JP4544579B2 - Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet - Google Patents
Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet Download PDFInfo
- Publication number
- JP4544579B2 JP4544579B2 JP2004283081A JP2004283081A JP4544579B2 JP 4544579 B2 JP4544579 B2 JP 4544579B2 JP 2004283081 A JP2004283081 A JP 2004283081A JP 2004283081 A JP2004283081 A JP 2004283081A JP 4544579 B2 JP4544579 B2 JP 4544579B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- hot
- less
- plating
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 36
- 239000010959 steel Substances 0.000 title claims description 36
- 229910018134 Al-Mg Inorganic materials 0.000 title claims description 20
- 229910018467 Al—Mg Inorganic materials 0.000 title claims description 20
- 229910045601 alloy Inorganic materials 0.000 title claims description 14
- 239000000956 alloy Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000007747 plating Methods 0.000 claims description 39
- 229910000734 martensite Inorganic materials 0.000 claims description 22
- 229910000859 α-Fe Inorganic materials 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 9
- 238000007598 dipping method Methods 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 description 19
- 229910001562 pearlite Inorganic materials 0.000 description 17
- 238000005246 galvanizing Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 8
- 238000005275 alloying Methods 0.000 description 7
- 229910001335 Galvanized steel Inorganic materials 0.000 description 6
- 239000008397 galvanized steel Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 229910006639 Si—Mn Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、過酷なプレス成形に耐えうる延性を示し、強度,耐食性にも優れた高強度溶融Zn-Al-Mg合金めっき鋼板を製造する方法に関する。 The present invention relates to a method for producing a high-strength molten Zn—Al—Mg alloy-plated steel sheet exhibiting ductility that can withstand severe press forming and having excellent strength and corrosion resistance.
自動車の構造部材,足回り部材,保安部材等には、燃費や安全性の向上を狙って高強度鋼板が使用されるようになってきている。この種の用途では、プレス成形の複雑化に対応して張出し成形,伸びフランジ成形等の加工性に優れていることに加え、強度,耐食性も良好なことが素材の高強度鋼板に要求される。なかでも、フェライト及びマルテンサイトの複合組織鋼は、析出強化型等の他の高強度鋼板に比較して降伏比が低いため、プレス成形後のスプリングバックが小さく、形状凍結性に優れている。 High-strength steel sheets have been used for structural members, suspension members, safety members, and the like of automobiles with the aim of improving fuel efficiency and safety. In this type of application, high strength steel sheets are required to have good strength and corrosion resistance in addition to excellent workability such as stretch forming and stretch flange forming in response to the complexity of press forming. . In particular, ferrite and martensite composite structure steel has a lower yield ratio than other high-strength steel sheets such as precipitation-strengthened steel, and therefore has a small spring back after press forming and excellent shape freezing property.
冷延鋼板に代えて合金化溶融亜鉛めっき鋼板を使用することにより耐食性が向上することは高強度鋼板でも同様であり、高強度鋼板をめっき原板とした合金化溶融亜鉛めっき鋼板の車体への適用も進められている。合金化溶融亜鉛めっき鋼板は、浴温:450〜470℃の溶融亜鉛めっき浴にめっき原板を浸漬し引き上げた後、500〜550℃で合金化処理することにより製造される。ところが、溶融亜鉛めっき浴への浸漬及び合金化処理中にパーライト変態が進行しやすく、パーライト変態によってマルテンサイト量が減少する傾向にある。その結果、複合組織鋼をめっき原板に使用する場合、降伏比の上昇,強度の低下を引き起こしやすい。 Corrosion resistance is improved by using alloyed hot-dip galvanized steel sheets instead of cold-rolled steel sheets, as is the case with high-strength steel sheets. Is also underway. An alloyed hot-dip galvanized steel sheet is manufactured by immersing and lifting a plating base plate in a hot-dip galvanizing bath having a bath temperature of 450 to 470 ° C., and then alloying at 500 to 550 ° C. However, pearlite transformation is likely to proceed during immersion in a hot dip galvanizing bath and alloying treatment, and the amount of martensite tends to decrease due to pearlite transformation. As a result, when the composite structure steel is used for a plating base plate, it tends to cause an increase in yield ratio and a decrease in strength.
Cr,Mo等の焼入れ強化元素を添加することによりパーライト変態を抑え、降伏比の上昇,強度の低下を防止することが知られているが(非特許文献1,2)、Cr,Moの添加は鋼材コストの上昇を招く。比較的安価な焼入れ強化元素にMnがあるが、Mnを多量添加しためっき原板では鋼板表面にMnが濃縮してめっき性を低下させ、不めっき等の欠陥がめっき層に発生しやすくなる。
本発明は、合金化処理が不要な溶融Zn-Al-Mg合金めっき鋼板の製造条件を活用することにより、溶融めっき時に加熱されてもパーライト変態に起因する降伏比の上昇,強度の低下がなく、単純なC-Si-Mn系のめっき原板を使用した場合でも降伏比が低い高強度溶融Zn-Al-Mg合金めっき鋼板を製造することを目的とする。 By utilizing the manufacturing conditions of the hot-dip Zn-Al-Mg alloy-plated steel sheet that does not require alloying treatment, the present invention does not increase the yield ratio and decrease the strength due to pearlite transformation even when heated during hot-dip plating. An object of the present invention is to produce a high-strength molten Zn—Al—Mg alloy-plated steel sheet having a low yield ratio even when a simple C—Si—Mn-based plated original sheet is used.
本発明では、C:0.05〜0.20質量%,Si:1.5質量%以下,Mn:1.0〜2.5質量%,P:0.05質量%以下,S:0.01質量%以下,Fe:実質的に残部の組成をもつスラブを熱間圧延することにより製造された熱延鋼帯、或いは熱間圧延に続いて酸洗,冷間圧延することにより製造された冷延鋼帯をめっき原板に使用する。 In the present invention, C: 0.05 to 0.20% by mass, Si: 1.5% by mass or less, Mn: 1.0 to 2.5% by mass, P: 0.05% by mass or less, S: 0.2% by mass. 01% by mass or less, Fe: Hot rolled steel strip manufactured by hot rolling a slab having a composition of the remainder, or manufactured by hot pickling followed by pickling and cold rolling Use a cold-rolled steel strip for the original plate.
めっき原板を連続溶融めっきラインに通板し、還元焼鈍炉でAc1〜Ac3の温度域に加熱した後、冷却速度:3〜10℃/秒で650℃まで、更に冷却速度:10℃/秒以上で440℃まで冷却する熱処理を施す。次いで、浴温:440℃以下の溶融Zn-Al-Mg合金めっき浴にめっき原板を導入し、引き上げることにより、好ましくは平均結晶粒径:15μm以下のフェライトと体積率:5〜45%のマルテンサイトの複合組織に調質され、降伏比の上昇が抑制された高強度溶融Zn-Al-Mg合金めっき鋼板が製造される。 The plating plate is passed through a continuous hot dipping line, heated to a temperature range of Ac 1 to Ac 3 in a reduction annealing furnace, then cooled to 650 ° C. at 3 to 10 ° C./s, and further cooled at 10 ° C. / Heat treatment is performed to cool to 440 ° C. over a second. Subsequently, by introducing a plating base plate into a molten Zn—Al—Mg alloy plating bath having a bath temperature of 440 ° C. or less and pulling it up, it is preferable that ferrite having an average crystal grain size of 15 μm or less and a martensity of 5 to 45%. A high-strength molten Zn—Al—Mg alloy-plated steel sheet that has been tempered into a composite structure at the site and suppressed in the yield ratio is manufactured.
通常の合金化溶融亜鉛めっき鋼板製造工程では、図1のヒートパターンに沿ってめっき原板が加熱される。すなわち、温度域:Ac1〜Ac3ので還元焼鈍で溶体化,表面活性化されためっき原板は、浴温:450〜470℃の溶融亜鉛めっき浴に浸漬される。次いで、溶融亜鉛めっき浴から引き上げられためっき原板に付着している溶融めっき金属の付着量を調整し、500〜550℃の温度域で合金化処理される。図1のヒートパターンではパーライト変態が避けられず、結果として降伏比が上昇して鋼板の形状凍結性が低下する。 In an ordinary alloyed hot-dip galvanized steel sheet manufacturing process, the plating original sheet is heated along the heat pattern shown in FIG. That is, the plating base plate that has been solution-treated and surface-activated by reduction annealing in the temperature range: Ac 1 to Ac 3 is immersed in a hot dip galvanizing bath having a bath temperature of 450 to 470 ° C. Subsequently, the adhesion amount of the hot dip plating metal adhering to the plating original plate pulled up from the hot dip galvanizing bath is adjusted, and alloying is performed in a temperature range of 500 to 550 ° C. In the heat pattern of FIG. 1, pearlite transformation is unavoidable, and as a result, the yield ratio increases and the shape freezing property of the steel sheet decreases.
これに対し、溶融Zn-Al-Mg合金めっき鋼板製造工程では、図2のヒートパターンに沿ってめっき原板が加熱される。図2のヒートパターンは、めっき温度が400〜440℃と低く、500〜550℃の合金化処理を要しない点で図1のヒートパターンと異なっており、パーライト変態が生成し難い或いはパーライト変態を遅延させるヒートパターンといえる。
本発明では、図2のヒートパターンがもつ長所を活用すべく、溶融Zn-Al-Mg合金めっき鋼板に及ぼす熱履歴の影響を種々調査・検討した。その結果、還元加熱からめっき浴導入までの冷却条件を適正に管理することにより、単純なC-Si-Mn系のめっき原板を使用しても、フェライト,マルテンサイト量が適正な複合組織をもち、降伏比が低い高強度溶融Zn-Al-Mg合金めっき鋼板が得られることを解明した。
On the other hand, in the molten Zn—Al—Mg alloy plated steel sheet manufacturing process, the plating original sheet is heated along the heat pattern of FIG. The heat pattern of FIG. 2 is different from the heat pattern of FIG. 1 in that the plating temperature is as low as 400 to 440 ° C. and does not require an alloying treatment at 500 to 550 ° C., and the pearlite transformation is difficult to generate or the pearlite transformation. It can be said that the heat pattern is delayed.
In the present invention, in order to take advantage of the advantages of the heat pattern of FIG. 2, various influences of thermal history on the hot-dip Zn—Al—Mg alloy plated steel sheet were investigated and examined. As a result, by properly managing the cooling conditions from the reduction heating to the introduction of the plating bath, even if a simple C-Si-Mn plating plate is used, it has a composite structure with the proper amount of ferrite and martensite. It was clarified that a high-strength molten Zn—Al—Mg alloy-plated steel sheet with a low yield ratio was obtained.
以下、本発明で使用するめっき原板に含まれる合金成分,含有量,製造条件等を説明する。
〔合金成分〕
・C:0.05〜0.20質量%
強度向上に有効な合金成分であり、0.05質量%以上で強度改善効果がみられる。しかし、過剰添加は溶接性,延性を低下させるので、0.20質量%を上限とした。好ましくは、0.08〜0.15質量%の範囲でC含有量が選定される。
・Si:1.5質量%以下
固溶強化によって鋼材の強度を上昇させる合金成分であり、0.05質量%以上でSiの添加効果が顕著になる。しかし、過剰量のSiが含まれるとめっき性に有害なSi濃化層が鋼材表面に生じるので、Si含有量の上限を1.5質量%とした。好ましくは、Si含有量を0.05〜0.5質量%の範囲で選定する。
Hereinafter, alloy components, contents, production conditions, and the like included in the plating base plate used in the present invention will be described.
[Alloy components]
C: 0.05 to 0.20 mass%
It is an alloy component effective for improving the strength, and an effect of improving the strength is seen at 0.05% by mass or more. However, excessive addition reduces weldability and ductility, so 0.20% by mass was made the upper limit. Preferably, the C content is selected in the range of 0.08 to 0.15% by mass.
Si: 1.5% by mass or less Si is an alloy component that increases the strength of steel by solid solution strengthening, and the effect of adding Si becomes remarkable at 0.05% by mass or more. However, if an excessive amount of Si is contained, a Si concentrated layer harmful to the plating property is generated on the steel material surface. Preferably, the Si content is selected in the range of 0.05 to 0.5 mass%.
・Mn:1.0〜2.5質量%
固溶強化によって鋼材を高強度化すると共に、オーステナイトを安定化させ、マルテンサイト等の低温変態相の生成を促進させる合金成分である。このような作用は1.0質量%以上のMnでみられるが、過剰量のMnが含まれると加工性,めっき性が低下するので、上限を2.5質量%とした。好ましくは、1.5〜2.5質量%の範囲でMn含有量が選定される。
・P:0.05質量%以下
固溶強化によって鋼材を高強度化する成分であるが、過剰に含まれると粒界偏析して加工性を低下させるので、0.05質量%以下(好ましくは、0.02質量%以下)にP含有量を規制した。
-Mn: 1.0-2.5 mass%
It is an alloy component that increases the strength of steel by solid solution strengthening, stabilizes austenite, and promotes the generation of low-temperature transformation phases such as martensite. Such an effect is observed with 1.0% by mass or more of Mn, but if an excessive amount of Mn is contained, workability and plating properties are lowered, so the upper limit was made 2.5% by mass. Preferably, the Mn content is selected in the range of 1.5 to 2.5 mass%.
-P: 0.05 mass% or less Although it is a component that increases the strength of steel by solid solution strengthening, if it is excessively contained, it segregates at the grain boundaries and decreases workability, so 0.05 mass% or less (preferably P content was regulated to 0.02 mass% or less.
・S:0.01質量%以下
加工性に有害な硫化物を生成する成分であるため、可能な限りS含有量を下げることが好ましい。本成分系では0.01質量%以下にS含有量を規制したが、過酷な加工条件が想定される用途ではS含有量を0.005質量%以下に下げることが好ましい。
脱酸剤としてAlを添加することも可能であるが、過剰量のAl添加はプレス成形性に悪影響を及ぼすので、Alを添加する場合には0.06質量%以下(好ましくは0.01〜0.05質量%)の範囲でAl含有量を選定する。
-S: 0.01 mass% or less Since it is a component which produces | generates a sulfide harmful to workability, it is preferable to reduce S content as much as possible. In this component system, the S content is regulated to 0.01% by mass or less, but it is preferable to lower the S content to 0.005% by mass or less in applications where severe processing conditions are assumed.
Al can be added as a deoxidizer, but adding an excessive amount of Al adversely affects press formability. Therefore, when Al is added, it is 0.06% by mass or less (preferably from 0.01 to The Al content is selected in the range of 0.05 mass%.
〔熱処理〕
めっき原板は、溶融めっきに先立って還元雰囲気で還元焼鈍されることにより、マトリックスに析出している炭化物等を固溶させると共に表面を活性化する。
・還元焼鈍:Ac1〜Ac3
還元焼鈍では、炭化物等の析出物をマトリックスに完全に固溶させ最終的にマルテンサイトを第二相として得るため、焼鈍温度をAc1〜Ac3の温度域(具体的には750〜850℃,好ましくは780〜820℃)に設定する。Ac1に達しない焼鈍温度では、オーステナイト化が不十分なため、十分量のマルテンサイトを得難い。逆にAc3を超える加熱温度では、オーステナイトのC濃度が低下し、パーライトが生成しやすくなる。
〔Heat treatment〕
The plating original plate is subjected to reduction annealing in a reducing atmosphere prior to hot dipping so as to solidify carbides and the like deposited on the matrix and activate the surface.
・ Reduction annealing: Ac 1 to Ac 3
In the reduction annealing, precipitates such as carbides are completely dissolved in the matrix and finally martensite is obtained as the second phase. Therefore, the annealing temperature is in the temperature range of Ac 1 to Ac 3 (specifically, 750 to 850 ° C. , Preferably 780 to 820 ° C.). At an annealing temperature that does not reach Ac 1 , austenite formation is insufficient, so that it is difficult to obtain a sufficient amount of martensite. On the other hand, at a heating temperature exceeding Ac 3 , the C concentration of austenite decreases and pearlite is easily generated.
・650℃までの冷却速度:3〜10℃/秒
溶体化処理されためっき原板は、必要量のマルテンサイトを確保し且つ十分なフェライト変態を進行させるため、冷却速度:3〜10℃/秒(好ましくは、5〜10℃/秒)で650℃まで冷却される。3℃/秒に達しない緩冷ではマルテンサイト量が少なく、10℃/秒を超える急冷ではフェライト変態が十分に進行しない。
・440℃までの冷却速度:10℃/秒以上
650℃→440℃の冷却過程は、パーライト変態の進展に支配的な影響を及ぼす。当該温度域を冷却速度:10℃/秒以上(好ましくは、15〜20℃/秒)で冷却することにより、パーライト変態が抑えられる。逆に10℃/秒に達しない緩冷ではパーライト変態が起こり、最終的に得られるマルテンサイト量が減少するため、降伏比の上昇,強度の低下が避けられない。
・ Cooling rate to 650 ° C .: 3 to 10 ° C./second In order to secure a necessary amount of martensite and advance sufficient ferrite transformation, the solution-treated plating original plate has a cooling rate of 3 to 10 ° C./second. It is cooled to 650 ° C. (preferably 5 to 10 ° C./second). In slow cooling that does not reach 3 ° C / second, the amount of martensite is small, and in rapid cooling exceeding 10 ° C / second, the ferrite transformation does not proceed sufficiently.
-Cooling rate to 440 ° C: 10 ° C / second or more The cooling process from 650 ° C to 440 ° C has a dominant influence on the progress of pearlite transformation. By cooling the temperature range at a cooling rate of 10 ° C./second or more (preferably 15 to 20 ° C./second), pearlite transformation can be suppressed. On the other hand, in the case of slow cooling that does not reach 10 ° C./second, pearlite transformation occurs and the amount of martensite finally obtained decreases, so an increase in yield ratio and a decrease in strength are inevitable.
〔溶融めっき〕
パーライト変態は、溶融めっき浴への浸漬でめっき原板が受ける熱履歴によっても生じうる。たとえば、従来の合金化溶融亜鉛めっきでは浴温が450〜470℃と高いため、パーライト変態が生じやすい環境である。他方、溶融Zn-Al-Mg合金めっきは、合金化溶融亜鉛めっきに比較して浴温の低い溶融亜鉛めっき浴を使用しているので、パーライト変態が生じがたい。
[Hot plating]
The pearlite transformation can also be caused by a thermal history that the plating original plate receives by immersion in a hot dipping bath. For example, in conventional alloyed hot dip galvanizing, the bath temperature is as high as 450 to 470 ° C., and therefore, an environment in which pearlite transformation is likely to occur. On the other hand, hot-dip Zn—Al—Mg alloy plating uses a hot-dip galvanizing bath having a lower bath temperature than alloyed hot-dip galvanizing, so that pearlite transformation hardly occurs.
溶融亜鉛めっき浴は、たとえばAl:4〜10質量%,Mg:1〜4質量%,Zn:実質的に残部の組成をもち、必要に応じてTi:0.002〜0.2質量%,B::0.001〜0.1質量%を添加することにより調製される。浴温は、440℃以下,好ましくは400〜420℃の範囲に管理される。 The hot dip galvanizing bath has, for example, Al: 4 to 10% by mass, Mg: 1 to 4% by mass, Zn: substantially the balance, Ti: 0.002 to 0.2% by mass as necessary, B :: Prepared by adding 0.001 to 0.1% by weight. The bath temperature is controlled to 440 ° C. or lower, preferably 400 to 420 ° C.
〔溶融Zn-Al-Mg合金めっき鋼板の組織〕
溶融Zn-Al-Mg合金めっき鋼板は、溶融亜鉛めっき浴への浸漬・引上げ時の熱履歴によってもパーライト変態することなく、好ましくは平均結晶粒径:15μm以下のフェライトと体積率:5〜45%のマルテンサイトの複合組織に調質されている。該複合組織は、溶融亜鉛めっき前後でほとんど変わることがないので、溶融亜鉛めっきに先立つ熱処理で作りこむことが可能である。
[Structure of molten Zn-Al-Mg alloy-plated steel sheet]
The hot-dip Zn-Al-Mg alloy-plated steel sheet preferably does not undergo pearlite transformation due to thermal history during immersion and pulling in a hot-dip galvanizing bath, and preferably has an average crystal grain size of 15 μm or less and a volume ratio of 5-45. % Tempered into a martensitic composite organization. Since the composite structure hardly changes before and after hot dip galvanizing, it can be formed by heat treatment prior to hot dip galvanizing.
マルテンサイトの体積率が5〜45%(好ましくは、10〜40%)の範囲にあるため、降伏比が低く、590MPa以上の高強度を示す。強度は、マルテンサイト量の増加に応じて上昇し、5体積%以上でマルテンサイトの効果がみられる。しかし、過剰なマルテンサイト量では成形性が低下するので、上限を45体積%とした。フェライト粒の微細化も高強度化に有効であり、平均結晶粒径:15μm以下でフェライト粒微細化の効果がみられる。 Since the volume ratio of martensite is in the range of 5 to 45% (preferably 10 to 40%), the yield ratio is low and high strength of 590 MPa or more is exhibited. The strength increases as the amount of martensite increases, and the effect of martensite is observed at 5% by volume or more. However, since an excessive amount of martensite deteriorates moldability, the upper limit is set to 45% by volume. Refinement of ferrite grains is also effective in increasing the strength, and the effect of refinement of ferrite grains can be seen when the average crystal grain size is 15 μm or less.
表1の組成をもつスラブを1250℃に加熱した後、仕上げ温度:880℃,巻取り温度:600℃で板厚:2.4mmまで熱間圧延した。熱延鋼帯を酸洗した後、圧下率:50%で板厚:1.2mmまで冷間圧延した。 A slab having the composition shown in Table 1 was heated to 1250 ° C., and then hot-rolled to a finishing temperature: 880 ° C., a winding temperature: 600 ° C., and a sheet thickness: 2.4 mm. After pickling the hot-rolled steel strip, it was cold-rolled to a plate thickness of 1.2 mm at a reduction ratio of 50%.
各冷延鋼帯に表2に示す条件下の熱処理を施した後、溶融めっき浴(Al:6質量%,Mg:3質量%,Zn:残部)に導入し、片面当りめっき付着量:50g/mm2の溶融Zn-Al-Mg合金めっき鋼板を製造した。また、比較のため鋼種A,Bをめっき原板に使用し、800℃で30秒焼鈍した後、650℃まで7℃/秒で、460℃まで13℃/秒で冷却し、浴温:460℃の溶融亜鉛めっき浴に浸漬し、引上げ後に530℃×10秒の合金化処理を施すことにより合金化溶融亜鉛めっき鋼板を製造した。 Each cold-rolled steel strip is subjected to heat treatment under the conditions shown in Table 2 and then introduced into a hot dipping bath (Al: 6% by mass, Mg: 3% by mass, Zn: balance), and the amount of plating deposited per side: 50 g / Mm 2 hot-dip Zn—Al—Mg alloy-plated steel sheet was produced. For comparison, steel types A and B were used as a plating base plate, annealed at 800 ° C. for 30 seconds, cooled to 650 ° C. at 7 ° C./second, 460 ° C. at 13 ° C./second, and bath temperature: 460 ° C. An alloyed hot-dip galvanized steel sheet was manufactured by immersing in a hot-dip galvanizing bath of, and subjecting it to an alloying treatment at 530 ° C. for 10 seconds after pulling.
製造された各溶融めっき鋼板について、コイルの両端から幅/4の個所で圧延方向に直交する方向に沿って試験片を切り出し、室温引張試験に供した。室温引張試験では、JIS Z2201の5号試験片を用い、JIS Z2241に準じて引張り特性を調査した。
また、各めっき鋼板の下地鋼を顕微鏡観察し、フェライト粒径,マルテンサイト体積率を求めた。フェライト粒径は切断法で算出し、マルテンサイト体積率は画像解析により算出した。
About each manufactured hot dip galvanized steel plate, the test piece was cut out along the direction orthogonal to a rolling direction in the location of width / 4 from the both ends of a coil, and it used for the room temperature tension test. In the room temperature tensile test, No. 5 test piece of JIS Z2201 was used, and tensile properties were investigated according to JIS Z2241.
Moreover, the base steel of each plated steel plate was observed with a microscope, and the ferrite grain size and martensite volume fraction were determined. The ferrite particle size was calculated by a cutting method, and the martensite volume fraction was calculated by image analysis.
表3の調査結果にみられるように、成分・組成,熱処理共に本発明で規定した条件を満足する試験No.1,2,4,5は、フェライト粒径が15μm以下でマルテンサイト量が5〜45体積%の範囲にある複合組織をもち、室温での引張強さが590MPaと高いにも拘わらず0.65以下の低い降伏比を示した。高強度で降伏比が低いことから、プレス加工,ロール成形等で複雑な製品形状に加工できることが判る。 As can be seen from the investigation results in Table 3, the test Nos. 1, 2, 4 and 5 satisfying the conditions specified in the present invention in terms of the components, composition and heat treatment have a ferrite grain size of 15 μm or less and a martensite content of 5 It had a composite structure in the range of ˜45% by volume, and showed a low yield ratio of 0.65 or less despite its high tensile strength at room temperature of 590 MPa. Since it has high strength and low yield ratio, it can be seen that it can be processed into complex product shapes by press working, roll forming, etc.
他方、650〜440℃の温度域を緩冷した試験No.3はマルテンサイト量が不足し、焼鈍温度がAc1〜Ac3を外れる低すぎる試験No.6,7はフェライト粒が大きく成長し、C量が不足する鋼材Eをめっき原板に用いた試験No.8はマルテンサイト量が不足し、何れも降伏比の低下,590MPa以上の高強度化が達成されなかった。試験No.1,2と同じ鋼材A,Bをめっき原板に使用した場合でも、合金化処理された試験No.9,10では、パーライト変態したためマルテンサイト量が大幅に低減しており、試験No.1,2に比較して降伏比が上昇し強度が低下していた。 On the other hand, in test No. 3 in which the temperature range of 650 to 440 ° C. was slowly cooled, the amount of martensite was insufficient, and in test Nos. 6 and 7 where the annealing temperature was too low to deviate from Ac 1 to Ac 3 , ferrite grains grew greatly. In Test No. 8 in which the steel material E with insufficient C content was used as the plating base plate, the martensite content was insufficient, and none of the yield ratios were reduced and the strength of 590 MPa or higher was not achieved. Even when the same steel materials A and B as the test Nos. 1 and 2 were used for the plating base plate, the alloyed test Nos. 9 and 10 were significantly reduced in martensite because of the pearlite transformation. The yield ratio increased and the strength decreased compared to.
この対比から明らかなように、C-Si-Mn系のめっき原板を溶融Zn-Al-Mg合金めっきする際に、還元焼鈍工程から溶融亜鉛めっき浴に導入するまでの熱管理を適正化することにより、パーライト変態を抑えたフェライト,マルテンサイトの複合組織に調整され、降伏比が低い高強度溶融Zn-Al-Mg合金めっき鋼板が得られることが確認された。 As is clear from this comparison, when performing hot-dip Zn-Al-Mg alloy plating of a C-Si-Mn based plating plate, heat management from the reduction annealing process to introduction into the hot dip galvanizing bath should be optimized. Thus, it was confirmed that a high-strength molten Zn—Al—Mg alloy-plated steel sheet having a low yield ratio, which was adjusted to a composite structure of ferrite and martensite with suppressed pearlite transformation, was obtained.
以上に説明したように、溶融めっき後に合金化処理工程を含まない溶融Zn-Al-Mg合金めっきの特性を活用し、溶融めっき浴に導入されるめっき原板の熱処理を適正管理することにより、単純なC-Si-Mn系のめっき原板を使用した場合でも降伏比が低く、590MPa以上に高強度化された溶融めっき鋼板が得られる。しかも、高耐食性を呈するZn-Al-Mg合金めっき層が形成されているので、過酷な条件下でも高精度の製品形状に加工でき、強度,耐食性に優れた素材として重宝される。 As explained above, by utilizing the characteristics of hot-dip Zn-Al-Mg alloy plating that does not include an alloying process after hot-dip plating, and by appropriately managing the heat treatment of the plating base plate introduced into the hot-dip bath, Even when a C-Si-Mn based plating original plate is used, a hot dip plated steel sheet having a low yield ratio and a high strength of 590 MPa or more can be obtained. Moreover, since the Zn—Al—Mg alloy plating layer exhibiting high corrosion resistance is formed, it can be processed into a highly accurate product shape even under severe conditions, and is useful as a material excellent in strength and corrosion resistance.
Claims (2)
連続溶融めっきラインの還元焼鈍炉でAc1〜Ac3の温度域に加熱した後、冷却速度:3〜10℃/秒で650℃まで、更に冷却速度:10℃/秒以上で440℃まで冷却する熱処理を施し、
次いで、浴温:440℃以下の溶融Zn-Al-Mg合金めっき浴に導入することを特徴とする高強度溶融Zn-Al-Mg合金めっき鋼板の製造方法。 C: 0.05-0.20 mass%, Si: 1.5 mass% or less, Mn: 1.0-2.5 mass%, P: 0.05 mass% or less, S: 0.01 mass% or less , Fe: After hot rolling a slab having substantially the remaining composition, or after hot rolling, pickling and cold rolling, and then passing through a continuous hot dipping line,
After heating to a temperature range of Ac 1 to Ac 3 in a reduction annealing furnace of a continuous hot dipping plating line, cooling rate: 3 to 10 ° C./second to 650 ° C., cooling rate: 10 ° C./second or more to 440 ° C. Heat treatment
Next, a method for producing a high-strength molten Zn—Al—Mg alloy-plated steel sheet, which is introduced into a molten Zn—Al—Mg alloy plating bath having a bath temperature of 440 ° C. or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283081A JP4544579B2 (en) | 2004-09-29 | 2004-09-29 | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004283081A JP4544579B2 (en) | 2004-09-29 | 2004-09-29 | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006097063A JP2006097063A (en) | 2006-04-13 |
JP4544579B2 true JP4544579B2 (en) | 2010-09-15 |
Family
ID=36237152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004283081A Expired - Lifetime JP4544579B2 (en) | 2004-09-29 | 2004-09-29 | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4544579B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888577A (en) * | 2012-07-18 | 2013-01-23 | 常州市武进顺达精密钢管有限公司 | Process for manufacturing zinc, magnesium and aluminum ternary alloy steel pipe by continuously hot-dip plating |
CN111304573A (en) * | 2020-03-20 | 2020-06-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Zinc-aluminum-magnesium alloy coated steel plate with excellent corrosion resistance and preparation method thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4940813B2 (en) * | 2006-03-06 | 2012-05-30 | Jfeスチール株式会社 | Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more |
DE102006039307B3 (en) * | 2006-08-22 | 2008-02-21 | Thyssenkrupp Steel Ag | Process for coating a 6-30 wt.% Mn-containing hot or cold rolled steel strip with a metallic protective layer |
EP3421634A1 (en) * | 2007-02-23 | 2019-01-02 | Tata Steel IJmuiden B.V. | Cold rolled and continuously annealed high strength steel strip and method for producing said steel |
JP5826321B2 (en) | 2013-03-27 | 2015-12-02 | 日新製鋼株式会社 | Manufacturing method of hot dip galvanized steel sheet with excellent plating adhesion |
JP5860500B2 (en) * | 2014-05-09 | 2016-02-16 | 日新製鋼株式会社 | High-strength Zn-Al-Mg-based plated steel sheet with excellent resistance to molten metal embrittlement and method for producing the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122821A (en) * | 1979-03-15 | 1980-09-20 | Kawasaki Steel Corp | Manufacture of alloyed zinc-plated high tensile steel sheet with high workability |
JPH05331537A (en) * | 1992-05-28 | 1993-12-14 | Nisshin Steel Co Ltd | Manufacture of galvannealed high tensile strength cold rolled steel plate excellent in corrosion resistance and formability |
JP2001140022A (en) * | 1999-08-27 | 2001-05-22 | Nippon Steel Corp | Method for producing high-strength galvannealed steel sheet with excellent press formability |
JP2001254144A (en) * | 2000-03-09 | 2001-09-18 | Nkk Corp | Hot dip galvanized steel sheet and its producing method |
JP2002302734A (en) * | 2001-01-31 | 2002-10-18 | Kobe Steel Ltd | High-strength steel sheet with excellent workability, and its manufacturing method |
JP2003049239A (en) * | 2001-02-26 | 2003-02-21 | Nippon Steel Corp | High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same |
JP2003193189A (en) * | 2001-12-25 | 2003-07-09 | Jfe Steel Kk | High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor |
JP2004115843A (en) * | 2002-09-25 | 2004-04-15 | Sumitomo Metal Ind Ltd | High tensile alloyed hot-dip galvanized steel sheet and method for producing the same |
JP2004323958A (en) * | 2003-04-28 | 2004-11-18 | Jfe Steel Kk | High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method |
-
2004
- 2004-09-29 JP JP2004283081A patent/JP4544579B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55122821A (en) * | 1979-03-15 | 1980-09-20 | Kawasaki Steel Corp | Manufacture of alloyed zinc-plated high tensile steel sheet with high workability |
JPH05331537A (en) * | 1992-05-28 | 1993-12-14 | Nisshin Steel Co Ltd | Manufacture of galvannealed high tensile strength cold rolled steel plate excellent in corrosion resistance and formability |
JP2001140022A (en) * | 1999-08-27 | 2001-05-22 | Nippon Steel Corp | Method for producing high-strength galvannealed steel sheet with excellent press formability |
JP2001254144A (en) * | 2000-03-09 | 2001-09-18 | Nkk Corp | Hot dip galvanized steel sheet and its producing method |
JP2002302734A (en) * | 2001-01-31 | 2002-10-18 | Kobe Steel Ltd | High-strength steel sheet with excellent workability, and its manufacturing method |
JP2003049239A (en) * | 2001-02-26 | 2003-02-21 | Nippon Steel Corp | High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same |
JP2003193189A (en) * | 2001-12-25 | 2003-07-09 | Jfe Steel Kk | High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor |
JP2004115843A (en) * | 2002-09-25 | 2004-04-15 | Sumitomo Metal Ind Ltd | High tensile alloyed hot-dip galvanized steel sheet and method for producing the same |
JP2004323958A (en) * | 2003-04-28 | 2004-11-18 | Jfe Steel Kk | High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102888577A (en) * | 2012-07-18 | 2013-01-23 | 常州市武进顺达精密钢管有限公司 | Process for manufacturing zinc, magnesium and aluminum ternary alloy steel pipe by continuously hot-dip plating |
CN111304573A (en) * | 2020-03-20 | 2020-06-19 | 攀钢集团攀枝花钢铁研究院有限公司 | Zinc-aluminum-magnesium alloy coated steel plate with excellent corrosion resistance and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2006097063A (en) | 2006-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6052471B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
CA2742671C (en) | High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same | |
JP5532188B2 (en) | Manufacturing method of high-strength steel sheet with excellent workability | |
JP6052472B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5780171B2 (en) | High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof | |
JP5740847B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2018151322A1 (en) | High strength steel sheet | |
JP4730056B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability | |
JP6503584B2 (en) | Method of manufacturing hot rolled steel sheet, method of manufacturing cold rolled full hard steel sheet, and method of manufacturing heat treated sheet | |
WO2013118679A1 (en) | High-strength cold-rolled steel sheet and process for manufacturing same | |
JP4837604B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
CN102712978A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
JP2010043360A (en) | High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5659604B2 (en) | High strength steel plate and manufacturing method thereof | |
JP6119655B2 (en) | High strength alloyed hot dip galvanized steel strip excellent in formability with small material variations in steel strip and method for producing the same | |
JP4544579B2 (en) | Manufacturing method of high strength molten Zn-Al-Mg alloy plated steel sheet | |
JP2011080126A (en) | Hot-dip galvannealed steel sheet and method for manufacturing the same | |
JP4528135B2 (en) | High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same | |
JP4140962B2 (en) | Manufacturing method of low yield ratio type high strength galvannealed steel sheet | |
JP5213307B2 (en) | Method for producing high ductility and high strength alloyed hot-dip galvanized steel sheet with excellent surface properties | |
JP2000109965A (en) | Production of hot dip galvanized high tensile strength steel sheet excellent in workability | |
JP4351465B2 (en) | Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070921 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100625 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100625 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4544579 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140709 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |