[go: up one dir, main page]

JP4147930B2 - Vapor compression refrigerator - Google Patents

Vapor compression refrigerator Download PDF

Info

Publication number
JP4147930B2
JP4147930B2 JP2002366793A JP2002366793A JP4147930B2 JP 4147930 B2 JP4147930 B2 JP 4147930B2 JP 2002366793 A JP2002366793 A JP 2002366793A JP 2002366793 A JP2002366793 A JP 2002366793A JP 4147930 B2 JP4147930 B2 JP 4147930B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
frost
refrigerant
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002366793A
Other languages
Japanese (ja)
Other versions
JP2004198027A (en
Inventor
誠司 伊藤
素弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002366793A priority Critical patent/JP4147930B2/en
Publication of JP2004198027A publication Critical patent/JP2004198027A/en
Application granted granted Critical
Publication of JP4147930B2 publication Critical patent/JP4147930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気圧縮式冷凍機に関するもので、高圧(高温)側で発生する温熱を利用する空調装置や給湯器等に用いて有効である。
【0002】
【従来の技術】
蒸気圧縮式冷凍機では、低温(低圧)側の熱交換器にて冷媒を蒸発させて吸熱して冷熱を生成し、高温(高圧)側の熱交換器にて低温側熱交換器にて吸熱した熱量、及びポンプ手段をなす圧縮機の圧縮仕事相当の熱量を放熱して温熱を生成している。
【0003】
しかし、低温側熱交換器の温度は雰囲気温度より低いため、低温側熱交換器の表面に霜が発生(着霜)してしまう。
【0004】
そこで、従来は、低温側熱交換器の雰囲気温度(雰囲気の乾球温度)と低温側熱交換器から流出する冷媒の温度とに基づいて低温側熱交換器の表面に霜が発生したか否かを判定し、霜が発生したことを判定したときには、圧縮機から吐出した高温の冷媒を低温側熱交換器に流入させることにより低温側熱交換器を内側から加熱して低温側熱交換器の表面に発生した霜を除去していた(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2002−174474号公報
【0006】
【発明が解決しようとする課題】
ところで、低温側熱交換器の表面に発生する霜は、低温側熱交換器の表面に発生した凝縮水が凝固した(凍った)ものであるので、雰囲気温度が水の凝固点以下であっても、凝縮水が発生しなければ霜は発生しない。逆に、低温側熱交換器の表面に凝縮水が発生しても、雰囲気温度が凝固点より高いときには、霜は発生しない。
【0007】
したがって、低温側熱交換器の雰囲気温度及び低温側熱交換器から流出する冷媒の温度のみから低温側熱交換器の表面に霜が発生し得るか否かを予測することはできない。このため、特許文献1に記載の検出方法にて着霜を判定したときには、既に低温側熱交換器の表面に多量の霜が着霜してまっているおそれが高い。
【0008】
本発明は、上記点に鑑み、第1には、従来と異なる新規な蒸気圧縮式冷凍機を提供し、第2には、低温側熱交換器の表面に多量の霜が着霜してまう前に着霜を判定することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、低温側雰囲気である室外の空気中に配置され、冷媒と雰囲気とを熱交換させる低温側熱交換器(3)と、高温側に配置され、冷媒と水とを熱交換させる高温側熱交換器(2)と、低温側熱交換器(3)と高温側熱交換器(2)との間で冷媒を循環させるポンプ手段(1)と、低温側熱交換器(3)の表面に霜が発生し得る状況にあるか否か判定する着霜予測手段と、着霜予測手段により低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定されたときに、ポンプ手段(1)の作動を制御する着霜判定時ポンプ制御手段とを備え、
高温側熱交換器(2)にて熱交換した水は、室内に吹き出す空気を加熱する熱源として用いられ、着霜予測手段は、低温側熱交換器(3)から流出する冷媒の温度(THO)が、室外空気の相対湿度および室外空気の温度から算出される室外空気の露点温度(Tf)未満であるときであって、かつ、低温側熱交換器(3)から流出する冷媒の温度(THO)が水の凝固点以下であるときに、低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定し、
着霜予測手段により低温側熱交換器(3)の表面に霜が発生し得る状況にないと判定されたときには、ポンプ手段(1)の目標回転数(IVO)は、高温側熱交換器(2)にて加熱された水の温度が目標吹出温度(TAO)に基づいて算出された目標水温(TWO)となるような値に決定され、目標吹出温度(TAO)は、室外空気の温度、室内空気の温度、室内に注がれる日射量および室内の設定温度に基づいて算出されており、着霜予測手段により低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定されたときには、着霜判定時ポンプ制御手段が、着霜予測手段により低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定される前の目標回転数(IVO)から予め定めた所定値(β)を減算した値に、目標回転数(IVO)を変更することを特徴とする。
【0010】
これにより、低温側熱交換器の雰囲気温度及び低温側熱交換器から流出する冷媒の温度のみから低温側熱交換器の表面に霜が発生し得るか否かを予測する手法に比べて、低温側熱交換器の表面に多量の霜が着霜してまう前に着霜を判定することができ得る
【0014】
さらに、吸熱効率が大きく低下することを抑制しながら、除霜運転が行われる頻度を低減することができるので、蒸気圧縮式冷凍機の運転効率を向上させることができる。
【0015】
請求項に記載の発明では、冷媒として二酸化炭素が用いられていることを特徴とするものである。
【0016】
請求項に記載の発明では、高圧側の冷媒圧力を冷媒の臨界圧力以上まで上昇させることを特徴とするものである。
【0020】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0021】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る蒸気圧縮式冷凍機を、二酸化炭素を冷媒とする電気自動車用の空調装置に適用したものであって、図1は本実施形態に係る車両用空調装置の模式図である。
【0022】
なお、本実施形態に係る電気自動車は、酸素と水素とを化学反応させることにより発電する燃料電池(FCスタック)20から走行用電動モータ(図示せず。)に電力を供給するものであり、ラジエータ21は燃料電池20を加熱又は冷却するための冷却水と外気とを熱交換して冷却水を冷却する熱交換器であり、ポンプ22は冷却水を循環させる電動ポンプである。
【0023】
圧縮機1は冷媒を吸入圧縮するポンプ手段であり、本実施形態では、インバータ制御方式の電動圧縮機を採用している。第1室外熱交換器2は圧縮機1から吐出した冷媒と燃料電池20から流出した冷却水とを熱交換する熱交換器であり、第2室外熱交換器3は冷媒と室外空気とを熱交換する熱交換器である。
【0024】
なお、図1では、第1室外熱交換器2において冷媒と冷却水とは並行流となっているが、実際の第1室外熱交換器2では、両者を対向流として熱交換効率を高めている。
【0025】
室内熱交換器4は室内に吹き出す空気と冷媒とを熱交換する熱交換器であり、内部熱交換器5は圧縮機1に吸引される低圧冷媒と減圧される前の高圧冷媒とを熱交換する熱交換器である。
【0026】
切替弁6は圧縮機1から吐出した減圧される前の高圧冷媒を第2室外熱交換器3側に循環させる場合と室内熱交換器4側に循環させる場合とを切り替えるバルブである。第1、2減圧器7、8は冷媒を減圧膨脹させる減圧手段であり、両減圧器7、8の絞り開度は、電子制御装置(図示せず。)により制御される。
【0027】
そして、電子制御装置には、圧縮機1から吐出する冷媒の温度を検出する吐出冷媒温度センサ9a、圧縮機1から吐出する冷媒の圧力検出する吐出冷媒圧力センサ9b、第1室外熱交換器2から流出する冷媒の温度を検出する第1室外熱交換器冷媒温度センサ9c、第2室外熱交換器3から流出する冷媒の温度を検出する第2室外熱交換器冷媒温度センサ9d、室内熱交換器4から流出した冷媒の圧力を検出する室内熱交換器冷媒圧力センサ9e、室内熱交換器4から流出した冷媒の温度を検出する室内熱交換器冷媒温度センサ9f、第1室外熱交換器2に流入する冷却水の温度を検出する水温センサ9g、車室外空気温度を検出する外気温センサ9h、車室外空気の相対湿度を検出する外気湿度センサ9j、室内空気温度を検出する内気温センサ9k、室内に注がれる日射を検出する日射センサ9m、車室内空気の相対湿度を検出する内気湿度センサ9n、及び室内熱交換器4を通過した直後の空気温度を検出する室内熱交換器空気温度センサ9pの検出値が入力されている。
【0028】
なお、アキュムレータ10は、冷媒を気相冷媒と液相冷媒とに分離して余剰冷媒を液相冷媒として蓄えるとともに、気相冷媒を圧縮機1の吸入側に供給するものである。
【0029】
ところで、空調ケーシング11は、室内熱交換器4を収納して室内に吹き出す空気の通路を構成するもので、この空調ケーシング11内うち室内熱交換器4より空気流れ下流側には、冷却水を熱源として室内に吹き出す空気を加熱するヒータ12が配置されている。
【0030】
エアミックスドア13は、室内熱交換器4を通過した空気のうちヒータ12を通過して加熱される温風とヒータ12を迂回して流れる冷風との風量割合を調節することにより室内に吹き出す空気の温度を調節するものである。
【0031】
また、空調ケーシング11の最上流側には、空調ケーシング11内に導入する室内空気量と室外空気量と調節する内外気切換ユニット14、及び室内に空気を送風する送風機15が設けられ、空調ケーシング11の最下流側には、空気を吹き出させる吹出口を選択開閉する吹出モード切換装置(図示せず。)が設けられている。
【0032】
なお、圧縮機1の回転数、エアミックスドア13、内外気切換ユニット14、送風機15及び吹出モード切換装置も電子制御装置にて制御されている。
【0033】
次に、本実施形態の作動を述べる。
【0034】
1.冷房運転(図2参照)
外気温センサ9h、内気温センサ9k及び日射センサ9mの検出値、並びに乗員が設定入力した希望室内温度(設定温度)等に基づいて算出された目標吹出温度TAOが所定温度以下のときに実行されるもので、エアミックスドア13にてヒータ12のコア面を閉じて室内に流れ込む温風量を0とした状態で、冷媒を、圧縮機1→第1室外熱交換器2→第2減圧器8→切替弁6→第2室外熱交換器3→内部熱交換器5→第1減圧器7→室内熱交換器4→アキュムレータ10→内部熱交換器5→圧縮機1の順で循環させる。
【0035】
このとき、第2減圧器8にて冷媒が減圧されないように第2減圧器8の絞り開度を全開とするとともに、吐出冷媒圧力センサ9bの検出圧力が第2室外熱交換器冷媒温度センサ9dによって決定される目標高圧圧力Poとなるように第1減圧器7の絞り開度を制御することにより、室内熱交換器4にて室内に吹き出す空気から吸熱して蒸発した冷媒の熱を第1室外熱交換器2及び第2室外熱交換器3にて放熱する。
【0036】
なお、目標高圧圧力Poとは、蒸気圧縮式冷凍機の成績係数が略最大となる圧力であり、この目標高圧圧力Poは高圧側での放熱能力によって変化するため、冷房運転時では、第2室外熱交換器冷媒温度センサ9dの検出温度に基づいて決定する。
【0037】
また、室内熱交換器空気温度センサ9pの検出温度が目標吹出温度TAOとなるように圧縮機1の回転数が制御される。
【0038】
2.暖房運転(図3参照)
目標吹出温度TAOが所定温度以上であって、内気温センサ9kの検出温度が内気湿度センサ9nの検出湿度及び内気温センサ9kの検出温度から算出される露点温度より高いときに実行されるもので、エアミックスドア13にてヒータ12を迂回する空気通路を閉じた状態で、冷媒を、圧縮機1→第1室外熱交換器2→第2減圧器8→切替弁6→室内熱交換器4→第1減圧器7→内部熱交換器5→第2室外熱交換器3→切替弁6→アキュムレータ10→圧縮機1の順に循環させる。
【0039】
このとき、第2減圧器8にて冷媒が減圧されないように第2減圧器8の絞り開度を全開とするとともに、室内熱交換器冷媒圧力センサ9eの検出圧力が室内熱交換器冷媒温度センサ9fによって決定される目標高圧圧力Poとなるように第1減圧器7の絞り開度を制御することにより、第2室外熱交換器3にて室外空気から吸熱して蒸発した冷媒の熱を第1室外熱交換器2及び室内熱交換器4にて放熱する。このため、室内に吹き出す空気は室内熱交換器4及びヒータ12にて加熱されて室内に吹き出される。
【0040】
また、ヒータ12に供給される冷却水(温水)は、燃料電池20及び第1室外熱交換器2にて加熱されており、ヒータ12に供給される冷却水の温度は第1室外熱交換器2の加熱能力で決定されることから、本実施形態では、ヒータ12に供給される冷却水の温度が、目標吹出温度TAOにヒータ12での熱交換効率γを乗じた目標水温TWO(=TAO×γ)となるように圧縮機1の回転数を制御する。
【0041】
具体的には、目標水温TWOと水温センサ9gの検出温度との温度差、及び温度差の変化率からファジー理論に基づいて圧縮機1の回転数変化量Δfを決定するものである。
【0042】
なお、内部熱交換器5の圧縮機1側及び第1減圧器7側には、共に減圧後の冷媒が流れるため、実質的に熱交換が行われない。
【0043】
因みに、目標水温TWOと水温センサ9gの検出温度との温度差が所定温度以下のとき、又は水温センサ9gの検出温度が目標水温TWO以上であるときには、圧縮機1を停止して蒸気圧縮式冷凍機による暖房補助、つまり蒸気圧縮式冷凍機によってヒータ12に流入する冷却水を加熱することは行わない。
【0044】
3.除湿暖房
目標吹出温度TAOが所定温度以上であって、内気温センサ9kの検出温度が内気湿度センサ9nの検出湿度及び内気温センサ9kの検出温度から算出される露点温度より高いときに実行されるもので、エアミックスドア13にてヒータ12を迂回する空気通路を閉じた状態で、冷媒を暖房運転時と同様な経路で循環させる。
【0045】
具体的には、圧縮機1→第1室外熱交換器2→第2減圧器8→切替弁6→室内熱交換器4→第1減圧器7→内部熱交換器5→第2室外熱交換器3→切替弁6→アキュムレータ10→圧縮機1の順である。
【0046】
このとき、吐出冷媒圧力センサ9bの検出圧力が第1室外熱交換器冷媒温度センサ9cによって決定される目標高圧圧力Poとなるように第2減圧器8の絞り開度を制御することにより、第1室外熱交換器2にて冷却水を加熱して間接的に室内に吹き出す空気を加熱するとともに、室内熱交換器4にて冷媒を蒸発させて室内に吹き出す空気を冷却する。
【0047】
このため、室内熱交換器4にて除湿冷却された空気がヒータ12にて再加熱されるため、除湿しながら暖房を行うことができる。因みに、圧縮機1の制御は、暖房運転時と同じである。
【0048】
なお、暖房運転時及び除湿暖房運転時においては、第2室外熱交換器3が特許請求の範囲に記載された低温側熱交換器となり、第1室外熱交換器2特許請求の範囲に記載された高温側熱交換器となる。
【0049】
ところで、図4は暖房運転時及び除湿暖房運転時における空調装置の特徴的作動を示すフローチャートであり、以下、このフローチャートについて述べる。
【0050】
外気温センサ9h、内気温センサ9k及び日射センサ9mの検出値、並びに乗員が設定入力した希望室内温度(パネル入力)等に基づいて算出された目標吹出温度TAOを算出し(S110〜S130)、この目標吹出温度TAOから目標水温TWOを算出した後(S140)、目標水温TWOに基づいて圧縮機1の目標回転数IVOを算出する(S160)。
【0051】
次に、外気湿度センサ9j及び外気温センサ9hの検出温度(外気乾球温度)に基づいて、第2室外熱交換器3の雰囲気の露点温度Tfを算出し、第2室外熱交換器冷媒温度センサ9dの検出温度THOが露点温度Tf未満であるか否かを判定する(S170)。
【0052】
そして、検出温度THOが露点温度Tf未満であるときには、第2室外熱交換器3の表面に凝縮水が発生することから、検出温度THOが所定温度α、つまり水の凝固点(0℃)以下か否かを判定する(S180)。
【0053】
なお、露点温度Tfは、周知ごとく、相対湿度及び乾球温度が解れば、湿り空気線図(図5参照)から求めることができる。
【0054】
そして、検出温度THOが所定温度α以下のときには、第2室外熱交換器3の表面に霜が発生するおそれが非常に高いことから、S160にて決定した目標回転数IVOより低い回転数を目標圧縮機回転数IVOとして、アクチュエータ、つまり圧縮機1及び減圧機等を実際に稼動させる(S190、S200)。
【0055】
換言すれば、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定されたときには、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定される前に比べて、循環させる冷媒流量を減少させて蒸気圧縮式冷凍機の吸熱能力及び加熱能力を低下(セーブ)する。
【0056】
なお、検出温度THOと外気温度との温度差が所定温度差(例えば、20℃)以上となったときには、圧縮機1から吐出した高圧冷媒(ホットガス)を第2室外熱交換器3にに流入させることにより第2室外熱交換器3を内側から加熱して霜を除去する除霜を行う。
【0057】
次に、本実施形態の作用効果を述べる。
【0058】
本実施形態では、低温側雰囲気の温度及び相対湿度に基づいて露点温度を算出して低温側熱交換器をなす第2室外熱交換器3の表面に霜が発生し得る状況にあるか否か判定するので、低温側熱交換器の表面に多量の霜が着霜してまう前に着霜を判定することができ得る。
【0059】
また、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定されたときには、循環させる冷媒流量を減少させて蒸気圧縮式冷凍機の吸熱能力及び加熱能力を低下(セーブ)するので、着霜の進行速度を小さくすることができる。
【0060】
したがって、吸熱効率が大きく低下することを抑制しながら、除霜運転が行われる頻度を低減することができるので、蒸気圧縮式冷凍機の運転効率を向上させることができる。
【0061】
参考例
上述の実施形態では、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定されたときには、循環させる冷媒流量を減少させて蒸気圧縮式冷凍機の吸熱能力及び加熱能力を低下(セーブ)したが、参考例では、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定されたときには、蒸気圧縮式冷凍機による暖房補助を行うか行わないかのしきい値をなす温度を下げるものである。
【0062】
具体的には、図6のS195に示すように、第2室外熱交換器3の表面に霜が発生し得る状況にあると判定されたときには、目標水温TWOを低下させることにより蒸気圧縮式冷凍機による暖房補助を第1実施形態に比べて早めに停止させて、蒸気圧縮式冷凍機の吸熱能力及び加熱能力を低下(セーブ)させるものである。
【0063】
なお、S195及び水温センサ9gの検出温度が所定温度(例えば、60℃)以上となったときに除霜運転を行う点以外は第1実施形態と同じである。
【0064】
ところで、図1では、燃料電池20はラジエータ21及び第2室外熱交換器3とは別の部位に配置されているが、実装状態では、車両前側から順に、第2室外熱交換器3、ラジエータ21、燃料電池20の順で配置されている。このため、車両の走行風は、第2室外熱交換器3及びラジエータ21を通過して燃料電池20に当たる。
【0065】
これにより、本参考例では、第1実施形態に比べて第2室外熱交換器3の表面に多くの霜が発生するものの、第2室外熱交換器3の表面に多くの霜が発生すると、燃料電池20に当たる走行風量が減少するので、第2室外熱交換器3に霜が発生する以前に比べて冷却水温度が上昇し、蒸気圧縮式冷凍機による暖房補助を停止しても、燃料電池20にて加熱された冷却水のみにて室内に吹き出す空気を十分に加熱することができる。
【0066】
延いては、蒸気圧縮式冷凍機の稼働率を低減することができるので、蒸気圧縮式冷凍機の運転効率を向上させることができる。
【0067】
(その他の実施形態)
上述の実施形態では、運転時に発熱する車両機器として燃料電池20を用いが、本発明はこれに限定されるものではく、運転時に発熱する車両機器として、例えば内燃機関としてもよい。
【0068】
また、上述の実施形態では、高圧(高温)側で発生する温熱を利用する空調装置に本発明を適用したが、冷凍庫等の低温(低圧)側で発生する冷熱を利用する蒸気圧縮式冷凍機にも適用することができる。
【0069】
また、上述の実施形態では、高圧側の冷媒圧力を冷媒の臨界圧力以上まで上昇させて必要な能力を得ていたが、本発明はこれに限定されるものではなく、例えば冷媒をフロンとして、高圧側の冷媒圧力を冷媒の臨界圧力未満としてもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係る空調装置の模式図である。
【図2】本発明の実施形態に係る空調装置の冷媒流れを示す模式図である。
【図3】本発明の実施形態に係る空調装置の冷媒流れを示す模式図である。
【図4】本発明の第1実施形態に係る空調装置の制御を示すフローチャートである。
【図5】湿り線図である。
【図6】 参考例に係る空調装置の制御を示すフローチャートである。
【符号の説明】
1…圧縮機、2…第1室外熱交換器、3…第2室外熱交換器、
4…室内熱交換器、5…内部熱交換器、9h…外気温センサ、
9j…外気湿度センサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vapor compression refrigerator, and is effective for use in an air conditioner, a water heater, or the like that uses the heat generated on the high pressure (high temperature) side.
[0002]
[Prior art]
In a vapor compression refrigerator, the refrigerant is evaporated in a low-temperature (low-pressure) side heat exchanger to absorb heat and generate cold, and the high-temperature (high-pressure) side heat exchanger absorbs heat in the low-temperature side heat exchanger. The generated heat amount and the heat amount corresponding to the compression work of the compressor constituting the pump means are radiated to generate warm heat.
[0003]
However, since the temperature of the low-temperature side heat exchanger is lower than the ambient temperature, frost is generated (frosted) on the surface of the low-temperature side heat exchanger.
[0004]
Therefore, conventionally, whether or not frost has occurred on the surface of the low temperature side heat exchanger based on the ambient temperature of the low temperature side heat exchanger (the dry bulb temperature of the atmosphere) and the temperature of the refrigerant flowing out of the low temperature side heat exchanger. When it is determined that frost has occurred, the low-temperature side heat exchanger is heated from the inside by allowing the high-temperature refrigerant discharged from the compressor to flow into the low-temperature side heat exchanger. The frost which generate | occur | produced on the surface of was removed (for example, refer patent document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-174474
[Problems to be solved by the invention]
By the way, the frost generated on the surface of the low-temperature side heat exchanger is obtained by condensing (frozen) the condensed water generated on the surface of the low-temperature side heat exchanger, so even if the ambient temperature is below the freezing point of water. If no condensed water is generated, frost will not be generated. Conversely, even if condensed water is generated on the surface of the low temperature side heat exchanger, frost does not occur when the ambient temperature is higher than the freezing point.
[0007]
Therefore, it cannot be predicted whether or not frost can be generated on the surface of the low temperature side heat exchanger only from the ambient temperature of the low temperature side heat exchanger and the temperature of the refrigerant flowing out of the low temperature side heat exchanger. Therefore, when it is determined the frost by detecting method described in Patent Document 1 has a high possibility that already a large amount of frost on the surface of the low-temperature heat exchanger are waiting to frosted.
[0008]
In view of the above point, in the first, provides unconventional new vapor compression refrigerating machine, the second, a large amount of frost on the surface of the low-temperature heat exchanger is by frost The purpose is to determine frost formation before rolling.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a vapor compression refrigerator that moves the heat on the low temperature side to the high temperature side according to the invention described in claim 1, and is in outdoor air that is a low temperature side atmosphere. A low-temperature side heat exchanger (3) arranged to exchange heat between the refrigerant and the atmosphere, a high-temperature side heat exchanger (2) arranged on the high-temperature side to exchange heat between the refrigerant and water, and a low-temperature side heat exchanger It is determined whether frost can be generated on the surface of the pump means (1) for circulating the refrigerant between (3) and the high temperature side heat exchanger (2) and the low temperature side heat exchanger (3). Frost formation predicting means, and frost formation for controlling the operation of the pump means (1) when it is determined by the frost prediction means that the frost can be generated on the surface of the low temperature side heat exchanger (3). A pump control means for determination,
The water subjected to heat exchange in the high temperature side heat exchanger (2) is used as a heat source for heating the air blown into the room, and the frost prediction means determines the temperature of the refrigerant flowing out from the low temperature side heat exchanger (3) (THO). ) Is lower than the dew point temperature (Tf) of the outdoor air calculated from the relative humidity of the outdoor air and the temperature of the outdoor air, and the temperature of the refrigerant flowing out from the low temperature side heat exchanger (3) ( When (THO) is below the freezing point of water, it is determined that frost can be generated on the surface of the low temperature side heat exchanger (3) ,
When it is determined by the frost formation predicting means that there is no situation where frost can be generated on the surface of the low temperature side heat exchanger (3), the target rotational speed (IVO) of the pump means (1) is set to the high temperature side heat exchanger ( 2), the temperature of the water heated in step 2) is determined to be a target water temperature (TWO) calculated based on the target outlet temperature (TAO), and the target outlet temperature (TAO) is the outdoor air temperature, It is calculated on the basis of the temperature of the indoor air, the amount of solar radiation poured into the room, and the set temperature in the room, and when frost can be generated on the surface of the low temperature side heat exchanger (3) by the frost formation predicting means. When it is determined, the target rotational speed (IVO) before the frost determination determination pump control means determines that the frost prediction means determines that frost can be generated on the surface of the low temperature side heat exchanger (3). To the value obtained by subtracting a predetermined value (β) from And changes the IVO).
[0010]
As a result, compared with the method for predicting whether or not frost can be generated on the surface of the low-temperature side heat exchanger only from the ambient temperature of the low-temperature side heat exchanger and the temperature of the refrigerant flowing out of the low-temperature side heat exchanger, a large amount of frost on the surface of the side heat exchanger may be able to determine the frosting before Mau to frosted [0014]
Furthermore , since it is possible to reduce the frequency at which the defrosting operation is performed while suppressing a significant decrease in the endothermic efficiency, it is possible to improve the operating efficiency of the vapor compression refrigerator.
[0015]
The invention according to claim 2 is characterized in that carbon dioxide is used as the refrigerant.
[0016]
The invention according to claim 3 is characterized in that the refrigerant pressure on the high-pressure side is increased to a critical pressure or more of the refrigerant.
[0020]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the vapor compression refrigerator according to the present invention is applied to an air conditioner for an electric vehicle using carbon dioxide as a refrigerant, and FIG. 1 is a schematic diagram of the vehicle air conditioner according to the present embodiment. FIG.
[0022]
The electric vehicle according to the present embodiment supplies electric power to a traveling electric motor (not shown) from a fuel cell (FC stack) 20 that generates electricity by chemically reacting oxygen and hydrogen. The radiator 21 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water for heating or cooling the fuel cell 20 and the outside air, and the pump 22 is an electric pump that circulates the cooling water.
[0023]
The compressor 1 is a pump unit that sucks and compresses refrigerant. In this embodiment, an inverter-controlled electric compressor is employed. The first outdoor heat exchanger 2 is a heat exchanger that exchanges heat between the refrigerant discharged from the compressor 1 and the cooling water flowing out of the fuel cell 20, and the second outdoor heat exchanger 3 heats the refrigerant and outdoor air. It is a heat exchanger to exchange.
[0024]
In FIG. 1, the refrigerant and the cooling water are in parallel flow in the first outdoor heat exchanger 2. However, in the actual first outdoor heat exchanger 2, the heat exchange efficiency is improved by using both as a counterflow. Yes.
[0025]
The indoor heat exchanger 4 is a heat exchanger that exchanges heat between the air blown into the room and the refrigerant, and the internal heat exchanger 5 exchanges heat between the low-pressure refrigerant sucked into the compressor 1 and the high-pressure refrigerant before being decompressed. Heat exchanger.
[0026]
The switching valve 6 is a valve that switches between a case where the high pressure refrigerant discharged from the compressor 1 is circulated to the second outdoor heat exchanger 3 side and a case where it is circulated to the indoor heat exchanger 4 side. The first and second decompressors 7 and 8 are decompressing means for decompressing and expanding the refrigerant, and the throttle opening degree of both decompressors 7 and 8 is controlled by an electronic control device (not shown).
[0027]
The electronic control unit includes a discharge refrigerant temperature sensor 9a that detects the temperature of the refrigerant discharged from the compressor 1, a discharge refrigerant pressure sensor 9b that detects the pressure of the refrigerant discharged from the compressor 1, and the first outdoor heat exchanger 2. A first outdoor heat exchanger refrigerant temperature sensor 9c for detecting the temperature of the refrigerant flowing out of the second outdoor heat exchanger, a second outdoor heat exchanger refrigerant temperature sensor 9d for detecting the temperature of the refrigerant flowing out of the second outdoor heat exchanger 3, and an indoor heat exchange. An indoor heat exchanger refrigerant pressure sensor 9e for detecting the pressure of the refrigerant flowing out of the heat exchanger 4, an indoor heat exchanger refrigerant temperature sensor 9f for detecting the temperature of the refrigerant flowing out of the indoor heat exchanger 4, and the first outdoor heat exchanger 2 Water temperature sensor 9g for detecting the temperature of the cooling water flowing into the vehicle, outside air temperature sensor 9h for detecting the outside air temperature of the passenger compartment, outside air humidity sensor 9j for detecting the relative humidity of the outside air of the passenger compartment, and the inside air temperature for detecting the indoor air temperature. Sensor 9k, solar radiation sensor 9m for detecting solar radiation poured into the room, indoor air humidity sensor 9n for detecting the relative humidity of the air in the passenger compartment, and an indoor heat exchanger for detecting the air temperature immediately after passing through the indoor heat exchanger 4 The detection value of the air temperature sensor 9p is input.
[0028]
The accumulator 10 separates the refrigerant into a gas phase refrigerant and a liquid phase refrigerant, stores the surplus refrigerant as a liquid phase refrigerant, and supplies the gas phase refrigerant to the suction side of the compressor 1.
[0029]
By the way, the air conditioning casing 11 constitutes a passage of air that houses the indoor heat exchanger 4 and blows out into the room. Cooling water is supplied to the downstream side of the air flow from the indoor heat exchanger 4 in the air conditioning casing 11. A heater 12 for heating the air blown into the room as a heat source is arranged.
[0030]
The air mix door 13 is an air blown into the room by adjusting the air volume ratio between the warm air heated by passing through the heater 12 and the cool air flowing around the heater 12 out of the air that has passed through the indoor heat exchanger 4. The temperature is adjusted.
[0031]
Further, on the most upstream side of the air conditioning casing 11, an indoor / outdoor air switching unit 14 that adjusts the amount of indoor air introduced into the air conditioning casing 11 and the amount of outdoor air, and a blower 15 that blows air into the room are provided. 11 is provided with a blowing mode switching device (not shown) for selectively opening and closing a blow-out port for blowing air.
[0032]
The number of rotations of the compressor 1, the air mix door 13, the inside / outside air switching unit 14, the blower 15, and the blowing mode switching device are also controlled by the electronic control unit.
[0033]
Next, the operation of this embodiment will be described.
[0034]
1. Cooling operation (see Fig. 2)
This is executed when the target air temperature TAO calculated based on the detected values of the outside air temperature sensor 9h, the inside air temperature sensor 9k and the solar radiation sensor 9m, the desired room temperature (set temperature) set and input by the occupant, etc. is below a predetermined temperature. In the state where the core surface of the heater 12 is closed by the air mix door 13 and the amount of warm air flowing into the room is set to 0, the refrigerant is changed from the compressor 1 to the first outdoor heat exchanger 2 to the second decompressor 8. -> Switching valve 6-> second outdoor heat exchanger 3-> internal heat exchanger 5-> first decompressor 7-> indoor heat exchanger 4-> accumulator 10-> internal heat exchanger 5-> compressor 1 are circulated in this order.
[0035]
At this time, the throttle opening of the second pressure reducer 8 is fully opened so that the refrigerant is not depressurized by the second pressure reducer 8, and the detected pressure of the discharged refrigerant pressure sensor 9b is the second outdoor heat exchanger refrigerant temperature sensor 9d. By controlling the throttle opening of the first pressure reducer 7 so as to be the target high pressure Po determined by the above, the heat of the refrigerant that has absorbed heat and evaporated from the air blown into the room by the indoor heat exchanger 4 is the first. Heat is radiated by the outdoor heat exchanger 2 and the second outdoor heat exchanger 3.
[0036]
Note that the target high pressure Po is a pressure at which the coefficient of performance of the vapor compression refrigerator is substantially maximized, and this target high pressure Po changes depending on the heat dissipation capacity on the high pressure side. This is determined based on the temperature detected by the outdoor heat exchanger refrigerant temperature sensor 9d.
[0037]
Moreover, the rotation speed of the compressor 1 is controlled so that the detected temperature of the indoor heat exchanger air temperature sensor 9p becomes the target blowing temperature TAO.
[0038]
2. Heating operation (see Fig. 3)
This is executed when the target outlet temperature TAO is equal to or higher than a predetermined temperature and the detected temperature of the internal air temperature sensor 9k is higher than the dew point temperature calculated from the detected humidity of the internal air humidity sensor 9n and the detected temperature of the internal air temperature sensor 9k. In the state where the air passage that bypasses the heater 12 is closed by the air mix door 13, the refrigerant is changed to the compressor 1 → the first outdoor heat exchanger 2 → the second pressure reducer 8 → the switching valve 6 → the indoor heat exchanger 4. -> First decompressor 7-> internal heat exchanger 5-> second outdoor heat exchanger 3-> switching valve 6-> accumulator 10-> compressor 1
[0039]
At this time, the throttle opening of the second decompressor 8 is fully opened so that the refrigerant is not decompressed by the second decompressor 8, and the detected pressure of the indoor heat exchanger refrigerant pressure sensor 9e is the indoor heat exchanger refrigerant temperature sensor. By controlling the throttle opening of the first pressure reducer 7 so that the target high pressure Po determined by 9f is reached, the second outdoor heat exchanger 3 absorbs heat from the outdoor air and evaporates the heat of the refrigerant evaporated. Heat is radiated by the outdoor heat exchanger 2 and the indoor heat exchanger 4. For this reason, the air blown into the room is heated by the indoor heat exchanger 4 and the heater 12 and blown into the room.
[0040]
The cooling water (hot water) supplied to the heater 12 is heated by the fuel cell 20 and the first outdoor heat exchanger 2, and the temperature of the cooling water supplied to the heater 12 is the first outdoor heat exchanger. In this embodiment, the temperature of the cooling water supplied to the heater 12 is determined by multiplying the target blowing temperature TAO by the heat exchange efficiency γ in the heater 12 in this embodiment. The number of rotations of the compressor 1 is controlled so as to satisfy (× γ).
[0041]
Specifically, the rotational speed change amount Δf of the compressor 1 is determined based on the fuzzy theory from the temperature difference between the target water temperature TWO and the detected temperature of the water temperature sensor 9g and the change rate of the temperature difference.
[0042]
In addition, since the refrigerant | coolant after pressure reduction flows into the compressor 1 side and the 1st pressure reduction device 7 side of the internal heat exchanger 5 substantially, heat exchange is not performed.
[0043]
Incidentally, when the temperature difference between the target water temperature TWO and the detected temperature of the water temperature sensor 9g is equal to or lower than the predetermined temperature, or when the detected temperature of the water temperature sensor 9g is equal to or higher than the target water temperature TWO, the compressor 1 is stopped and the vapor compression refrigeration is performed. Heating assistance by the machine, that is, heating the cooling water flowing into the heater 12 by the vapor compression refrigerator is not performed.
[0044]
3. This is executed when the dehumidifying and heating target blowing temperature TAO is equal to or higher than a predetermined temperature and the detected temperature of the internal air temperature sensor 9k is higher than the dew point temperature calculated from the detected humidity of the internal air humidity sensor 9n and the detected temperature of the internal air temperature sensor 9k. Therefore, the refrigerant is circulated through the same route as in the heating operation with the air passage that bypasses the heater 12 closed by the air mix door 13.
[0045]
Specifically, the compressor 1 → the first outdoor heat exchanger 2 → the second pressure reducer 8 → the switching valve 6 → the indoor heat exchanger 4 → the first pressure reducer 7 → the internal heat exchanger 5 → the second outdoor heat exchange. The order of the unit 3 → the switching valve 6 → the accumulator 10 → the compressor 1 is obtained.
[0046]
At this time, by controlling the throttle opening of the second decompressor 8 so that the detected pressure of the discharged refrigerant pressure sensor 9b becomes the target high pressure Po determined by the first outdoor heat exchanger refrigerant temperature sensor 9c, The cooling water is heated by the outdoor heat exchanger 2 to heat the air indirectly blown into the room, and the refrigerant is evaporated by the indoor heat exchanger 4 to cool the air blown into the room.
[0047]
For this reason, since the air dehumidified and cooled by the indoor heat exchanger 4 is reheated by the heater 12, heating can be performed while dehumidifying. Incidentally, the control of the compressor 1 is the same as in the heating operation.
[0048]
In the heating operation and the dehumidifying heating operation, the second outdoor heat exchanger 3 serves as the low temperature side heat exchanger described in the claims, and the first outdoor heat exchanger 2 is described in the claims. It becomes the high temperature side heat exchanger made.
[0049]
FIG. 4 is a flowchart showing the characteristic operation of the air conditioner during heating operation and dehumidifying heating operation. This flowchart will be described below.
[0050]
The target air temperature TAO calculated based on the detected values of the outside air temperature sensor 9h, the inside air temperature sensor 9k and the solar radiation sensor 9m, the desired room temperature (panel input) set and input by the occupant, etc. is calculated (S110 to S130), After calculating the target water temperature TWO from the target outlet temperature TAO (S140), the target rotational speed IVO of the compressor 1 is calculated based on the target water temperature TWO (S160).
[0051]
Next, the dew point temperature Tf of the atmosphere of the second outdoor heat exchanger 3 is calculated based on the detected temperatures (outside air dry bulb temperature) of the outdoor air humidity sensor 9j and the outdoor air temperature sensor 9h, and the second outdoor heat exchanger refrigerant temperature is calculated. It is determined whether or not the detected temperature THO of the sensor 9d is lower than the dew point temperature Tf (S170).
[0052]
When the detected temperature THO is lower than the dew point temperature Tf, condensed water is generated on the surface of the second outdoor heat exchanger 3, so that the detected temperature THO is equal to or lower than the predetermined temperature α, that is, the freezing point (0 ° C.) of water. It is determined whether or not (S180).
[0053]
As is well known, the dew point temperature Tf can be obtained from a wet air diagram (see FIG. 5) if the relative humidity and the dry bulb temperature are known.
[0054]
When the detected temperature THO is equal to or lower than the predetermined temperature α, the possibility that frost is generated on the surface of the second outdoor heat exchanger 3 is very high. Therefore, the target rotational speed is lower than the target rotational speed IVO determined in S160. As the compressor rotation speed IVO, the actuator, that is, the compressor 1 and the decompressor are actually operated (S190, S200).
[0055]
In other words, when it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3, it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3. Compared to before, the refrigerant flow rate to be circulated is decreased to reduce (save) the heat absorption capability and heating capability of the vapor compression refrigerator.
[0056]
When the temperature difference between the detected temperature THO and the outside air temperature is equal to or greater than a predetermined temperature difference (for example, 20 ° C.), the high-pressure refrigerant (hot gas) discharged from the compressor 1 is transferred to the second outdoor heat exchanger 3. By making it flow in, the 2nd outdoor heat exchanger 3 is heated from the inside, and the defrost which removes frost is performed.
[0057]
Next, the function and effect of this embodiment will be described.
[0058]
In the present embodiment, whether or not the dew point temperature is calculated based on the temperature and the relative humidity of the low temperature side atmosphere and frost can be generated on the surface of the second outdoor heat exchanger 3 constituting the low temperature side heat exchanger. since the determination may be able to determine the frosting before Mau to frosted large amount of frost on the surface of the low-temperature heat exchanger.
[0059]
Further, when it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3, the refrigerant flow rate to be circulated is decreased to reduce the heat absorption capacity and heating capacity of the vapor compression refrigerator (save). Therefore, the progress speed of frost formation can be reduced.
[0060]
Therefore, since it is possible to reduce the frequency at which the defrosting operation is performed while suppressing a significant decrease in the endothermic efficiency, it is possible to improve the operating efficiency of the vapor compression refrigerator.
[0061]
( Reference example )
In the above-described embodiment, when it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3, the refrigerant flow rate to be circulated is decreased to increase the heat absorption capability and heating capability of the vapor compression refrigerator. In the reference example , when it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3, in the reference example , whether or not heating assistance is performed by the vapor compression refrigerator The temperature that forms the threshold value is lowered.
[0062]
Specifically, as shown in S195 of FIG. 6, when it is determined that frost can be generated on the surface of the second outdoor heat exchanger 3, the vapor compression refrigeration is performed by reducing the target water temperature TWO. Heating assistance by the machine is stopped earlier than in the first embodiment, and the heat absorption capacity and heating capacity of the vapor compression refrigerator are reduced (saved).
[0063]
In addition, it is the same as 1st Embodiment except the point which performs a defrost operation when the detection temperature of S195 and the water temperature sensor 9g becomes more than predetermined temperature (for example, 60 degreeC).
[0064]
By the way, in FIG. 1, although the fuel cell 20 is arrange | positioned in the site | part different from the radiator 21 and the 2nd outdoor heat exchanger 3, in the mounting state, it is the 2nd outdoor heat exchanger 3 and the radiator sequentially from the vehicle front side. 21 and the fuel cell 20 are arranged in this order. For this reason, the traveling wind of the vehicle hits the fuel cell 20 through the second outdoor heat exchanger 3 and the radiator 21.
[0065]
Thereby, in this reference example , although many frost generate | occur | produces on the surface of the 2nd outdoor heat exchanger 3 compared with 1st Embodiment, when many frost generate | occur | produces on the surface of the 2nd outdoor heat exchanger 3, Since the traveling air volume hitting the fuel cell 20 decreases, the fuel cell temperature increases even when the cooling water temperature rises compared to before the frost is generated in the second outdoor heat exchanger 3 and the heating assistance by the vapor compression refrigerator is stopped. The air blown into the room can be sufficiently heated only by the cooling water heated at 20.
[0066]
As a result, since the operating rate of the vapor compression refrigerator can be reduced, the operation efficiency of the vapor compression refrigerator can be improved.
[0067]
(Other embodiments)
In the above embodiments, using a fuel cell 20 as the vehicle equipment that generates heat during operation, the present invention is rather to be limited thereto, as the vehicle appliance to heat during operation, for example, it may be an internal combustion engine.
[0068]
In the above-described embodiment, the present invention is applied to the air conditioner that uses the heat generated on the high pressure (high temperature) side. However, the vapor compression refrigerator that uses the cold generated on the low temperature (low pressure) side of a freezer or the like. It can also be applied to.
[0069]
Further, in the above-described embodiment, the required pressure is obtained by increasing the refrigerant pressure on the high-pressure side to the critical pressure of the refrigerant or more, but the present invention is not limited to this. For example, the refrigerant is flon, The refrigerant pressure on the high pressure side may be less than the critical pressure of the refrigerant.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a refrigerant flow of the air conditioner according to the embodiment of the present invention.
FIG. 3 is a schematic diagram showing a refrigerant flow of the air conditioner according to the embodiment of the present invention.
FIG. 4 is a flowchart showing control of the air conditioner according to the first embodiment of the present invention.
FIG. 5 is a wetting line diagram.
FIG. 6 is a flowchart showing control of an air conditioner according to a reference example .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 1st outdoor heat exchanger, 3 ... 2nd outdoor heat exchanger,
4 ... Indoor heat exchanger, 5 ... Internal heat exchanger, 9h ... Outside air temperature sensor,
9j: Outside air humidity sensor.

Claims (3)

低温側の熱を高温側に移動させる蒸気圧縮式冷凍機であって、
低温側雰囲気である室外の空気中に配置され、冷媒と雰囲気とを熱交換させる低温側熱交換器(3)と、
高温側に配置され、冷媒と水とを熱交換させる高温側熱交換器(2)と、
前記低温側熱交換器(3)と前記高温側熱交換器(2)との間で冷媒を循環させるポンプ手段(1)と、
前記低温側熱交換器(3)の表面に霜が発生し得る状況にあるか否か判定する着霜予測手段と、
前記着霜予測手段により前記低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定されたときに、前記ポンプ手段(1)の作動を制御する着霜判定時ポンプ制御手段とを備え、
前記高温側熱交換器(2)にて熱交換した水は、室内に吹き出す空気を加熱する熱源として用いられ、
前記着霜予測手段は、前記低温側熱交換器(3)から流出する冷媒の温度(THO)が、前記室外空気の相対湿度および前記室外空気の温度から算出される前記室外空気の露点温度(Tf)未満であるときであって、かつ、前記低温側熱交換器(3)から流出する冷媒の温度(THO)が水の凝固点以下であるときに、前記低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定し、
前記着霜予測手段により前記低温側熱交換器(3)の表面に霜が発生し得る状況にないと判定されたときには、前記ポンプ手段(1)の目標回転数(IVO)は、前記高温側熱交換器(2)にて加熱された水の温度が目標吹出温度(TAO)に基づいて算出された目標水温(TWO)となるような値に決定され、
前記目標吹出温度(TAO)は、前記室外空気の温度、前記室内空気の温度、前記室内に注がれる日射量および前記室内の設定温度に基づいて算出されており、
前記着霜予測手段により前記低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定されたときには、前記着霜判定時ポンプ制御手段が、前記着霜予測手段により前記低温側熱交換器(3)の表面に霜が発生し得る状況にあると判定される前の目標回転数(IVO)から予め定めた所定値(β)を減算した値に、前記目標回転数(IVO)を変更することを特徴とする蒸気圧縮式冷凍機。
A vapor compression refrigerator that moves the heat on the low temperature side to the high temperature side,
A low-temperature side heat exchanger (3) that is disposed in outdoor air that is a low-temperature side atmosphere and exchanges heat between the refrigerant and the atmosphere;
A high temperature side heat exchanger (2) disposed on the high temperature side for exchanging heat between the refrigerant and water ;
Pump means (1) for circulating refrigerant between the low temperature side heat exchanger (3) and the high temperature side heat exchanger (2);
Frost prediction means for determining whether or not frost can be generated on the surface of the low temperature side heat exchanger (3);
Pump control at the time of frost determination that controls the operation of the pump means (1) when it is determined by the frost prediction means that the frost can be generated on the surface of the low temperature side heat exchanger (3). Means and
The water subjected to heat exchange in the high temperature side heat exchanger (2) is used as a heat source for heating the air blown into the room,
The frost formation predicting means is configured such that the temperature (THO) of the refrigerant flowing out of the low temperature side heat exchanger (3) is calculated from the relative humidity of the outdoor air and the temperature of the outdoor air (dew point temperature of the outdoor air ( Tf) and when the temperature (THO) of the refrigerant flowing out of the low temperature side heat exchanger (3) is below the freezing point of water, the low temperature side heat exchanger (3) Judge that the surface can be frosty ,
When it is determined by the frost formation prediction means that there is no situation where frost can be generated on the surface of the low temperature side heat exchanger (3), the target rotational speed (IVO) of the pump means (1) is The temperature of the water heated in the heat exchanger (2) is determined to be a value such that it becomes the target water temperature (TWO) calculated based on the target outlet temperature (TAO),
The target blowing temperature (TAO) is calculated based on the temperature of the outdoor air, the temperature of the indoor air, the amount of solar radiation poured into the room, and the set temperature in the room,
When it is determined by the frost prediction unit that the frost can be generated on the surface of the low temperature side heat exchanger (3), the frost determination determination pump control unit uses the frost prediction unit to control the low temperature. The target rotational speed (β) is subtracted from a predetermined predetermined value (β) from the target rotational speed (IVO) before it is determined that the surface of the side heat exchanger (3) can generate frost. A vapor compression type refrigerator characterized by changing IVO) .
冷媒として二酸化炭素が用いられていることを特徴とする請求項に記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to claim 1 , wherein carbon dioxide is used as the refrigerant. 高圧側の冷媒圧力を冷媒の臨界圧力以上まで上昇させることを特徴とする請求項1または2に記載の蒸気圧縮式冷凍機。The vapor compression refrigerator according to claim 1 or 2 , wherein the refrigerant pressure on the high-pressure side is increased to a critical pressure or higher of the refrigerant.
JP2002366793A 2002-12-18 2002-12-18 Vapor compression refrigerator Expired - Fee Related JP4147930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366793A JP4147930B2 (en) 2002-12-18 2002-12-18 Vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366793A JP4147930B2 (en) 2002-12-18 2002-12-18 Vapor compression refrigerator

Publications (2)

Publication Number Publication Date
JP2004198027A JP2004198027A (en) 2004-07-15
JP4147930B2 true JP4147930B2 (en) 2008-09-10

Family

ID=32763885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366793A Expired - Fee Related JP4147930B2 (en) 2002-12-18 2002-12-18 Vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP4147930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100076A1 (en) 2019-11-18 2021-05-27 三菱電機株式会社 Redundant resolver and electric power steering device having same mounted thereon
WO2021205596A1 (en) 2020-04-09 2021-10-14 三菱電機株式会社 Redundant resolver and electric power steering device equipped with redundant resolver

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631576B2 (en) * 2005-07-21 2011-02-16 株式会社デンソー Heating cycle device, its control device and its control method
JP4799347B2 (en) * 2006-09-28 2011-10-26 三菱電機株式会社 Hot water supply, cold and hot water air conditioner
JP4957206B2 (en) * 2006-11-24 2012-06-20 トヨタ自動車株式会社 Coordinated cooling system for fuel cell and air conditioning
JP5006697B2 (en) * 2007-05-23 2012-08-22 カルソニックカンセイ株式会社 Vehicle air conditioning system
JP2010025493A (en) * 2008-07-23 2010-02-04 Sanden Corp Heat pump type hot water supply device
JP5446520B2 (en) * 2009-07-03 2014-03-19 株式会社デンソー Control method for vehicle air conditioner
DE112012000522B4 (en) * 2011-01-21 2020-12-17 Sanden Holdings Corporation Vehicle air conditioning system
JP5851703B2 (en) * 2011-02-25 2016-02-03 サンデンホールディングス株式会社 Air conditioner for vehicles
US9925877B2 (en) 2011-01-21 2018-03-27 Sanden Holdings Corporation Vehicle air conditioning apparatus
JP5851696B2 (en) * 2011-01-21 2016-02-03 サンデンホールディングス株式会社 Air conditioner for vehicles
JP5851704B2 (en) * 2011-02-25 2016-02-03 サンデンホールディングス株式会社 Air conditioner for vehicles
DE102012219168B4 (en) * 2012-10-22 2021-10-14 Bayerische Motoren Werke Aktiengesellschaft Method for controlling the refrigerant pressure in an ambient heat exchanger of a refrigerant circuit
JP5929862B2 (en) * 2013-09-30 2016-06-08 ダイキン工業株式会社 Air conditioner
JP7243197B2 (en) * 2019-01-11 2023-03-22 株式会社デンソー vehicle air conditioner
CN110103668A (en) * 2019-05-24 2019-08-09 上汽大众汽车有限公司 The heat pump air conditioner of automobile
CN113715574B (en) * 2021-07-29 2023-05-02 西安交通大学 Transcritical carbon dioxide electric automobile thermal management system and frostless control method thereof
CN114370691B (en) * 2022-01-27 2023-11-03 宁波奥克斯电气股份有限公司 Air conditioner control method and air conditioner
CN118968670B (en) * 2024-10-08 2024-12-24 杭州企智互联科技有限公司 Automatic vending machine remote management system based on Internet of things

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100076A1 (en) 2019-11-18 2021-05-27 三菱電機株式会社 Redundant resolver and electric power steering device having same mounted thereon
WO2021205596A1 (en) 2020-04-09 2021-10-14 三菱電機株式会社 Redundant resolver and electric power steering device equipped with redundant resolver
US12163809B2 (en) 2020-04-09 2024-12-10 Mitsubishi Electric Corporation Redundant resolver and electric power steering device equipped with redundant resolver

Also Published As

Publication number Publication date
JP2004198027A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4147930B2 (en) Vapor compression refrigerator
JP4232463B2 (en) Air conditioner
JP4517529B2 (en) Heat pump cycle, heating device, vehicle heating device, heating device, and vapor compression refrigeration cycle
CN109983287B (en) Refrigeration cycle device
JP6041423B2 (en) Vehicular heat pump system and control method thereof
US6314750B1 (en) Heat pump air conditioner
US6750630B2 (en) Battery temperature control device for controlling the temperature of a battery installed in vehicle which includes an air passage to the battery from a rear air-conditioning unit
JP6192435B2 (en) Air conditioner for vehicles
JP6065637B2 (en) Cooling system
WO2013094144A1 (en) Air-conditioning apparatus for vehicles
WO2003083381A1 (en) Refrigerating cycle device
JP5786615B2 (en) Automotive temperature control system
JP2013023210A (en) Vehicular heat pump system, and method of controlling the same
WO2004056594A1 (en) Air conditioner
KR20130026872A (en) Heat pump system for vehicle
CN111762000B (en) Heat pump air conditioning system, air supply subsystem and method for controlling heat pump air conditioning system
JP4211186B2 (en) Vehicle heat pump device
JP2001324237A (en) Equipment for refrigerating cycle
CN104412050A (en) Heat pump cycle
JP3704814B2 (en) Air conditioner for vehicles
US20030079873A1 (en) Vehicle air conditioning system
JP2006327428A (en) Vehicular air-conditioner
JPH0914780A (en) Air conditioner
JP2005178524A (en) Heat pump device having fuel cell heating function
JPH11159911A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4147930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees