JP4150193B2 - 波長制御装置及び波長制御方法 - Google Patents
波長制御装置及び波長制御方法 Download PDFInfo
- Publication number
- JP4150193B2 JP4150193B2 JP2002056086A JP2002056086A JP4150193B2 JP 4150193 B2 JP4150193 B2 JP 4150193B2 JP 2002056086 A JP2002056086 A JP 2002056086A JP 2002056086 A JP2002056086 A JP 2002056086A JP 4150193 B2 JP4150193 B2 JP 4150193B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- wavelength
- unit
- optical
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Communication System (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の属する技術分野】
本発明は波長制御装置に関し、より特定的には、波長多重光通信システムにおいて、光源である半導体レーザの波長を制御するために用いる波長制御装置に関する。
【0002】
【従来の技術】
近年、大容量データ通信の需要の増大に対応するために、高密度波長多重光通信システム(以下、DWDMシステムと称する)の普及が急速に進んでいる。
【0003】
図14に一般的なDWDMシステムの構成図を示す。このDWDMシステムは、半導体レーザ511〜51Nと、強度変調部521〜52Nと、波長多重部53と、光ファイバ54と、波長分離部55と、光電気変換部561〜56Nとを備える。DWDMシステムにおいては、多数の信号光の波長を1nm以下の狭い間隔で並べて伝送するため、各光信号を分離・抽出するための波長分離部55の透過特性は所望波長帯域外では急峻に減衰することが求められる。このため信号光の波長が波長分離部55の透過中心波長からわずかでもずれた場合、過剰な損失が発生する。したがって半導体レーザ511〜51Nから出力される光の波長は高精度に制御されている必要がある。
【0004】
従来、光波長を制御するために様々な方法が提案されてきたが、その大部分は、高価な光部品から構成され、波長変動を電気的な信号レベルに変換・検出する波長モニタ装置(一般に波長ロッカーと呼ばれる)を用いている。その一例として特開平11−31859に開示されている装置について説明する。
【0005】
図15に、この従来の波長制御装置のブロック図を示す。この従来の波長制御装置は、半導体レーザ61と、カットフィルタ62と、ビームスプリッタ63と、光バンドパスフィルタ64と、フォトダイオード65,66と、出力比算出部67と、波長制御部68とを備える。半導体レーザ61から出力された光は、まず図16(a)に示す透過特性を有するカットフィルタ62を透過し、ビームスプリッタ63に入射する。ビームスプリッタ63は入射光の一部を透過し、残りを反射する。ビームスプリッタ63の透過光は信号伝送に用いられ、反射光は以下に説明する波長モニタ用に用いられる。ビームスプリッタ63から反射された光はまず図16(b)に示す透過特性を有する光バンドパスフィルタ64に入射する。光バンドパスフィルタ64の透過光はフォトダイオード65に入射され、反射光はフォトダイオード66に入射される。フォトダイオード65の受光レベルの波長依存性は、カットフィルタ62の透過率と光バンドパスフィルタ64の透過率の積で与えられ、図16(d)のようになる。一方、フォトダイオード66の受光レベルの波長依存性は、カットフィルタ62の透過率と光バンドパスフィルタ64の反射率の積で与えられ、図16(e)のようになる。フォトダイオード65,66の出力は出力比算出部67に入力される。ここで、フォトダイオード65からの出力レベルをA、フォトダイオード66からの出力レベルをBとする。出力比算出部67は、出力比(A−B)/(A+B)を算出し、波長モニタ信号として出力する(図16(f)参照)。波長制御部68は波長モニタ信号が所定値Xとなるようにレーザ光源の発光波長を制御する。この所定値Xを波長分離部55の透過中心波長λ2に対応した値に設定することにより、レーザの発光波長を適切に制御することができる。
【0006】
【発明が解決しようとする課題】
以上に述べた従来の波長制御装置では、送信部側において光バンドパスフィルタやフォトダイオード等の専用の光部品を付加することにより波長モニタ機能を実現している。しかしながらこれらの光部品は一般に高価であるため、送信部のコストが大幅に上昇するという課題があった。
【0007】
それゆえに本発明は、低コストで波長モニタ機能を実現できる波長制御装置を提供することを目的とする。
【0008】
【課題を解決するための手段および発明の効果】
上記のような目的を達成するために、本発明は、以下に示すような特徴を有している。
第1の発明の波長制御装置は、光信号の波長を制御するものであって、所定波長の光を出力する半導体レーザと、入力される制御信号に応じて半導体レーザの波長を制御する波長制御部と、周期性を有する周期信号を発生する周期信号源と、周期信号と所定のバイアス値を重畳した電流信号で半導体レーザを駆動する電流源と、周期信号の極性を反転させる極性反転部と、極性反転部から出力された信号とデータとを多重する多重部と、多重部から出力された信号により半導体レーザから出力される光を強度変調する強度変調部と、強度変調部から出力される光信号を波長に応じた透過率で透過する光フィルタ手段と、光フィルタ手段を透過した光信号を電気信号に変換する光電気変換部と、光電気変換部より出力される電気信号から周期信号を抽出し、この抽出された周期信号に基づく制御信号を波長制御部に送る制御信号検出部とを備える。
【0009】
第1の発明によれば、波長制御用に高価な光部品を追加する必要が無いため、従来の波長制御装置と比較して低コスト化が可能である。
【0010】
第2の発明の波長制御装置は、第1の発明の波長制御装置において、周期信号が正弦波信号であることを特徴とする。
【0011】
第3の発明の波長制御装置は、第2の発明の波長制御装置において、半導体レーザで変調される正弦波信号の強度変調成分の振幅と、強度変調部で変調される正弦波信号の強度変調成分の振幅とが同じ大きさに設定されることを特徴とする
【0012】
第4の発明の波長制御装置は、第3の発明の波長制御装置において、フィルタ手段が、波長多重された光信号を波長分離または抽出する波長分離部であることを特徴とする。
【0013】
第4の発明によれば、波長制御を行わない波長多重システムに用いられる波長分離部を波長制御に利用することで、波長モニタ用の光部品を追加することなく波長制御を実現できる。
【0014】
第5の発明の波長制御装置は、第3の発明の波長制御装置において、半導体レーザと、波長制御部と、周期信号源と、電流源と、極性反転部と、多重部と、強度変調部と、制御信号検出部とをそれぞれ複数組備え、フィルタ手段が、それぞれ所定の波長の光信号のみを透過する複数の入力端子と1つの出力端子とを有し、各入力端子より入力される、複数の強度変調部から出力された互いに波長の異なる光信号を波長多重して出力端子から出力する波長多重部であり、複数の正弦波信号源が出力する正弦波信号の周波数は互いに異なり、複数の制御信号検出部は、それぞれ対応する周期信号源から出力される正弦波信号のみを抽出することを特徴とする。
【0015】
第5の発明によれば、波長制御に必要な部品を全て送信側に集中的に設置することが可能であるため、メンテナンスが容易となる。
【0016】
第6の発明の波長制御装置は、第3の発明の波長制御装置において、制御信号検出部は、正弦波信号の振幅を検出する振幅検出部と、正弦波信号の位相を検出する位相検出部とを含み、制御信号検出部は、振幅検出部によって検出された振幅と位相検出部によって検出された位相とを制御信号として出力し、波長制御部は、位相に応じて半導体レーザの出力波長の制御方向を決定し、振幅が0となるように波長の制御量を決定することを特徴とする。
【0017】
第6の発明によれば、高価な光部品を追加することなく、制御方向の検出が可能である。
【0018】
第7の発明の波長制御装置は、第3の発明の波長制御装置において、周期信号源から出力される正弦波信号を分周してパイロット信号を出力するパイロット信号源をさらに備え、多重部は、極性反転部から出力された信号およびデータに加えてパイロット信号を多重し、制御信号検出部は、光電気変換部から出力された電気信号から正弦波信号を抽出する第1のバンドパスフィルタと、電気信号からパイロット信号を抽出する第2のバンドパスフィルタと、第2のバンドパスフィルタから出力されたパイロット信号を逓倍する周波数逓倍部と、第1のバンドパスフィルタから出力された正弦波信号と周波数逓倍部から出力されたパイロット信号とを乗算する乗算部と、乗算部から出力された信号の直流レベルを抽出し、制御信号として出力するローパスフィルタとを含み、波長制御部は、ローパスフィルタから出力される直流レベルが0となるように半導体レーザの波長を制御することを特徴とする。
【0019】
第7の発明によれば、制御信号としてフィードバックする信号は1種類だけでよいという利点を有する。
【0020】
第8の発明の波長制御装置は、第2の発明の波長制御装置において、半導体レーザで変調される正弦波信号の強度変調成分の振幅と、強度変調部で変調される正弦波信号の強度変調成分の振幅とが異なる大きさに設定され、制御信号検出部で検出される正弦波信号の振幅が所定値となるように半導体レーザの出力波長を制御することを特徴とする。
【0021】
第8の発明によれば、制御信号としてフィードバックする信号は1種類だけでよい。さらに制御信号として振幅のみを検出すればよいため、構成を簡素化できるという利点を有する。
【0022】
第9の発明の波長制御装置は、第1の発明の波長制御装置において、波長制御部は、半導体レーザの温度を制御することを特徴とする。
【0023】
第9の発明によれば、発振波長が温度に依存する半導体レーザの波長制御が可能である。
【0024】
第10の発明の波長制御方法は、光信号の波長を制御するものであって、所定の周波数の正弦波信号によって光信号の波長を変調し、変調された光信号を光フィルタで抽出し、抽出された光信号を光電気変換し、光電気変換された信号から正弦波信号を抽出し、抽出された正弦波信号の振幅及び位相が所定値となるように光信号の中心波長を制御する。
【0025】
第10の発明によれば、波長制御用に高価な光部品を追加する必要が無いため、従来の波長制御方式と比較して低コスト化が可能である。
【0026】
【発明の実施の形態】
以下に、本発明の種々の実施形態について図面を参照しながら説明する。
(第1の実施形態)
図1は本発明の第1の実施形態に係る波長制御装置の構成を示すブロック図である。この波長制御装置は、送信部1101〜110Nと、波長多重部20と、光ファイバ21と、波長分離部22と、受信部1301〜130Nとを備える。送信部1101は、半導体レーザ11と、波長制御部12と、正弦波信号源13と、電流源14と、極性反転部15と、多重部16と、強度変調部17とをそれぞれ含む。受信部1301は、光電気変換部31と、制御信号検出部32とをそれぞれ含む。
【0027】
次に、本実施形態の各部の機能について、図1を参照しながら説明する。
半導体レーザ11は光を出力する。波長制御部12は、入力される制御信号に従って、半導体レーザ11から出力される光信号の中心波長λ0を制御する。正弦波信号源13は正弦波信号を出力する。電流源14は、正弦波信号源13から出力される正弦波信号と所定のバイアス値とを重畳した電流を半導体レーザ11に供給する。極性反転部15は、正弦波信号源13から出力される正弦波信号の極性を反転させる。なお極性反転部15として、位相を180°反転させる位相シフタを用いても構わない。多重部16は、極性反転部15で極性反転された正弦波信号とデータとを多重する。強度変調部17は、多重部16から出力される信号によって、半導体レーザ11から出力される光を強度変調する。このとき、半導体レーザ11と、強度変調部17のそれぞれにおける正弦波信号の強度変調成分の振幅を一致させる。送信部1102〜110Nは送信部1101と同様の構成・機能を有し、これら送信部1101〜110Nは互いに異なる波長の光信号を出力する。
【0028】
波長多重部20は、送信部1101〜110Nから出力された光信号を波長多重する。波長多重部20から出力される波長多重光信号は光ファイバ21を介して波長分離部22に入力される。波長分離部22は、波長多重光信号を波長チャンネルごとに分離し、受信部1301〜130Nにそれぞれ出力する。
【0029】
光電気変換部31は、波長分離部22で波長分離された光信号を電気信号に変換する。制御信号検出部32は、光電気変換部31より出力された電気信号から前述の正弦波信号を検出する。受信部1302〜130Nは受信部1301と同様の構成・機能を有し、これら受信部1301〜130Nには互いに異なる波長の光信号が入力される。
【0030】
続いて、本発明の波長制御装置の基本原理について説明する。
図2(a)に示すような透過特性を有する波長分離部を光信号が透過する場合を考える。この光信号の波長がλ0を中心として正弦波で変調されている時、すなわち波長の時間変化が次式(1)で表される時、波長分離部の透過中心波長λcと光信号の中心波長λ0がずれていれば、光信号の波長変化が強度変化に変換される。
【数1】
これは、以下のように説明できる。波長分離部の透過特性は、波長λ0を中心として次式(2)のように展開できる。
【数2】
よって、波長分離部に入力される前の光信号パワーをPinとすると、波長分離部透過後の光信号パワーPoutは次式(3)のように求めることができる。
【数3】
上式(3)の第2項は、波長分離部透過後の光信号に波長変化と同じ周波数の強度変調成分が存在し、その振幅が波長分離部の透過率の1階微分成分に比例することを示している。
【0031】
図2(a)に示した特性を持つ波長分離部の透過率の1階微分成分を図2(b)に示す。波長分離部の透過特性が透過中心波長λcに対して対称な場合、透過中心波長λcにおいて透過率の1階微分成分は0となる。したがって、あらかじめ光信号の波長を正弦波で変調しておき、波長分離部透過後にこの正弦波と同じ周波数の強度変調成分を検出し、この振幅が0となるように光信号の中心波長λ0を制御すれば、光信号の中心波長λ0と波長分離部の透過中心波長λcを一致させることができる。
【0032】
次に、各ブロックにおける信号形態について、図3〜図5を参照しながら説明する。正弦波信号源13から出力される信号波形が図3(a)で表される時、半導体レーザ11の出力光は図3(b)のように強度変調される。それと同時に半導体レーザ11の出力光波長も変調され、その時間変化は図4(b)のようになる。ただし以下では、半導体レーザ11へ注入される電流量の増加に伴い波長が長波側に変化し、かつ強度変調成分と波長の変調成分との間には位相差が無いものと仮定する。
【0033】
一方、極性反転部15から出力される信号の波形は図3(c)に示すように図3(a)の波形を反転したものとなり、図3(d)に示す本来伝送すべきデータと多重されることにより、強度変調部17に入力される信号の波形は図3(e)のようになる。この信号を用いて半導体レーザ11からの出力光を変調すると、正弦波信号による強度変調成分がキャンセルされ、図3(f)に示すように、データによる強度変調成分のみが残る。一方、波長情報に関しては、強度変調部17では影響を受けないため、図4(f)に示すように、半導体レーザ11で与えられた波長変化がそのまま残る。以上の手順により、波長が正弦波で変調された光信号が得られる。
【0034】
波長分離部22の透過特性は、図2を用いて説明した光フィルタと同じ特性を有し、光信号の中心波長λ0と波長分離部22の透過中心波長λcがずれた場合、正弦波信号と同じ周波数を持ち、振幅が透過率の1階微分成分に比例する強度変調成分(以下、透過率微分信号と称する)が発生する。なお、正弦波信号とデータの周波数配置は、図5に示すように正弦波信号の周波数を充分低域(または高域)に設定すれば、受信側でフィルタ(図1には図示せず)を用いて除去することができ、受信データに影響しないようにできる。
【0035】
制御信号検出部32は、図6に示すように、透過率微分信号の振幅を検出する振幅検出部33と、透過率微分信号の位相を検出する位相検出部34とを有する。ここで、透過率微分信号の符号が正の時は位相が同相、符号が負の時は逆相であると定義する。このとき、dT/dλと、透過率微分信号の振幅及び位相と、光信号の中心波長λ0との間には図7に示す関係が成り立つ。制御信号検出部32で検出された透過率微分信号の振幅及び位相の情報を制御信号として波長制御部12に送り、波長制御部12において透過率微分信号の振幅が0となるように半導体レーザ11の出力光の波長を制御することで、光信号の中心波長λ0を波長分離部22の中心波長λcに一致させることができる。その際、波長の制御方向は、透過率微分信号の位相情報から決定する。すなわち、位相が同相であれば波長を長波側に変化させ、位相が逆相であれば短波側に変化させる。なお、半導体レーザ11への注入電流の増加に対して波長が短波側に変化する場合については制御の方向を逆にする。すなわち位相が同相であれば波長を短波側に変化させ、位相が逆相であれば長波側に変化させる。
【0036】
波長制御は、一般的な半導体レーザについては温度を制御することにより行うことができる。なお、半導体レーザの中には温度制御以外の方法により波長を制御できるものが存在するが、このようなレーザについてはそれぞれに適した方法で波長を制御しても構わない。
【0037】
また、図8に示すように、波長分離部22の代わりに、受信部1300が波長多重光信号から所望波長の光信号のみを抽出する波長選択部35を含むような構成であっても、以上で述べた議論はそのまま成り立つ。
【0038】
本実施形態においては、波長制御を行わない送受信部と比較して追加しなければならないブロックは、波長制御部12、正弦波信号源13、極性反転部15、多重部16、および制御信号検出部32であり、いずれも安価な電気部品により構成することが可能である。このため、光部品である波長ロッカーを使用する従来の波長制御装置と比較して、本実施形態は低コスト化が可能である。また、波長分離部22(または波長選択部35)の透過中心波長と光信号の中心波長が一致するように制御するため、温度特性等の理由で波長分離部22(または波長選択部35)の透過中心波長が初期状態からずれた場合でも、過剰な光損失が発生しないように制御することができる。
【0039】
以上のように本実施形態によれば、高価な光部品を追加する必要が無く、低コストな波長制御装置を実現することができる。
【0040】
(第2の実施形態)
図9は、本発明の第2の実施形態に係る波長制御装置の構成を示すブロック図である。この波長制御装置は、送信部2101〜210Nと、波長多重部23と、光電気変換部31とを備える。送信部2101は、半導体レーザ11と、波長制御部12と、正弦波信号源13と、電流源14と、極性反転部15と、多重部16と、強度変調部17と、制御信号検出部32とを含む。なお図9において、図1と同一の構成には同一の参照符号を付し、詳しい説明を省略する。
【0041】
次に、本実施形態の各部の機能について、図9を参照しながら説明する。
半導体レーザ11、波長制御部12、電流源14、極性反転部15、多重部16、および強度変調部17の機能は、第1の実施形態と同様である。正弦波信号源13は、第1の実施形態と同様に正弦波信号を出力するが、その周波数は、送信部2101〜210Nに割り当てられた固有の周波数とする。すなわち、図10に示すように、送信部ごとに互いに異なる周波数とする。いずれの周波数も、第1の実施形態と同様、正弦波信号の周波数を充分低域(または高域)に設定し、受信データに影響しないようにする。
【0042】
波長多重部23は、強度変調部17から出力された光信号を、波長の異なる他の光信号と波長多重する。かつ、波長多重部23の各入力ポートは、それぞれ対応する送信部から出力される光信号の波長近傍のみを透過する光フィルタとしての機能も有する。この様な波長多重部23の機能は、一般にアレイ導波路格子光フィルタ(AWG)を用いて実現することができる。
【0043】
光電気変換部31は、波長多重部23から出力された光信号の一部を電気信号に変換する。制御信号検出部32は、第1の実施形態と異なり送信部2101内に設置され、光電気変換部31から出力された電気信号から、送信部2101に割り当てられた周波数の正弦波信号(透過率微分信号)を抽出し、その振幅及び位相の情報を制御信号として波長制御部12に送る。送信部2102〜210Nも、それぞれに割り当てられた周波数の正弦波信号を抽出する制御信号検出部(図示せず)を備える。
【0044】
本実施形態における波長制御の方法及び信号形態は、図10を用いて説明した正弦波信号の周波数配置を除き第1の実施形態と同様である。
【0045】
本実施形態は、第1の実施形態と同様の利点に加え、波長制御に必要な部品を全て送信側に集中的に設置することが可能であるため、メンテナンスが容易であるという利点を有する。
【0046】
(第3の実施形態)
図11は、本発明の第3の実施形態に係る波長制御装置の構成を示すブロック図である。この波長制御装置は、送信部3101〜310Nと、波長多重部20と、光ファイバ21と、波長分離部22と、受信部3301〜330Nとを備える。送信部3101は、半導体レーザ11と、波長制御部12と、正弦波信号源13と、電流源14と、極性反転部15と、多重部16と、強度変調部17と、パイロット信号源18とを含む。受信部3301は、光電気変換部31と、制御信号検出部40とを含む。なお図11において、図1と同一の構成には同一の参照符号を付し、詳しい説明を省略する。
【0047】
図12は受信部3301の構成を示すブロック図である。制御信号検出部40は、第1のバンドパスフィルタ41と、第2のバンドパスフィルタ42と、周波数逓倍部43と、乗算部44と、ローパスフィルタ45とを有する。
【0048】
次に、本実施形態の各部の機能について、図11及び図12を参照しながら説明する。
半導体レーザ11、正弦波信号源13、電流源14、および極性反転部15の機能及び出力信号形態は第1の実施形態と同様である。パイロット信号源18は、正弦波信号源13から出力される正弦波信号の周波数の整数分の1の周波数を有し、正弦波信号に位相が同期したパイロット信号を出力する。多重部16は、極性反転された正弦波信号とデータとに加え、パイロット信号を多重する。強度変調部17は、多重部16から出力される信号によって、半導体レーザ11から出力される光を強度変調する。強度変調部17から出力される光信号は、正弦波信号による強度変調成分がキャンセルされるため、データとパイロット信号が重畳した信号によって強度変調された信号となる。一方、波長は第1の実施形態と同様に、正弦波信号によって変調される。
【0049】
波長分離部22の透過中心波長λcと光信号の中心波長λ0とにずれが生じた場合、第1の実施形態と同様に波長変化が強度変化に変換され、正弦波信号と同じ周波数を有する透過率微分信号が発生する。第1のバンドパスフィルタ41は、光電気変換部31より出力される電気信号から透過率微分信号を抽出する。第2のバンドパスフィルタ42は、光電気変換部31より出力される電気信号からパイロット信号を抽出する。周波数逓倍部43は、パイロット信号を逓倍し、透過率微分信号と同じ周波数に変換する。乗算部44は、第1のバンドパスフィルタ41から出力された透過率微分信号と、周波数逓倍部43から出力されたパイロット信号とを乗算する。ローパスフィルタ45は、乗算部44から出力された信号より直流成分を抽出する。この直流成分が制御信号として波長制御部12にフィードバックされる。
【0050】
パイロット信号は送信側において正弦波信号と同期させて出力されるため、透過率微分信号の符号が正の時(光信号中心波長λ0が透過率中心波長λcより短波側の場合)はパイロット信号と透過率微分信号は同相となり、制御信号は正となる(図13参照)。一方、透過率微分信号の符号が負の時(光信号中心波長λ0が透過率中心波長λcより長波側の場合)はパイロット信号と透過率微分信号は逆相となり、制御信号は負となる。したがって、制御信号が正の場合は光信号の波長を長波側に変化させ、制御信号が負の場合は光信号の波長を短波側に変化させるように制御すれば、光信号の中心波長λ0と波長分離部の透過中心波長λcを一致させることができる。以上の制御は半導体レーザ11への注入電流の増加に対して波長が長波側に変化する場合を仮定しており、電流増加に対して波長が短波側に変化する場合は逆方向の制御を加える。
【0051】
なお、本実施形態においても第1の実施形態と同様、波長分離部22の代わりに、波長多重光信号から所望波長の光信号のみを抽出する波長選択部35を用いる構成であっても、以上で述べた議論はそのまま成り立つ。また、第2の実施形態と同様、図9に示した波長多重部23の特性を利用し、送信側に制御信号検出部32を備える構成としてもよい。
【0052】
本実施形態は第1の実施形態と同様の効果に加え、透過率微分信号の振幅及び位相をフィードバックする必要のある第1の実施形態と異なり、制御信号としてフィードバックする信号は1種類だけでよいという利点を有する。
【0053】
(第4の実施形態)
本実施形態の構成・機能は第1の実施形態において説明したものと同様であり、信号形態のみが異なる。したがって各構成には図1の構成に付した参照符号と同一の参照符号を付して説明する。
【0054】
以下に、本実施形態における信号形態について、図14を参照しながら説明する。
半導体レーザ11の出力光は、第1の実施形態と同様、図14(b)に示すように正弦波信号により強度変調され、同時に波長も変調される。半導体レーザ11における光変調度をm1とする。極性反転部15および多重部16からそれぞれ出力される波形は第1の実施形態と同様である。強度変調部17においては、多重部16から出力される信号によって半導体レーザ11から出力される信号を変調するが、ここでの正弦波信号の光変調度をm2とし、m1とm2が異なる大きさとなるように設定する。これにより、強度変調部17から出力される光信号の強度には、第1の実施形態と異なり正弦波信号成分が一部残る。一方、波長変化は、半導体レーザ11で与えられたものがそのまま残る。
【0055】
光信号の中心波長λ0と波長分離部22の透過中心波長λcがずれた場合、第1の実施形態と同様に、正弦波信号と同じ周波数を持ち、振幅が透過率の1階微分成分に比例する強度変調成分(透過率微分信号)が発生する。一方、送信部1101から出力される時に最初から存在した正弦波信号による強度変調成分は、波長分離部22を透過する際にその透過率に比例して減衰する。その結果、受信側の制御信号検出部32において正弦波信号と同じ周波数成分を抽出すると、透過率に比例した信号に、透過率微分信号を加算した信号が得られる。
【0056】
図15に、制御信号検出部32で検出される正弦波信号成分の振幅と光波長との関係を示す。光信号中心波長λ0と透過中心波長λcが一致した時の振幅をXとすると、図16に示すように、光信号波長λ0が長波側にずれた時の振幅はXより小さくなり、短波側にずれた時の振幅はXより大きくなる。よって、この振幅を制御信号として波長制御部12にフィードバックし、振幅がXより小さい時は波長を短波側に変化させ、大きい時は長波側に変化させる制御を加えることにより、光信号の中心波長λ0を波長分離部22の中心波長λcに一致させることができる。以上の制御は半導体レーザ11への注入電流の増加に対して波長が長波側に変化する場合を仮定しており、電流増加に対して波長が短波側に変化する場合は逆方向の制御を加える。
【0057】
なお、本実施形態においても第1の実施形態と同様、波長分離部22の代わりに、波長多重光信号から所望波長の光信号のみを抽出する波長選択部35を用いる構成であっても、以上で述べた議論はそのまま成り立つ。また、第2の実施形態と同様、図9に示した波長多重部23の特性を利用し、送信側に制御信号検出部32を備える構成としてもよい。
【0058】
本実施形態は、第3の実施形態と同様に、透過率微分信号の振幅及び位相をフィードバックする必要のある第1の実施形態と異なり、制御信号としてフィードバックする信号は1種類だけでよい。さらに制御信号検出部32では振幅のみを検出すればよいため、構成を簡素化できるという利点を有する。
【0059】
なお、以上の第1〜第4の実施形態では、正弦波信号源13から出力される正弦波信号を用いるとしたが、周期性を有する他の適宜な信号を正弦波信号の代わりに用いても構わない。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る波長制御装置の構成を示すブロック図である。
【図2】波長分離部の透過特性と、波長分離部による波長変化の強度変化への変換との関係を説明するための図である。
【図3】本発明の第1の実施形態における各部の波形を示す図である。
【図4】本発明の第1の実施形態における光信号波長の時間変化を示す図である。
【図5】本発明の第1の実施形態における信号の周波数配置を示す図である。
【図6】本発明の第1の実施形態における受信部の構成を示すブロック図である。
【図7】本発明の第1の実施形態における光波長と透過率微分信号との関係を示す図である。
【図8】本発明の第1の実施形態の変形例の構成を示すブロック図である。
【図9】本発明の第2の実施形態の構成を示すブロック図である。
【図10】本発明の第2の実施形態における周波数配置を示す図である。
【図11】本発明の第3の実施形態の構成を示すブロック図である。
【図12】本発明の第3の実施形態における受信部の構成を示すブロック図である。
【図13】本発明の第3の実施形態における光波長と制御信号との関係を示す図である。
【図14】本発明の第4の実施形態における各部の波形を示す図である。
【図15】本発明の第4の実施形態における光波長と制御信号振幅の関係を示す図である。
【図16】本発明の第4の実施形態における光波長と制御信号との関係を示す図である。
【図17】従来の一般的な波長多重光伝送システムの構成を示すブロック図である。
【図18】従来の波長制御装置の構成を示すブロック図である。
【図19】従来の波長制御装置の各部の特性を示す図である。
【符号の説明】
11…半導体レーザ
12…波長制御部
13…正弦波信号源
14…電流源
15…極性反転部
16…多重部
17…強度変調部
18…パイロット信号源
20,23…波長多重部
21…光ファイバ
22…波長分離部
31…光電気変換部
32,40…制御信号検出部
33…振幅検出部
34…位相検出部
35…波長選択部
41…第1のバンドパスフィルタ
42…第2のバンドパスフィルタ
43…周波数逓倍部
44…乗算部
45…ローパスフィルタ
1101〜110N,2101〜210N,3101〜310N…送信部
1300,1301〜130N,3301〜330N…受信部
Claims (4)
- 光信号の波長を制御する波長制御装置であって、
所定波長の光を出力する半導体レーザと、
入力される制御信号に応じて前記半導体レーザの波長を制御する波長制御部と、
周期性を有する周期信号を発生する周期信号源と、
前記周期信号源から出力される周期信号を分周して第1のパイロット信号を出力するパイロット信号源と、
前記周期信号と所定のバイアス値を重畳した電流信号で前記半導体レーザを駆動する電流源と、
前記周期信号の極性を反転させる極性反転部と、
前記極性反転部から出力された信号とデータと前記第1のパイロット信号とを多重する多重部と、
前記多重部から出力された信号により前記半導体レーザから出力される光を強度変調する強度変調部と、
前記強度変調部から出力される光信号を波長に応じた透過率で透過する光フィルタ手段と、
前記光フィルタ手段を透過した光信号を電気信号に変換する光電気変換部と、
前記光電気変換部より出力される電気信号に基づき、前記制御信号を前記波長制御部に送る制御信号検出部とを備え、
前記制御信号検出部は、
前記光電気変換部から出力された電気信号から、前記周期信号と同じ周期を有する透過率微分信号を抽出する、第1のバンドパスフィルタと、
前記光電気変換部から出力された電気信号から、前記第1のパイロット信号と同じ周期を有する第2のパイロット信号を抽出する、第2のバンドパスフィルタと、
前記第2のパイロット信号を逓倍し、前記透過率微分信号と同じ周期を有する第3のパイロット信号に変換し出力する周波数逓倍部と、
前記透過率微分信号と、前記第3のパイロット信号とを乗算する乗算部と、
前記乗算部から出力された信号の直流レベルを抽出し、前記制御信号として出力するローパスフィルタとを含む、波長制御装置。 - 光信号の波長を制御する波長制御装置であって、
所定波長の光を出力する半導体レーザと、
入力される制御信号に応じて前記半導体レーザの波長を制御する波長制御部と、
周期性を有する周期信号を発生する周期信号源と、
前記周期信号と所定のバイアス値を重畳した電流信号で前記半導体レーザを駆動する電流源と、
前記周期信号の極性を反転させる極性反転部と、
前記極性反転部から出力された信号とデータとを多重する多重部と、
前記多重部から出力された信号により前記半導体レーザから出力される光を強度変調する強度変調部と、
前記強度変調部から出力される光信号を波長に応じた透過率で透過する光フィルタ手段と、
前記光フィルタ手段を透過した光信号を電気信号に変換する光電気変換部と、
前記光電気変換部より出力される電気信号から前記周期信号と同じ周期を有する信号を抽出し、前記周期信号と同じ周期を有する信号の振幅とあらかじめ設定した所定値との差分を求め、前記差分の正負に応じた制御信号を前記波長制御部に送る制御信号検出部とを備え、
前記強度変調部の出力光において、前記周期信号による強度変調成分と、前記極性反転部の出力信号による強度変調成分とが一部だけ打ち消しあうように、前記半導体レーザおよび前記強度変調部の変調度が設定され、
前記波長制御部は、前記制御信号に応じて前記半導体レーザの出力波長の制御方向を決 定し、前記制御信号検出部で検出される前記周期信号と同じ周期を有する信号の振幅が前記所定値となるように前記半導体レーザの出力波長を制御することを特徴とする、波長制御装置。 - 光信号の波長を制御する波長制御方法であって、
所定の周期信号によって光信号の波長を変調し、
前記周期信号を分周して得られる第1のパイロット信号と、データとによって光信号の強度を変調し、
変調された光信号を光フィルタで抽出し、
抽出された光信号を光電気変換し、
光電気変換された信号から、前記周期信号と同じ周期を有する透過率微分信号と、前記第1のパイロット信号と同じ周期を有する第2のパイロット信号とを抽出し、
前記第2のパイロット信号を逓倍し、前記透過率微分信号と同じ周期を有する第3のパイロット信号に変換し、
前記透過率微分信号と前記第3のパイロット信号を乗算して得られる信号の直流レベルに基づき光信号の中心波長を制御する波長制御方法。 - 波長の異なる光信号を波長分割多重技術を用いて伝送する波長分割多重伝送システムであって、
所定波長の光を出力する半導体レーザと、
入力される制御信号に応じて前記半導体レーザの波長を制御する波長制御部と、
周期性を有する周期信号を発生する周期信号源と、
前記周期信号源から出力される周期信号を分周して第1のパイロット信号を出力するパイロット信号源と、
前記周期信号と所定のバイアス値を重畳した電流信号で前記半導体レーザを駆動する電流源と、
前記周期信号の極性を反転させる極性反転部と、
前記極性反転部から出力された信号とデータと前記第1のパイロット信号とを多重する多重部と、
前記多重部から出力された信号により前記半導体レーザから出力される光を強度変調する強度変調部と、
前記強度変調部から出力された光信号を、該光信号とは波長の異なる他の光信号と合波する波長多重部と、
前記波長多重部で合波された光信号を伝播させる光伝送路と、
前記光伝送路中を伝播した光信号の中から前記強度変調部から出力された光信号を分離する波長分離部と、
前記波長多重部または前記波長分離部の透過特性に応じて抽出された光信号を電気信号に変換する光電気変換部と、
前記光電気変換部より出力される電気信号に基づき、前記制御信号を前記波長制御部に送る制御信号検出部とを備え、
前記制御信号検出部は、
前記光電気変換部から出力された電気信号から、前記周期信号と同じ周期を有する透過率微分信号を抽出する、第1のバンドパスフィルタと、
前記光電気変換部から出力された電気信号から、前記第1のパイロット信号と同じ周期を有する第2のパイロット信号を抽出する、第2のバンドパスフィルタと、
前記第2のパイロット信号を逓倍し、前記透過率微分信号と同じ周期を有する第3のパイロット信号に変換し出力する周波数逓倍部と、
前記透過率微分信号と、前記第3のパイロット信号とを乗算する乗算部と、
前記乗算部から出力された信号の直流レベルを抽出し、前記制御信号として出力するローパスフィルタとを含む、波長分割多重伝送システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056086A JP4150193B2 (ja) | 2002-03-01 | 2002-03-01 | 波長制御装置及び波長制御方法 |
US10/373,699 US6891995B2 (en) | 2002-03-01 | 2003-02-27 | Wavelength division multiplex transmission system |
CN03110725.7A CN1450732A (zh) | 2002-03-01 | 2003-02-28 | 波长复用传输系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056086A JP4150193B2 (ja) | 2002-03-01 | 2002-03-01 | 波長制御装置及び波長制御方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003258373A JP2003258373A (ja) | 2003-09-12 |
JP2003258373A5 JP2003258373A5 (ja) | 2005-08-25 |
JP4150193B2 true JP4150193B2 (ja) | 2008-09-17 |
Family
ID=28666753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002056086A Expired - Fee Related JP4150193B2 (ja) | 2002-03-01 | 2002-03-01 | 波長制御装置及び波長制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4150193B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4652723B2 (ja) * | 2004-06-01 | 2011-03-16 | 三菱電機株式会社 | 光分岐挿入装置、光分岐挿入装置体、波長多重伝送システム及び波長多重伝送システムの制御方法 |
JP5030205B2 (ja) * | 2005-12-01 | 2012-09-19 | 日本電信電話株式会社 | 波長安定化装置および波長安定化方法 |
JP2007158251A (ja) * | 2005-12-08 | 2007-06-21 | Nippon Telegr & Teleph Corp <Ntt> | 波長安定化装置及び波長安定化方法 |
JP2008288389A (ja) * | 2007-05-17 | 2008-11-27 | Nippon Telegr & Teleph Corp <Ntt> | 波長安定化装置 |
US8718476B2 (en) * | 2008-02-27 | 2014-05-06 | Xtera Communications, Inc. | Tunable optical discriminator |
SE534444C2 (sv) * | 2008-10-28 | 2011-08-23 | Syntune Ab | Kommunikationssystem innefattande en avstämbar laser. |
JP6499516B2 (ja) * | 2015-06-02 | 2019-04-10 | 日本電信電話株式会社 | 光送受信システム |
-
2002
- 2002-03-01 JP JP2002056086A patent/JP4150193B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003258373A (ja) | 2003-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496710B1 (ko) | 주입된 비간섭성 광에 파장 잠김된 광원을 이용한 양방향파장분할다중방식 수동형 광 네트워크 | |
US6891995B2 (en) | Wavelength division multiplex transmission system | |
CN101247199A (zh) | 波长漂移检测装置、波长锁定系统及其方法 | |
US8670665B2 (en) | Optical apparatus using polarized orthogonal control | |
KR100431195B1 (ko) | 음향광학 파장가변 필터를 이용한 다중파장 고정방법 및장치 | |
US20020018213A1 (en) | Wavelength dispersion measuring device and a method thereof | |
JP5786565B2 (ja) | 光多重装置および光ネットワークシステム | |
JP2005277686A (ja) | 波長多重光伝送システム及びそれにおける送信波長制御方法 | |
JP2003060578A (ja) | 光送信機、光受信機及び光波長多重システム | |
JP6379455B2 (ja) | 周波数変調信号検出器及び光受信装置 | |
JP4150193B2 (ja) | 波長制御装置及び波長制御方法 | |
US20120002962A1 (en) | Wdm signal light monitoring apparatus, wdm system and wdm signal light monitoring method | |
CN107735963B (zh) | 通信装置、通信方法和通信系统 | |
JP4680223B2 (ja) | 波長分散測定装置 | |
JP2005079833A (ja) | 分散補償制御方法及び装置並びに光伝送方法及びシステム | |
JP4331949B2 (ja) | 波長多重光伝送装置 | |
JP5030205B2 (ja) | 波長安定化装置および波長安定化方法 | |
JP2003258373A5 (ja) | ||
JP4176659B2 (ja) | 自動分散補償装置 | |
JP4076928B2 (ja) | 自動分散補償装置 | |
JP2007158251A (ja) | 波長安定化装置及び波長安定化方法 | |
JP2018157247A (ja) | 障害検出装置および障害検出方法 | |
KR100994981B1 (ko) | 광신호 분산 조절 장치 | |
JPH10224829A (ja) | 波長多重/分離装置 | |
JPH10200482A (ja) | 光制御信号伝送装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080603 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080627 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |