中で、電極用材料としてNiとNbの合金に着目し、Niに対してNbを様々な量で合金化して電極を構成したところ、比較的少量のNbをNiに合金化することで耐スパッタ性が純Nbに匹敵する程度まで高まる事実を知得した。
即ち、Nbを重量%で6%以上Niに加え、合金化することで耐スパッタ性が純Nbに匹敵する程度まで高まる事実が判明した。
As described above, according to the first aspect, the cold cathode discharge tube electrode is made of a Ni—Nb alloy containing 6% to less than 32% of Nb.
While conducting research to increase the life of cold cathode discharge tube electrodes, the present inventors focused on Ni and Nb alloys as electrode materials, and formed electrodes by alloying Nb with Ni in various amounts. As a result, it was found that sputtering resistance was increased to a level comparable to pure Nb by alloying a relatively small amount of Nb with Ni.
That is, it was found that the sputter resistance is increased to a level comparable to that of pure Nb by adding Nb to Ni in an amount of 6% or more by weight and alloying.
その理由は明確には確認されていないが、Niに所定量のNbを合金化することで金属間化合物(Ni3Nb)が電極表面に析出し、その金属間化合物が耐スパッタ性を高める上で有効に働いているものと考えられる。
但しその効果を有効に発揮させるためにはNbを6%以上含有させる必要がある。
The reason for this has not been clearly confirmed, but intermetallic compound (Ni 3 Nb) is deposited on the electrode surface by alloying a predetermined amount of Nb with Ni, and the intermetallic compound improves the sputtering resistance. It is thought that it works effectively.
However, in order to exhibit the effect effectively, it is necessary to contain 6% or more of Nb.
即ちNiにNbを含有させるに際して、その含有量を増していったときに含有量が6%となったところで急激にその効果が現われ、更にNbの含有量を増加してもその効果がほぼ飽和してしまう事実が分った。 In other words, when Nb is added to Ni, when the content is increased, the effect suddenly appears when the content reaches 6%, and even if the Nb content is further increased, the effect is almost saturated. I found out the fact that
一方でNbの含有量を32%以上にすると、耐スパッタ性がNb含有量の増大の割りには高くならないだけでなく寧ろ加工性が悪化し、電極製造に際しての加工が困難となることが分った。その理由もまた金属間化合物の析出によるものと考えられる。
即ち、Nbの含有量が多くなるのに伴って金属間化合物が多く析出し、そしてその金属間化合物が材料自体の硬度を高くして冷間加工性を損なうものと考えられる。
On the other hand, when the Nb content is 32% or more, not only does the spatter resistance not increase for the increase of the Nb content, but also the workability deteriorates, making it difficult to process the electrodes during production. It was. The reason is also considered to be due to precipitation of intermetallic compounds.
That is, it is considered that as the Nb content increases, more intermetallic compounds are precipitated, and the intermetallic compounds increase the hardness of the material itself and impair cold workability.
かかる本願発明によれば、耐スパッタ性が高く、従って冷陰極放電管用電極を高寿命化でき、しかも加工性も良好で電極の量産が容易な冷陰極放電管用電極を提供することができる。 According to the present invention, it is possible to provide an electrode for a cold cathode discharge tube that has high sputtering resistance, can thus prolong the life of the electrode for a cold cathode discharge tube, has good workability, and can be easily mass-produced.
請求項2は冷陰極放電管用電極組立体に関するもので、冷陰極放電管用電極組立体を重量%でNbを6%〜32%未満含有するカップ電極と、このカップ電極の底面に固着されたリードによって構成したものである。
Nbを重量%で6%〜32%未満含有し、残部不可避的不純物及びNiの組成を有する電極材料を使用すれば、放電特性に優れたカップ形状の電極も容易に且つ良好に形成できる。またNbを6%〜32%未満含有するNi-Nb合金は、リードとの溶接性が良好で高温での酸化汚染の問題も生じないので、信頼性の高い冷陰極放電管用電極組立体が得られる。
Claim 2 relates to an electrode assembly for a cold cathode discharge tube, a cup electrode containing 6% to less than 32% Nb by weight% of the electrode assembly for a cold cathode discharge tube, and a lead fixed to the bottom surface of the cup electrode. It is constituted by.
If an electrode material containing 6% to less than 32% Nb by weight and having the balance of inevitable impurities and Ni is used, a cup-shaped electrode having excellent discharge characteristics can be easily and satisfactorily formed. Ni-Nb alloys containing 6% to less than 32% Nb have good weldability with leads and do not cause oxidation contamination problems at high temperatures, so a highly reliable electrode assembly for a cold cathode discharge tube is obtained. It is done.
次に本発明の実施形態を以下に詳述する。
図1は本発明の実施形態の冷陰極放電管用電極組立体を示したもので、図中10はNi−Nb合金から成る電極を、12はタングステン等から成るリードを示している。
電極10はカップ形状即ち、筒状体の一端の開放端を閉塞した形状をなしており、その底面に棒状のリード12がレーザ溶接等により融着されて冷陰極放電管用電極組立体14が構成されている。
Next, embodiments of the present invention will be described in detail below.
FIG. 1 shows an electrode assembly for a cold cathode discharge tube according to an embodiment of the present invention. In FIG. 1, 10 indicates an electrode made of a Ni—Nb alloy, and 12 shows a lead made of tungsten or the like.
The
この冷陰極放電管用電極組立体14における電極10の特性を評価するため、形状及び寸法が5×10×10mmのテストピース(このテストピースは鍛造素材から切り出したものである)を表1に示す種々の量でNbをNiに含有させて成るNi−Nb合金にて作製し、そのテストピースに対し、以下に示す測定装置を用いてミリング量の測定を行った。
Table 1 shows a test piece having a shape and dimensions of 5 × 10 × 10 mm (this test piece is cut out from a forging material) in order to evaluate the characteristics of the
IBE測定条件
a.機種 日立製作所製IML-250
b.処理条件 加速電圧 500V
加速電流 210mA
減速電圧 250V
入射角度 45°
ガス Ar
真空度 2×10−6torr
IBE measurement conditions a. Model IML-250 made by Hitachi, Ltd.
b. Processing conditions Acceleration voltage 500V
Acceleration current 210mA
Deceleration voltage 250V
Incident angle 45 °
Gas Ar
Degree of vacuum 2 × 10 −6 torr
具体的には、テストピースに対して所定時間(60分又は30分)Arイオンを当て続け、スパッタにより生じた孔の深さを測定することによってミリング量を測定し、そのミリング量に基づいてスパッタレート(1分当りのミリング量)を算出した。
そして純Niを基準(100%)として、その純Niに対するスパッタレートの比率を算出した結果を表1に併せて示してある。
Specifically, Ar ion is continuously applied to the test piece for a predetermined time (60 minutes or 30 minutes), and the milling amount is measured by measuring the depth of the hole generated by sputtering, and based on the milling amount. The sputter rate (milling amount per minute) was calculated.
Table 1 also shows the results of calculating the ratio of the sputter rate with respect to pure Ni with reference to pure Ni (100%).
図2は、横軸にNb含有量を、縦軸にスパッタレート比率をとってそれらの関係を表したもので、これら表1及び図2の結果から、僅か6%のNbをNiに含有させ合金化することで、スパッタレート比率が純Niに較べて急激に減少し、純Nbに匹敵するレベルまで低減し、その後はNb含有量を増加してもスパッタレート比率はそれ程には下がらず、Nbの含有効果はほぼ飽和することが分る。 Fig. 2 shows the relationship between Nb content on the horizontal axis and sputter rate ratio on the vertical axis. From these results in Table 1 and Fig. 2, only 6% Nb is contained in Ni. By alloying, the sputter rate ratio decreases sharply compared to pure Ni and decreases to a level comparable to pure Nb, and then even if the Nb content is increased, the sputter rate ratio does not drop that much, It can be seen that the content of Nb is almost saturated.
次に、表2はNbの含有量と硬さ(焼鈍後の硬さ)との関係を示したもので、この表2に示しているようにNbの含有量を増加するに従ってその硬さは増加している。詳しくはNbの含有量を増加し、そして35%までこれを含有させるとその硬さは430〜470となり、電極製造に際してプレス成形可能な硬さの限度である400を上回った硬さとなる。 Next, Table 2 shows the relationship between the Nb content and the hardness (hardness after annealing). As shown in Table 2, the hardness increases as the Nb content increases. It has increased. Specifically, when the Nb content is increased and 35% is added, the hardness becomes 430 to 470, which is higher than 400, which is the limit of the hardness that can be press-molded when manufacturing the electrode.
実際に量産化を考えたときの硬さとしては230以下であることが望ましく、この意味においてNbの含有量としては15%以下、特に10%以下とするのが望ましい。 When considering mass production in practice, the hardness is preferably 230 or less, and in this sense, the Nb content is preferably 15% or less, particularly preferably 10% or less.
このようにNbを含有させてNiと合金化させることにより耐スパッタ性が向上し、またNbの含有による合金化によって硬さも高くなるが、これは前述したように金属間化合物の形成によるものと考えられる。 Sputtering resistance is improved by adding Nb and alloying with Ni as described above, and hardness is increased by alloying by containing Nb. This is due to the formation of intermetallic compounds as described above. Conceivable.
但しNb含有による耐スパッタ性の向上効果は、Nb:6%で急激に現われ、その後はNb含有量を増加してもそれほどには耐スパッタ性の向上効果は上がっていないのに較べて、硬さの方はNbの含有量が増すにつれて高くなっている。
そしてこれら耐スパッタ性の向上効果と硬さの上昇とを総合勘案した場合、Nbの含有量即ち合金化の量としては6%〜32%未満の範囲とする必要があり、望ましくはNb15%以下、特に10%以下である。
However, the effect of improving the spatter resistance due to the Nb content appears sharply at Nb: 6%. After that, even if the Nb content is increased, the effect of improving the spatter resistance is not so high. The height increases as the Nb content increases.
And when comprehensively considering the effect of improving the spatter resistance and the increase in hardness, the Nb content, that is, the amount of alloying, needs to be in the range of 6% to less than 32%, preferably Nb 15% or less. Especially, it is 10% or less.
以上本発明の実施形態を詳述したが、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。 Although the embodiment of the present invention has been described in detail above, the present invention can be implemented in various modifications without departing from the spirit of the present invention.
10 電極
12 リード
14 冷陰極放電管用電極組立体
10
Claims (2)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003321509A JP4091508B2 (en) | 2003-09-12 | 2003-09-12 | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube |
TW093126216A TWI311334B (en) | 2003-09-12 | 2004-08-31 | Electrode for cold-cathode discharge tube, and electrode assembly for the cold-cathode discharge tube |
KR1020040071739A KR100610464B1 (en) | 2003-09-12 | 2004-09-08 | Electrode for cold cathode discharge tube and assembly thereof |
CNB2004100771528A CN1322540C (en) | 2003-09-12 | 2004-09-10 | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003321509A JP4091508B2 (en) | 2003-09-12 | 2003-09-12 | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005093119A JP2005093119A (en) | 2005-04-07 |
JP4091508B2 true JP4091508B2 (en) | 2008-05-28 |
Family
ID=34453178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003321509A Expired - Lifetime JP4091508B2 (en) | 2003-09-12 | 2003-09-12 | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4091508B2 (en) |
KR (1) | KR100610464B1 (en) |
CN (1) | CN1322540C (en) |
TW (1) | TWI311334B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006011431A1 (en) * | 2004-07-29 | 2006-02-02 | Neomax Materials Co., Ltd. | Alloy for fluorescent discharge lamp electrode, fluorescent discharge lamp electrode, and fluorescent discharge lamp having the electrode |
CN101194342B (en) * | 2005-06-08 | 2010-05-19 | 株式会社新王材料 | Composite material for discharge electrode, manufacturing method thereof, and discharge electrode |
KR100844323B1 (en) * | 2006-12-19 | 2008-07-09 | 엘지전자 주식회사 | Discharge lamp |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10188888A (en) * | 1996-12-24 | 1998-07-21 | Kowa Denki Kk | Cold cathode discharge tube |
JP3642153B2 (en) * | 1997-04-24 | 2005-04-27 | 松下電器産業株式会社 | Cold cathode fluorescent tube |
EP0964429A4 (en) * | 1997-12-26 | 2001-03-21 | Toshiba Lighting & Technology | ELECTRODE STRUCTURE FOR ELECTRONIC TRANSMISSION, DISCHARGE LAMP, AND DISCHARGE LAMP APPARATUS |
JP2002289138A (en) * | 2001-03-28 | 2002-10-04 | Matsushita Electric Ind Co Ltd | Cold cathode fluorescent lamp |
JP2002358922A (en) * | 2001-05-31 | 2002-12-13 | Sanken Electric Co Ltd | Cold cathode discharge tube and manufacturing method of same |
-
2003
- 2003-09-12 JP JP2003321509A patent/JP4091508B2/en not_active Expired - Lifetime
-
2004
- 2004-08-31 TW TW093126216A patent/TWI311334B/en not_active IP Right Cessation
- 2004-09-08 KR KR1020040071739A patent/KR100610464B1/en not_active IP Right Cessation
- 2004-09-10 CN CNB2004100771528A patent/CN1322540C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW200511360A (en) | 2005-03-16 |
KR100610464B1 (en) | 2006-08-09 |
CN1322540C (en) | 2007-06-20 |
JP2005093119A (en) | 2005-04-07 |
TWI311334B (en) | 2009-06-21 |
KR20050027024A (en) | 2005-03-17 |
CN1595603A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367954B2 (en) | Electrode material | |
JP4091508B2 (en) | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube | |
JP4831481B2 (en) | Alloys for cold cathode discharge tube electrodes | |
JP2004235073A (en) | Electrode alloy for fluorescent discharge tube, electrode for fluorescent discharge tube, and fluorescent discharge tube provided with the electrode | |
JP4168983B2 (en) | Cold cathode discharge tube electrode material | |
JP4994989B2 (en) | Electrode alloy for cold cathode fluorescent discharge tube, electrode for cold cathode fluorescent discharge tube formed with the electrode alloy, and cold cathode fluorescent discharge tube provided with the electrode | |
JP4394748B1 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube | |
JP4267039B2 (en) | Cold cathode fluorescent lamp | |
JP5629148B2 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube using the same | |
JP4902706B2 (en) | Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same | |
US20090108731A1 (en) | Electrode for cold-cathode fluorescent lamp | |
JP2009215646A (en) | Alloy for cold cathode discharge tube electrode | |
JP2004235072A (en) | Electrode alloy for fluorescent discharge tube, electrode for fluorescent discharge tube, and fluorescent discharge tube provided with the electrode | |
KR101108765B1 (en) | Fluorescent discharge lamp electrode, and fluorescent discharge lamp having the electrode | |
JP4531125B1 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube | |
JP4934156B2 (en) | Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same | |
JP2009197319A (en) | Alloy for cold cathode discharge tube electrode | |
JP2011181275A (en) | Electrode for cold cathode ultraviolet tube, and cold cathode ultraviolet tube using the same | |
JP4634516B2 (en) | Electrode material | |
JP2009161852A (en) | Alloy for electrode for cold cathode discharge tube | |
JP2008204837A (en) | Cold cathode fluorescent lamp electrode | |
CN101331580A (en) | Electrodes for cold cathode fluorescent lamps | |
JP2010013694A (en) | Alloy for cold cathode discharge tube electrode | |
TW200926248A (en) | Cold cathode fluorescent lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080228 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 5 |