JP4158593B2 - High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same - Google Patents
High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same Download PDFInfo
- Publication number
- JP4158593B2 JP4158593B2 JP2003124156A JP2003124156A JP4158593B2 JP 4158593 B2 JP4158593 B2 JP 4158593B2 JP 2003124156 A JP2003124156 A JP 2003124156A JP 2003124156 A JP2003124156 A JP 2003124156A JP 4158593 B2 JP4158593 B2 JP 4158593B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel sheet
- dip galvanized
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高張力溶融亜鉛めっき鋼板、特に連続溶融亜鉛めっきラインで製造される、引張強さが980MPa級の高張力溶融亜鉛めっき鋼板およびその製造方法に関し、特に高張力溶融亜鉛めっき鋼板の耐二次加工脆性の向上に関する。
【0002】
【従来の技術】
自動車部品は、適用部位によっては高い耐食性が要求される。この高い耐食性が要求される部位に適用される部品の素材には、溶融亜鉛めっき鋼板が好適である。例えば、特許文献1および2には、鋼成分と鋼組織を調整することにより、優れた延性および伸びフランジ性を付与した高張力溶融亜鉛めっき鋼板が開示されている。
【0003】
一方、近年の地球環境の保全という観点から、自動車の燃費改善が強く要求されている。加えて、衝突時に乗員を保護するため、自動車車体の強化が積極的に進められつつある。自動車車体の軽量化と強化とを同時に満足させるには、部品の素材を高強度化することが効果的であると言われており、高張力鋼板の自動車部品に対する適用が積極的に行われている。
【0004】
【特許文献1】
特開2001−207221号公報
【特許文献2】
特開2001−207235号公報
【0005】
【発明が解決しようとする課題】
このような高張力化への要求から、980MPa以上の引張強さを有する高張力溶融亜鉛めっき鋼板の開発が望まれているが、例えば前述の特許文献1や特許文献2に開示された溶融亜鉛めっき鋼板は、ここまでの高張力化は実現されていない。さらに、高張力鋼板に溶融亜鉛めっきを施した場合、溶融亜鉛めっき鋼板の表面は摺動抵抗が比較的に大きいため、成形時に軟質相に歪が蓄積されやすく、冷延鋼板の場合よりも耐二次加工脆性に劣ることが懸念される。
【0006】
すなわち、自動車車体の軽量化および強化をより一層推進するためには、耐食性に優れ、しかも耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板が必要不可欠な素材となる。
従って、本発明は、耐食性に優れかつ耐二次加工脆性にも優れる高張力溶融亜鉛めっき鋼板を提供しようとするものである。
【0007】
【課題を解決するための手段】
発明者らは、上記した課題を解決するために、鋼板の特性に及ぼす成分組成およびミクロ組織の影響について鋭意研究を重ねたところ、所定の化学組成を有する高張力溶融亜鉛めっき鋼板のミクロ組織を、フェライト、マルテンサイトおよびその他の第二相からなる複合組織とした上で、フェライトの平均結晶粒径およびマルテンサイトの体積率を所定の範囲とすることにより、鋼板に980MPa以上の引張強さと優れた耐二次加工脆性とを同時に具備させることが可能であることを知見した。
【0008】
さらに、発明者らは、化学成分を所定の範囲に調整した鋼板に、所定の条件下での熱処理およびめっき処理を施すことにより、該鋼板の組織が前記の複合組織となり、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造が可能であることも見出した。
【0009】
本発明は、上記した知見に基づいてなされたものであり、その要旨は次のとおりである。
(1)鋼板の表面に、溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、該鋼板は、
C:0.05〜0.2mass%、
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有するとともに、平均結晶粒径が10μm以下である50vol %以上のフェライトおよび20vol%以上のマルテンサイトと、ベイナイト、パーライトおよび焼戻マルテンサイトのいずれか、あるいはその複数の相からなる5〜 20vol %の、その他の第二相とからなる複合組織を有する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板。
ここに、上記の溶融亜鉛めっき層として、合金化した溶融亜鉛めっき層を含むことは勿論である。
【0010】
(2)上記(1)において、鋼板の成分として、さらに下記(a)〜(d)群のうちから選ばれた1群または2群以上を含有する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板。
記
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
(b)B:0.003mass%以下
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass%
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下
【0011】
(3)
C:0.05〜0.2mass%、
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼板を、(Ac3変態点−50℃)〜 Ac 3 変態点の温度に5〜120s保持した後、5℃/s以上の速度で500℃以下の温度まで冷却し、次いで鋼板の表面に溶融亜鉛めっき層を形成した後、5℃/s以上の速度で300℃まで冷却する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
【0012】
(4)
C:0.05〜0.2mass%、
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼板を、Ac1変態点〜( Ac 3 変態点− 50 ℃)の温度に120 s以下加熱保持した後、10℃/s以上の速度でMs点以下の温度まで冷却し、さらに(Ac3変態点−50℃)〜Ac3変態点の温度に5〜120s保持した後、5℃/s以上の速度で500℃以下の温度まで冷却し、次いで鋼板の表面に溶融亜鉛めっき層を形成した後、5℃/s以上の速度で300℃まで冷却する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
【0013】
(5)上記(3)または(4)において、鋼板の表面に溶融亜鉛めっき層を形成した後、さらに450〜550℃の温度域まで再加熱して溶融亜鉛めっき層の合金化処理を施し、該合金化処理後に、5℃/s以上の速度で300℃まで冷却する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
【0014】
(6)上記(3)、(4)または(5)において、鋼板の成分として、さらに下記(a)〜(d)群のうちから選ばれた1群または2群以上を含有する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
記
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
(b)B:0.003mass%以下
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass%
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下
【0015】
【発明の実施の形態】
以下、本発明の構成要件毎に、詳しく説明する。
まず、本発明に用いる鋼板の成分組成の限定理由について説明する。
C:0.05〜0.2mass%
Cは、鋼の高強度化に必須の元素であり、マルテンサイトの生成に不可欠である。しかし、Cの含有量が0.05mass%未満では所望の高強度化が得られず、一方Cの含有量が0.2mass%を超えると鋼の溶接性が低下する。このため、Cの含有量は0.05〜0.2mass%の範囲に限定する。
【0016】
Si:0.05mass%以上0.3mass%未満
Siは、固溶強化により鋼を強化する効果をもつ元素であり、この効果を得るためには0.05mass%以上の含有が必要である。しかし、Siの含有量が0.3mass%以上になると、めっき性が顕著に劣化する。このため、Siの含有量は0.05mass%以上0.3mass%未満の範囲に限定する。
【0017】
Mn:1.0〜3.0mass%
Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上し、マルテンサイトの生成を促進する作用を有する。このような作用は、Mn含有量が1.0mass%以上で認められる。一方、3.0mass%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり、製造コストの上昇を招くことになる。このため、Mnの含有量は、1.0〜3.0mass%の範囲に限定する。
【0018】
P:0.03mass%以下
Pは、結晶粒界に偏析して鋼板の靱性を低下させる不純物元素であり、溶接性にも悪影響を与える。そのため、Pの含有量は0.03mass%以下の範囲に限定する。
【0019】
S:0.003mass%以下
Sは、鋼中介在物を形成して鋼板の靱性や加工性を低下させる不純物元素であり、溶接性にも悪影響を与える。そのため、Sの含有量は0.003mass%以下の範囲に限定する。
【0020】
Al:0.1mass%以下
Alは、鋼の脱酸に有用な元素であり、その必要性に応じて、好ましくは0.01mass%以上で含有できる。しかし、含有量が0.1mass%を超えると、脱酸に対する効果が飽和するだけでなく、鋼中介在物の増加による悪影響が生じやすくなる。そのため、Alの含有量は0.1mass%以下の範囲に限定する。
【0021】
さらに、本発明の鋼板では、上記した化学成分に加え、必要に応じて下記に示す(a)〜(d)群のうちの1群または2群以上を含有することが可能である。
記
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
(b)B:0.003mass%以下
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass%
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下
【0022】
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
CrおよびMoは、鋼の焼入性を向上し、マルテンサイト相の生成を促進する作用を有する元素である。このような作用は、CrおよびMoのうちの1種または2種を合計で0.05mass%以上含有して認められる。一方、合計で1.0mass%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できず、経済的に不利となる。このため、CrおよびMoのうちの1種または2種を合計で0.05〜1.0mass%の範囲に限定する。なお、より好ましい範囲はCrおよびMoの1種または2種を合計で0.05〜0.5mass%である。
【0023】
(b)B:0.003mass%以下
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003mass%を超えると、効果が飽和するため、Bは0.003mass%以下に限定するのが好ましい。なお、より望ましい範囲は0.001〜0.002mass%である。
【0024】
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass% Ti、NbおよびVは、鋼中に炭窒化物を形成し、鋼を析出強化により高強度化する作用とともに、結晶粒径を微細化する効果も有しており、必要に応じて含有できる。このような作用は、Ti、NbおよびVのうちから選ばれたいずれか1種または2種以上を合計で0.05mass%以上で添加することによって、認められる。一方、いずれか1種または2種以上を合計で1.0mass%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できず、経済的に不利となる。このため、Ti、NbおよびVのうちのいずれか1種または2種以上の合計の含有量は、0.05〜1.0mass%の範囲に限定する。なお、より好ましい範囲は、0.05〜0.2mass%である。
【0025】
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下
CaおよびREMは、硫化物系介在物の形態を制御する作用を有し、これにより鋼板の伸びフランジ加工性を向上させる効果を有する。このような効果は、CaおよびREMのうちから選ばれたいずれか1種または2種の合計が、0.01mass%を超えると飽和する。このため、CaおよびREMのいずれか1種または2種を合計で0.01mass%以下に限定する。なお、より好ましい範囲は0.001〜0.005mass%である。
なお、本発明の鋼板において、上記した化学成分以外の残部は、Feおよび不可避的不純物からなる。
【0026】
さらに、本発明の鋼板は、上記した成分組成とともに、フェライト、マルテンサイトおよびその他の第二相からなる複合組織を有することが肝要である。
[フェライト]
フェライトは、鉄炭化物を含まない軟質な相であり、高い変形能を有し、鋼板の加工性を向上する作用を有する相である。本発明の鋼板は、このフェライトを主相とする。具体的には、50vol%以上がフェライトである。
【0027】
そして、フェライトの平均結晶粒径が細かいほど鋼板の耐二次加工脆性は改善し、特に、この効果は平均結晶粒径が10μm以下の場合に顕著に得られるため、本発明におけるフェライトの平均結晶粒径は10μm以下に限定する。なお、フェライト以外の相については、主相であるフェライトと同等以下の粒子径となるのが通常であるので、ここでは特に限定しない。
【0028】
[マルテンサイト]
マルテンサイトは、非常に硬質な相であり、鋼板の高強度化に寄与する相である。ただし、鋼板の引張強さを980MPa以上とするには、20vol%以上のマルテンサイトを含むミクロ組織を有する鋼板にする必要がある。このため、本発明における複合組織中のマルテンサイト量は20vol%以上に限定する。なお、鋼板の加工性低下を避けるためには、40vol%以下とすることが好ましい。
【0029】
[その他の第二相]
本発明における、「その他の第二相」とは、ベイナイト、パーライトおよび焼戻マルテンサイトのいずれか、あるいはその複数の相を指す。かような第二相はマルテンサイトほど硬質ではなく、主相であるフェライトとの硬度差が小さいため、鋼板の強度を上昇させつつ鋼板の加工性を向上させるのに有利な相であり、5〜20vol%にする。なお、上記焼戻マルテンサイトとは、ラス状のマルテンサイトを(Ac1変態点〜Ac3変態点)の温度域に短時間加熱した後に得られる相であり、フェライト地にマルテンサイトもしくは炭化物がラス状の形態を引き継いで層状に形成された相をいう。
【0030】
本発明の高張力溶融亜鉛めっき鋼板は、前記の化学組成および前記の複合組織を有する鋼板の表層に、溶融亜鉛めっき層または合金化溶融亜鉛めっき層を形成したものである。ここで、めっき層の目付量は、使用部位による耐食性要求により適宜選択すればよく、特に限定する必要はない。ちなみに、自動車用部品に使用される鋼板では、めっき層の目付量は、鋼板の片面あたり30〜120g/m2とするのが好ましい。
【0031】
次に、以上の本発明に従う高張力溶融亜鉛めっき鋼板を製造する方法について説明する。
まず、前記した限定範囲内の化学組成を有する鋼片を溶製し、この種鋼板の一般に従って、鋳造、次いで熱間圧延し、あるいはさらに冷間圧延して、鋼板とする。また、必要に応じて酸洗あるいは焼鈍等の工程を加えることができる。
【0032】
次いで、本発明に従う成分組成を有する鋼板を、(Ac3変態点−50℃)以上の温度に5〜120s保持した後、500℃以下の温度まで5℃/s以上の速度で冷却する。このとき、保持温度が(Ac3変態点−50)℃未満、あるいは保持時間が5s未満では、冷却後に得られるマルテンサイト量が不足する。一方、保持時間が120sを超えると、結晶粒が粗大化し、所望の粒径のフェライトが得られない。また、冷却速度が5℃/s未満の場合には、第二相の大部分がパーライトあるいはベイナイトとなって、所望量のマルテンサイトを含む組織とすることができない。なお、鋼板の形状を良好に保つためには、冷却速度は100℃/s以下とするのが望ましい。さらに、保持温度はAc3変態点以下とすることが好ましい。
【0033】
また、本発明では、上記の加熱そして冷却する熱処理工程を、次に示す一次工程と二次工程とを併せた熱処理にて代替することも可能である。この場合には、溶融亜鉛めっき処理後の鋼板のミクロ組織に焼戻しマルテンサイトが含まれることになる。
[一次工程]
一次工程では、鋼板をAc1変態以上の温度に加熱保持した後、Ms点以下の温度まで10℃/s以上の速度で急冷する。この一次工程により、鋼板中にラス状のマルテンサイトが生成される。このときの加熱保持温度がAc1変態点未満の場合には、マルテンサイトが生成しない。また、冷却速度が10℃/s未満の場合には、ラス状のマルテンサイトが得られない。なお、溶融亜鉛めっき工程後に所望のミクロ組織を得やすくするためには、加熱温度は(Ac3変態点−50℃)以下、そして保持時間は120s以下とするのが望ましい。
【0034】
[二次工程]
次に、二次工程では、一次工程にてラス状マルテンサイトを生成させた鋼板を、(Ac3変態点−50℃)〜Ac3変態点の温度で5〜120s保持した後、500℃以下の温度まで5℃/s以上の速度で冷却する。このとき、保持温度が(Ac3変態点−50)℃未満、あるいは保持時間が5s未満では、冷却後に新たに生成するマルテンサイト量が不足する。一方、保持時間が120sを超えると、結晶粒が粗大化し、所望の粒径のフェライトが得られない。また、冷却速度が5℃/s未満の場合には、冷却後に所望量のマルテンサイトを含む組織とすることができない。
なお、鋼板の形状を良好に保つためには、冷却速度は100℃/s以下とするのが望ましい。また、保持温度はAc3変態点以下とするのが好ましい。
【0035】
その後の溶融亜鉛めっき処理では、鋼板に溶融亜鉛めっきを施し、5℃/s以上の冷却速度で300℃まで冷却する。溶融亜鉛めっき処理は、通常、連続溶融亜鉛めっきラインで行われている処理条件でよく、特に限定する必要はない。しかし、極端な高温域でめっき処理を施すと、必要なマルテンサイト量の確保が困難となる。このため、500℃以下でのめっき処理とするのが好ましい。また、めっき処理後の冷却速度が極端に小さいときにも、必要なマルテンサイト量の確保が困難になる。このため、めっき後から300℃までの温度範囲における冷却速度は5℃/s以上に限定する。より好ましくは、50℃/s以下である。
なお、めっき処理後、必要に応じて目付量調整のためのワイピングを行ってもよいのはいうまでもない。
【0036】
また、溶融亜鉛めっき処理後、めっき層の合金化処理を施してもよい。この合金化処理では、溶融亜鉛めっき処理後の鋼板を450〜550℃の温度域まで再加熱し、溶融亜鉛めっき層の合金化を行う。合金化処理後は、5℃/s以上の冷却速度で300℃まで冷却する。高温での合金化は、必要なマルテンサイト量の確保が困難となり、鋼板の延性が低下する。このため、合金化温度の上限は550℃に限定する。一方、合金化温度が450℃未満では、合金化の進行が遅く生産性が低下する。このため、合金化温度の下限は450℃とする。
【0037】
また、合金化処理後の冷却速度が極端に小さい場合には、必要なマルテンサイトの確保が困難になる。このため、合金化処理後から300℃までの温度範囲における冷却速度を5℃/s以上に限定する。
【0038】
なお、めっき処理後あるいは合金化処理後の鋼板には、形状矯正や表面粗さ等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装あるいは電気めっき等の処理を施しても何等不都合はない。
【0039】
【実施例】
表1に示す成分を有し、残部がFeおよび不可避的不純物よりなる、鋼を転炉にて溶製し、連続鋳造法にて鋳片とした。得られた鋳片を板厚2.6mmまで熱間圧延し、次いで酸洗した後、冷間圧延により板厚1.4mmの鋼板に仕上げた。なお、表1に示した化学成分以外の残部は、Feおよび不可避的不純物である。
【0040】
次いで、これらの冷延鋼板に、表2および表3に示す条件にて、加熱そして冷却による熱処理および溶融亜鉛めっき処理を施した。また、一部については亜鉛めっき層の合金化処理をさらに施した。
【0041】
ここで、溶融亜鉛めっき処理は、浴温475℃のめっき槽に鋼板を浸潰して行い、浸漬した鋼板を引き上げた後、片面当たりの目付量が50g/m2となるように、ガスワイピングにより目付量を調整した。亜鉛めっき層の合金化処理を行う場合には、ワイピング処理の後、10℃/sの加熱速度で500℃まで昇温して合金化処理した。合金化処理時の保持時間は、めっき層中の鉄含有率が9〜11mass%となるように調整した。
【0042】
かくして得られた溶融亜鉛めっき鋼板について、そのミクロ組織、引張特性および耐二次加工脆性を調査した。
すなわち、鋼板のミクロ組織は、鋼板の圧延方向断面を光学顕微鏡あるいは走査型電子顕微鏡にて観察することにより調査した。そして、フェライト粒径は、JIS Z O552の規定に準拠してフェライトの結晶粒度を測定し、それを平均結晶粒径に換算した。鋼板中のマルテンサイト体積率は、倍率1000〜5000倍の断面組織写真を用いて、任意に設定した正方形領域内に存在するマルテンサイト相の占有面積率を画像解析により求め、これをマルテンサイトの体積率とした。フェライトの体積率も同様に求め、残部をその他の第二相とした。
【0043】
また、鋼板の引張特性は、鋼板より圧延直角方向に採取したJIS Z 2204に規定の5号試験片を用いて、JIS Z 2241に準拠して引張強さ(TS)および破断伸び(El)を測定した。
【0044】
鋼板の耐二次加工脆性は、以下の方法で調査した。
まず、鋼板より50mmφの試験片を採取し、33mmφおよび27mmφの円筒ポンチにて二段階に分けてカップ成形する。得られたカップの縁をカップの深さが25mmとなる位置で切断した後、種々の温度に10分間以上保持してから試験台に横向きに置き、この上に重量5kgの重錘を80cmの高さから落下させる。このとき、重錘を落下させても割れが発生しない最低の温度を脆性遷移温度とし、この温度の高低を耐二次加工脆性の指標とした。
【0045】
以上の調査結果を表4に示す。表4から、本発明に適合する溶融亜鉛めっき鋼板は、980MPa以上の引張強さ(TS)を有し、かつ脆性遷移温度が−80℃以下である、耐二次加工脆性に優れた引張強さが980MPa級の高張力溶融亜鉛めっき鋼板となっていることがわかる。
【0046】
一方、本発明の範囲を外れる比較例の場合は、980MPa以上の引張強さ(TS)と−80℃以下の脆性遷移温度を両立するものはなく、耐二次加工脆性に優れた引張強さが980MPa級の高張力溶融亜鉛めっき鋼板は得られていなかった。
【0047】
【表1】
【0048】
【表2】
【0049】
【表3】
【0050】
【表4】
【0051】
【発明の効果】
本発明によれば、非常に優れた耐二次加工脆性を有し、しかも自動車部品に代表される成形品素材として好適な引張強さが980MPa級の高張力亜鉛めっき鋼板を得ることができ、産業上格段の効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile hot-dip galvanized steel sheet, particularly a high-tensile hot-dip galvanized steel sheet having a tensile strength of 980 MPa, which is manufactured in a continuous hot-dip galvanizing line, and a method for producing the same. It relates to the improvement of secondary work brittleness.
[0002]
[Prior art]
Automotive parts are required to have high corrosion resistance depending on the application site. A hot-dip galvanized steel sheet is suitable as a material for a part applied to a portion where high corrosion resistance is required. For example, Patent Documents 1 and 2 disclose high-tensile hot-dip galvanized steel sheets imparted with excellent ductility and stretch flangeability by adjusting the steel components and the steel structure.
[0003]
On the other hand, there has been a strong demand for improving the fuel efficiency of automobiles from the viewpoint of conservation of the global environment in recent years. In addition, in order to protect passengers in the event of a collision, the strengthening of automobile bodies is being actively promoted. It is said that it is effective to increase the material strength of parts in order to satisfy the weight reduction and strengthening of the car body at the same time. Yes.
[0004]
[Patent Document 1]
JP 2001-207221 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-207235
[Problems to be solved by the invention]
Development of a high-tensile hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more is desired because of the demand for high tension. For example, the hot-dip zinc disclosed in Patent Document 1 and Patent Document 2 described above is desired. The high tension so far has not been realized in the plated steel sheet. In addition, when hot-dip galvanized steel sheets are subjected to hot dip galvanization, the surface of the hot dip galvanized steel sheet has a relatively large sliding resistance, so that strain is likely to accumulate in the soft phase during forming, and it is more resistant than cold-rolled steel sheets. We are anxious about being inferior to secondary processing brittleness.
[0006]
That is, in order to further promote weight reduction and strengthening of an automobile body, a high-tensile hot-dip galvanized steel sheet that has excellent corrosion resistance and excellent secondary work brittleness resistance is an indispensable material.
Accordingly, the present invention is intended to provide a high-tensile hot-dip galvanized steel sheet that is excellent in corrosion resistance and excellent in secondary work brittleness resistance.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors conducted extensive research on the influence of the component composition and the microstructure on the properties of the steel sheet. As a result, the microstructure of the high-tensile hot-dip galvanized steel sheet having a predetermined chemical composition was obtained. In addition, a composite structure consisting of ferrite, martensite, and other second phases is used, and by setting the average crystal grain size of ferrite and the volume ratio of martensite within a predetermined range, the steel sheet has excellent tensile strength of 980 MPa or more. It has been found that it is possible to simultaneously provide secondary work brittleness resistance.
[0008]
Furthermore, the inventors have applied the heat treatment and plating treatment under a predetermined condition to a steel sheet whose chemical composition is adjusted to a predetermined range, so that the structure of the steel sheet becomes the above-mentioned composite structure, and resistance to secondary work brittleness. It has also been found that it is possible to produce a high-tensile hot-dip galvanized steel sheet that is excellent in resistance.
[0009]
The present invention has been made based on the above-described findings, and the gist thereof is as follows.
(1) A hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the steel sheet,
C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: containing 0.1 mass% or less, having a component composition consisting of the balance Fe and inevitable impurities, and having an average crystal grain size of 10 μm or less, 50 vol % or more of ferrite and 20 vol% or more of martensite, bainite, pearlite, and A high-tensile hot-dip galvanized steel sheet having a secondary work brittleness resistance having a composite structure composed of 5 to 20 vol % of any one of tempered martensite or other phases and other second phases.
It goes without saying that an alloyed hot-dip galvanized layer is included as the hot-dip galvanized layer.
[0010]
(2) In the above (1), as a component of the steel sheet, it further contains one group or two or more groups selected from the following groups (a) to (d), and is a high tensile melt excellent in secondary work brittleness resistance. Galvanized steel sheet.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
(B) B: 0.003 mass% or less (c) 0.05 to 1.0 mass% in total of any one or more of Ti, Nb and V
(D) A total of 0.01 mass% or less of either one or two of Ca and REM.
(3)
C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: A steel plate containing 0.1 mass% or less and having a component composition consisting of remaining Fe and inevitable impurities is held at a temperature of (Ac 3 transformation point −50 ° C.) to Ac 3 transformation point for 5 to 120 seconds, and then 5 ° C. Cools to a temperature of 500 ° C. or less at a rate of at least / s, then forms a hot-dip galvanized layer on the surface of the steel sheet, and then cools to 300 ° C. at a rate of at least 5 ° C./s. Manufacturing method of high-tensile hot-dip galvanized steel sheet.
[0012]
(4)
C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: A steel sheet containing 0.1 mass% or less and having a composition composed of the balance Fe and inevitable impurities is heated and held at a temperature of Ac 1 transformation point to ( Ac 3 transformation point −50 ° C.) for 120 s or less. ° C. / s at speeds above is cooled to a temperature below Ms point, further after holding 5~120s a temperature of (Ac 3 transformation point -50 ° C.) to Ac 3 transformation point, at 5 ° C. / s or faster 500 A high-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance, which is cooled to a temperature of ℃ or less and then cooled to 300 ℃ at a rate of 5 ℃ / s after forming a galvanized layer on the surface of the steel sheet. Production method.
[0013]
(5) In the above (3) or (4), after forming a hot-dip galvanized layer on the surface of the steel sheet, the steel sheet is further reheated to a temperature range of 450 to 550 ° C. and subjected to alloying treatment of the hot-dip galvanized layer. A method for producing a high-tensile hot-dip galvanized steel sheet having excellent secondary work brittleness resistance, which is cooled to 300 ° C. at a rate of 5 ° C./s or higher after the alloying treatment.
[0014]
(6) In the above (3), (4), or (5), as a component of the steel plate, further containing one group or two or more groups selected from the following groups (a) to (d): A method for producing a high-tensile hot-dip galvanized steel sheet that is excellent in secondary processing brittleness.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
(B) B: 0.003 mass% or less (c) 0.05 to 1.0 mass% in total of any one or more of Ti, Nb and V
(D) Any one or two of Ca and REM in total 0.01 mass% or less
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each constituent requirement of the present invention will be described in detail.
First, the reasons for limiting the component composition of the steel sheet used in the present invention will be described.
C: 0.05-0.2mass%
C is an essential element for increasing the strength of steel and is essential for the formation of martensite. However, if the C content is less than 0.05 mass%, the desired high strength cannot be obtained. On the other hand, if the C content exceeds 0.2 mass%, the weldability of the steel decreases. For this reason, content of C is limited to the range of 0.05-0.2 mass%.
[0016]
Si: 0.05 mass% or more and less than 0.3 mass%
Si is an element having an effect of strengthening steel by solid solution strengthening, and in order to obtain this effect, it is necessary to contain 0.05 mass% or more. However, when the Si content is 0.3 mass% or more, the plating property is remarkably deteriorated. For this reason, Si content is limited to the range of 0.05 mass% or more and less than 0.3 mass%.
[0017]
Mn: 1.0-3.0mass%
Mn strengthens the steel by solid solution strengthening, improves the hardenability of the steel, and promotes the formation of martensite. Such an effect is recognized when the Mn content is 1.0 mass% or more. On the other hand, even if it contains exceeding 3.0 mass%, an effect will be saturated and the effect commensurate with content will no longer be expected, leading to an increase in manufacturing cost. For this reason, content of Mn is limited to the range of 1.0-3.0 mass%.
[0018]
P: 0.03 mass% or less P is an impurity element that segregates at the grain boundaries and lowers the toughness of the steel sheet, and adversely affects weldability. Therefore, the P content is limited to a range of 0.03 mass% or less.
[0019]
S: 0.003 mass% or less S is an impurity element that forms inclusions in the steel and lowers the toughness and workability of the steel sheet, and adversely affects weldability. Therefore, the S content is limited to a range of 0.003 mass% or less.
[0020]
Al: 0.1 mass% or less
Al is an element useful for deoxidation of steel, and can be contained preferably at 0.01 mass% or more depending on the necessity. However, when the content exceeds 0.1 mass%, not only the effect on deoxidation is saturated, but also an adverse effect due to an increase in inclusions in the steel tends to occur. Therefore, the Al content is limited to a range of 0.1 mass% or less.
[0021]
Furthermore, in the steel plate of this invention, in addition to the above-mentioned chemical component, it is possible to contain one group or two or more groups of the following groups (a) to (d) as necessary.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
(B) B: 0.003 mass% or less (c) 0.05 to 1.0 mass% in total of any one or more of Ti, Nb and V
(D) A total of 0.01 mass% or less of either one or two of Ca and REM.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
Cr and Mo are elements having an effect of improving the hardenability of steel and promoting the formation of martensite phase. Such an action is recognized by containing 0.05 mass% or more of one or two of Cr and Mo in total. On the other hand, even if it contains exceeding 1.0 mass% in total, an effect will be saturated and the effect corresponding to content cannot be expected, but it becomes economically disadvantageous. For this reason, 1 type or 2 types in Cr and Mo is limited to the range of 0.05-1.0 mass% in total. A more preferable range is 0.05 to 0.5 mass% in total of one or two of Cr and Mo.
[0023]
(B) B: 0.003 mass% or less B is an element having an effect of improving the hardenability of steel, and can be contained as necessary. However, if the B content exceeds 0.003 mass%, the effect is saturated, and therefore B is preferably limited to 0.003 mass% or less. A more desirable range is 0.001 to 0.002 mass%.
[0024]
(C) A total of 0.05 to 1.0 mass% of any one or more of Ti, Nb and V Ti, Nb and V form carbonitrides in the steel, and strengthen the steel by precipitation strengthening In addition to the effect of this, it also has the effect of refining the crystal grain size and can be contained if necessary. Such an effect is recognized by adding any one or more selected from Ti, Nb and V in a total of 0.05 mass% or more. On the other hand, even if any one type or two or more types are contained exceeding 1.0 mass% in total, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, the total content of any one or more of Ti, Nb and V is limited to a range of 0.05 to 1.0 mass%. A more preferable range is 0.05 to 0.2 mass%.
[0025]
(D) A total of 0.01 mass% or less of either one or two of Ca and REM
Ca and REM have an effect of controlling the form of the sulfide inclusions, thereby improving the stretch flangeability of the steel sheet. Such an effect is saturated when the total of any one or two selected from Ca and REM exceeds 0.01 mass%. For this reason, any one or two of Ca and REM are limited to 0.01 mass% or less in total. A more preferable range is 0.001 to 0.005 mass%.
In the steel sheet of the present invention, the balance other than the chemical components described above consists of Fe and inevitable impurities.
[0026]
Furthermore, it is important that the steel sheet of the present invention has a composite structure composed of ferrite, martensite and other second phases together with the above-described component composition.
[Ferrite]
Ferrite is a soft phase that does not contain iron carbide, has high deformability, and has an effect of improving the workability of the steel sheet. The steel sheet of the present invention has this ferrite as the main phase. Specifically, more than 50vol% is Ru ferrite der.
[0027]
And the finer the average crystal grain size of the ferrite, the better the secondary work brittleness resistance of the steel sheet, and in particular, this effect is prominent when the average crystal grain size is 10 μm or less. The particle size is limited to 10 μm or less. It should be noted that the phase other than ferrite usually has a particle size equal to or smaller than that of the main phase ferrite, and is not particularly limited here.
[0028]
[Martensite]
Martensite is a very hard phase and a phase that contributes to increasing the strength of the steel sheet. However, in order to set the tensile strength of the steel sheet to 980 MPa or more, it is necessary to use a steel sheet having a microstructure containing martensite of 20 vol% or more. For this reason, the amount of martensite in the composite structure in the present invention is limited to 20 vol% or more. In addition, in order to avoid the workability fall of a steel plate, it is preferable to set it as 40 vol% or less.
[0029]
[Other phase 2]
In the present invention, “other second phase” refers to any of bainite, pearlite, tempered martensite, or a plurality of phases thereof. Such a second phase is not as hard as martensite and has a small hardness difference from ferrite as the main phase, and is therefore an advantageous phase for improving the workability of the steel sheet while increasing the strength of the steel sheet. to ~20vol%. The tempered martensite is a phase obtained after heating lath-like martensite to a temperature range of (Ac 1 transformation point to Ac 3 transformation point) for a short time, and martensite or carbide is present in the ferrite ground. It refers to a phase formed in a layered form taking over the lath-like form.
[0030]
The high-tensile hot-dip galvanized steel sheet of the present invention is obtained by forming a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of a steel sheet having the above-described chemical composition and the above-described composite structure. Here, the basis weight of the plating layer may be appropriately selected depending on the corrosion resistance requirement depending on the use site, and there is no particular limitation. Incidentally, in the steel plate used for automobile parts, the basis weight of the plating layer is preferably 30 to 120 g / m 2 per one side of the steel plate.
[0031]
Next, a method for producing the high-tensile hot-dip galvanized steel sheet according to the present invention will be described.
First, a steel piece having a chemical composition within the above-described limited range is melted and cast and then hot-rolled or further cold-rolled to obtain a steel plate according to the generality of this type of steel plate. Moreover, processes, such as pickling or annealing, can be added as needed.
[0032]
Next, the steel sheet having the composition according to the present invention is held at a temperature of (Ac 3 transformation point −50 ° C.) or higher for 5 to 120 seconds, and then cooled to a temperature of 500 ° C. or lower at a rate of 5 ° C./s or higher. At this time, if the holding temperature is less than (Ac 3 transformation point −50) ° C. or the holding time is less than 5 s, the amount of martensite obtained after cooling is insufficient. On the other hand, if the holding time exceeds 120 s, the crystal grains become coarse and ferrite having a desired particle diameter cannot be obtained. When the cooling rate is less than 5 ° C./s, most of the second phase becomes pearlite or bainite, and a structure containing a desired amount of martensite cannot be obtained. In addition, in order to keep the shape of a steel plate favorable, it is desirable for a cooling rate to be 100 degrees C / s or less. Furthermore, it is preferable that the holding temperature is not higher than the Ac 3 transformation point.
[0033]
In the present invention, the heat treatment step for heating and cooling described above can be replaced by a heat treatment combining a primary step and a secondary step described below. In this case, tempered martensite is included in the microstructure of the steel sheet after the hot dip galvanizing treatment.
[Primary process]
In the primary process, the steel sheet is heated and held at a temperature equal to or higher than the Ac 1 transformation, and then rapidly cooled to a temperature equal to or lower than the Ms point at a rate of 10 ° C./s or higher. By this primary process, lath-shaped martensite is generated in the steel sheet. When the heating and holding temperature at this time is less than the Ac 1 transformation point, martensite is not generated. Further, when the cooling rate is less than 10 ° C./s, lath-like martensite cannot be obtained. In order to make it easy to obtain a desired microstructure after the hot dip galvanizing step, it is desirable that the heating temperature is (Ac 3 transformation point −50 ° C.) or less and the holding time is 120 s or less.
[0034]
[Secondary process]
Next, in the second step, the steel sheet to produce a lath martensite in the primary process, (Ac 3 transformation point -50 ° C.) to Ac 3 was 5~120s maintained at a temperature of transformation point, 500 ° C. or less To a temperature of 5 ° C./s or more. At this time, if the holding temperature is less than (Ac 3 transformation point −50) ° C. or the holding time is less than 5 s, the amount of martensite newly generated after cooling is insufficient. On the other hand, if the holding time exceeds 120 s, the crystal grains become coarse and ferrite having a desired particle diameter cannot be obtained. Further, when the cooling rate is less than 5 ° C./s, a structure containing a desired amount of martensite cannot be obtained after cooling.
In addition, in order to keep the shape of a steel plate favorable, it is desirable for a cooling rate to be 100 degrees C / s or less. Further, the holding temperature is preferably not more than the Ac 3 transformation point.
[0035]
In the subsequent hot dip galvanizing treatment, hot dip galvanizing is applied to the steel sheet and cooled to 300 ° C. at a cooling rate of 5 ° C./s or more. The hot dip galvanizing treatment is usually performed under the same conditions as those performed in a continuous hot dip galvanizing line, and is not particularly limited. However, if the plating process is performed in an extremely high temperature range, it becomes difficult to secure the necessary amount of martensite. For this reason, it is preferable to set it as the plating process at 500 degrees C or less. Moreover, it becomes difficult to secure the necessary amount of martensite even when the cooling rate after the plating treatment is extremely small. For this reason, the cooling rate in the temperature range from after plating to 300 ° C. is limited to 5 ° C./s or more. More preferably, it is 50 ° C./s or less.
Needless to say, wiping for adjusting the basis weight may be performed as necessary after the plating treatment.
[0036]
Moreover, you may perform the alloying process of a plating layer after the hot dip galvanization process. In this alloying treatment, the hot-dip galvanized steel plate is reheated to a temperature range of 450 to 550 ° C. to alloy the hot-dip galvanized layer. After the alloying treatment, it is cooled to 300 ° C. at a cooling rate of 5 ° C./s or more. Alloying at a high temperature makes it difficult to secure the necessary amount of martensite, and the ductility of the steel sheet decreases. For this reason, the upper limit of the alloying temperature is limited to 550 ° C. On the other hand, when the alloying temperature is less than 450 ° C., the alloying progresses slowly and the productivity decreases. For this reason, the lower limit of the alloying temperature is 450 ° C.
[0037]
In addition, when the cooling rate after the alloying process is extremely small, it is difficult to secure necessary martensite. For this reason, the cooling rate in the temperature range up to 300 ° C. after the alloying treatment is limited to 5 ° C./s or more.
[0038]
In addition, you may add the temper rolling for adjustment of shape correction, surface roughness, etc. to the steel plate after a plating process or an alloying process. Moreover, there is no inconvenience even if treatments such as resin or oil coating, various paintings or electroplating are performed.
[0039]
【Example】
Steel having the components shown in Table 1 and the balance consisting of Fe and unavoidable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was hot-rolled to a thickness of 2.6 mm, pickled, and then finished into a steel plate having a thickness of 1.4 mm by cold rolling. The balance other than the chemical components shown in Table 1 is Fe and inevitable impurities.
[0040]
Next, these cold-rolled steel sheets were subjected to heat treatment and hot dip galvanizing treatment by heating and cooling under the conditions shown in Tables 2 and 3. In addition, some of the galvanized layers were further alloyed.
[0041]
Here, the hot dip galvanizing treatment is performed by immersing the steel plate in a plating bath with a bath temperature of 475 ° C., and after pulling up the immersed steel plate, gas wiping is performed so that the basis weight per side is 50 g / m 2. The basis weight was adjusted. In the case of alloying the galvanized layer, after the wiping treatment, the temperature was raised to 500 ° C. at a heating rate of 10 ° C./s to perform the alloying treatment. The holding time during the alloying treatment was adjusted so that the iron content in the plating layer was 9 to 11 mass%.
[0042]
The hot-dip galvanized steel sheet thus obtained was examined for its microstructure, tensile properties and secondary work brittleness resistance.
That is, the microstructure of the steel sheet was examined by observing a cross section in the rolling direction of the steel sheet with an optical microscope or a scanning electron microscope. And the ferrite grain size measured the crystal grain size of the ferrite based on the prescription | regulation of JISZO552 , and converted it into the average crystal grain size. The martensite volume ratio in the steel sheet is obtained by image analysis to determine the occupied area ratio of the martensite phase existing in the arbitrarily set square region using a cross-sectional structure photograph with a magnification of 1000 to 5000 times. The volume ratio was used. The volume fraction of ferrite was determined in the same manner, and the remainder was set as the other second phase.
[0043]
In addition, the tensile properties (TS) and elongation at break (El) according to JIS Z 2241 were measured for the tensile properties of the steel sheet using JIS Z 2204 No. 5 test piece taken in the direction perpendicular to the rolling direction from the steel sheet. It was measured.
[0044]
The secondary work brittleness resistance of the steel sheet was investigated by the following method.
First, a 50 mmφ test piece is taken from a steel plate and cup-formed in two stages using a 33 mmφ and 27 mmφ cylindrical punch. After cutting the edge of the cup at a position where the depth of the cup is 25 mm, hold it at various temperatures for 10 minutes or more and place it sideways on the test table. A weight of 5 kg is placed on it. Drop from height. At this time, the lowest temperature at which cracks did not occur even when the weight was dropped was taken as the brittle transition temperature, and the level of this temperature was taken as an indicator of secondary work brittleness resistance.
[0045]
The above survey results are shown in Table 4. From Table 4, the hot-dip galvanized steel sheet suitable for the present invention has a tensile strength (TS) of 980 MPa or higher and a brittle transition temperature of −80 ° C. or lower, which has excellent secondary work brittleness resistance. It can be seen that this is a high-tensile hot-dip galvanized steel sheet of 980 MPa class.
[0046]
On the other hand, in the case of a comparative example that is outside the scope of the present invention, none of the tensile strength (TS) of 980 MPa or more and a brittle transition temperature of −80 ° C. or less are compatible, and tensile strength excellent in secondary work brittleness resistance. However, a 980 MPa class high-tensile hot-dip galvanized steel sheet has not been obtained.
[0047]
[Table 1]
[0048]
[Table 2]
[0049]
[Table 3]
[0050]
[Table 4]
[0051]
【The invention's effect】
According to the present invention, it is possible to obtain a high-tensile galvanized steel sheet having an excellent secondary work brittleness resistance and having a tensile strength suitable as a molded article material typified by automobile parts of 980 MPa class, There are remarkable effects in the industry.
Claims (6)
C:0.05〜0.2mass%、
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有するとともに、平均結晶粒径が10μm以下である50vol %以上のフェライトおよび20vol%以上のマルテンサイトと、ベイナイト、パーライトおよび焼戻マルテンサイトのいずれか、あるいはその複数の相からなる5〜 20vol %の、その他の第二相とからなる複合組織を有する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板。A hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface of the steel sheet,
C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: containing 0.1 mass% or less, having a component composition consisting of the balance Fe and inevitable impurities, and having an average crystal grain size of 10 μm or less, 50 vol % or more of ferrite and 20 vol% or more of martensite, bainite, pearlite, and A high-tensile hot-dip galvanized steel sheet having a secondary work brittleness resistance having a composite structure composed of 5 to 20 vol % of any one of tempered martensite or other phases and other second phases.
記
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
(b)B:0.003mass%以下
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass%
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下The high-tensile hot-dip galvanized steel sheet excellent in secondary work brittleness resistance according to claim 1, further comprising one group or two or more groups selected from the following groups (a) to (d) as components of the steel sheet.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
(B) B: 0.003 mass% or less (c) 0.05 to 1.0 mass% in total of any one or more of Ti, Nb and V
(D) A total of 0.01 mass% or less of either one or two of Ca and REM
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼板を、(Ac3変態点−50℃)〜 Ac 3 変態点の温度に5〜120s保持した後、5℃/s以上の速度で500℃以下の温度まで冷却し、次いで鋼板の表面に溶融亜鉛めっき層を形成した後、5℃/s以上の速度で300℃まで冷却する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: A steel plate containing 0.1 mass% or less and having a component composition consisting of remaining Fe and inevitable impurities is held at a temperature of (Ac 3 transformation point −50 ° C.) to Ac 3 transformation point for 5 to 120 seconds, and then 5 ° C. Cools to a temperature of 500 ° C. or less at a rate of at least / s, then forms a hot-dip galvanized layer on the surface of the steel sheet, and then cools to 300 ° C. at a rate of at least 5 ° C./s. Manufacturing method of high-tensile hot-dip galvanized steel sheet.
Si:0.05mass%以上0.3mass%未満、
Mn:1.0〜3.0mass%、
P:0.03mass%以下、
S:0.003mass%以下および
Al:0.1mass%以下
を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼板を、Ac1変態点〜( Ac 3 変態点− 50 ℃)の温度に120 s以下加熱保持した後、10℃/s以上の速度でMs点以下の温度まで冷却し、さらに(Ac3変態点−50℃)〜Ac3変態点の温度に5〜120s保持した後、5℃/s以上の速度で500℃以下の温度まで冷却し、次いで鋼板の表面に溶融亜鉛めっき層を形成した後、5℃/s以上の速度で300℃まで冷却する、耐二次加工脆性に優れる高張力溶融亜鉛めっき鋼板の製造方法。C: 0.05-0.2 mass%,
Si: 0.05 mass% or more and less than 0.3 mass%
Mn: 1.0-3.0mass%,
P: 0.03 mass% or less,
S: 0.003 mass% or less and
Al: A steel sheet containing 0.1 mass% or less and having a composition composed of the balance Fe and inevitable impurities is heated and held at a temperature of Ac 1 transformation point to ( Ac 3 transformation point −50 ° C.) for 120 s or less. ° C. / s at speeds above is cooled to a temperature below Ms point, further after holding 5~120s a temperature of (Ac 3 transformation point -50 ° C.) to Ac 3 transformation point, at 5 ° C. / s or faster 500 A high-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance, which is cooled to a temperature of ℃ or less and then cooled to 300 ℃ at a rate of 5 ℃ / s after forming a galvanized layer on the surface of the steel sheet. Production method.
記
(a)CrおよびMoのいずれか1種または2種を合計で0.05〜1.0mass%
(b)B:0.003mass%以下
(c)Ti、NbおよびVのいずれか1種または2種以上を合計で0.05〜1.0mass%
(d)CaおよびREMのいずれか1種または2種を合計で0.01mass%以下6. The high-tensile melt excellent in secondary work brittleness resistance according to claim 3, 4 or 5, further comprising one group or two or more groups selected from the following groups (a) to (d) as components of the steel sheet. Manufacturing method of galvanized steel sheet.
(A) 0.05 to 1.0 mass% in total of any one or two of Cr and Mo
(B) B: 0.003 mass% or less (c) 0.05 to 1.0 mass% in total of any one or more of Ti, Nb and V
(D) A total of 0.01 mass% or less of either one or two of Ca and REM
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003124156A JP4158593B2 (en) | 2003-04-28 | 2003-04-28 | High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003124156A JP4158593B2 (en) | 2003-04-28 | 2003-04-28 | High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004323958A JP2004323958A (en) | 2004-11-18 |
JP4158593B2 true JP4158593B2 (en) | 2008-10-01 |
Family
ID=33501837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003124156A Expired - Lifetime JP4158593B2 (en) | 2003-04-28 | 2003-04-28 | High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4158593B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4544579B2 (en) * | 2004-09-29 | 2010-09-15 | 日新製鋼株式会社 | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet |
JP5250939B2 (en) * | 2005-03-31 | 2013-07-31 | Jfeスチール株式会社 | Method for producing galvannealed steel sheet |
JP5250938B2 (en) * | 2005-03-31 | 2013-07-31 | Jfeスチール株式会社 | Low yield ratio type high strength galvannealed steel sheet with excellent ductility and method for producing the same |
JP5092507B2 (en) * | 2007-04-06 | 2012-12-05 | 住友金属工業株式会社 | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method |
JP5194878B2 (en) * | 2007-04-13 | 2013-05-08 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same |
CN113195761B (en) | 2018-12-11 | 2022-08-09 | 日本制铁株式会社 | High-strength steel sheet having excellent formability and impact resistance, and method for producing high-strength steel sheet having excellent formability and impact resistance |
JP6569842B1 (en) | 2018-12-11 | 2019-09-04 | 日本製鉄株式会社 | High-strength steel sheet excellent in formability, toughness, and weldability, and manufacturing method thereof |
CN113737108A (en) | 2020-05-27 | 2021-12-03 | 宝山钢铁股份有限公司 | Delay cracking resistant electro-galvanized super-strong dual-phase steel and manufacturing method thereof |
-
2003
- 2003-04-28 JP JP2003124156A patent/JP4158593B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004323958A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5765092B2 (en) | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same | |
JP5651964B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in ductility, hole expansibility and corrosion resistance, and method for producing the same | |
JP5800098B2 (en) | High strength high Young's modulus steel plate and method for producing the same | |
CN110036128A (en) | high strength steel plate | |
KR20100046057A (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
KR20130032392A (en) | High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof | |
JP5250939B2 (en) | Method for producing galvannealed steel sheet | |
KR20140068198A (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
KR101989726B1 (en) | High-strength steel sheet and production method therefor | |
JP6032298B2 (en) | High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them | |
KR102119017B1 (en) | High strength cold rolled thin steel sheet and method for manufacturing the same | |
KR20120099517A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same | |
JP2013076137A (en) | High strength hot-dip galvanized steel sheet excellent in plating adhesion and formability, and manufacturing method therefor | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
JP5332981B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in ductility and corrosion resistance and method for producing the same | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
CN108713066B (en) | High-strength steel sheet and method for producing same | |
JP2013139591A (en) | High-strength hot-rolled steel sheet with excellent workability and method for producing the same | |
JP6221424B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
CN115210398B (en) | Steel sheet, member, and method for producing same | |
CN115151673B (en) | Steel sheet, member, and method for producing same | |
JP4158593B2 (en) | High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same | |
JPWO2017169871A1 (en) | Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate | |
JP2008291314A (en) | High-strength galvannealed steel sheet and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080707 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4158593 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |