JP4140884B2 - Method for producing strontium carbonate, non-birefringent optical resin material and optical element - Google Patents
Method for producing strontium carbonate, non-birefringent optical resin material and optical element Download PDFInfo
- Publication number
- JP4140884B2 JP4140884B2 JP2002196394A JP2002196394A JP4140884B2 JP 4140884 B2 JP4140884 B2 JP 4140884B2 JP 2002196394 A JP2002196394 A JP 2002196394A JP 2002196394 A JP2002196394 A JP 2002196394A JP 4140884 B2 JP4140884 B2 JP 4140884B2
- Authority
- JP
- Japan
- Prior art keywords
- freezing point
- strontium carbonate
- fine particles
- water
- birefringence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polarising Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本願発明は、配向複屈折性を有する微粒子状の炭酸ストロンチウムを製造する方法、並びに、同方法によって製造された微粒子状炭酸ストロンチウムを含有した非複屈折性光学材料及び同材料を用いた光学素子に関し、更に詳しく言えば、平均500nm以下のサイズ(長さ)の長軸を有する微粒子状の炭酸ストロンチウムの製造方法、並びに、同方法によって製造された微粒子状炭酸ストロンチウムを含有した非複屈折性光学材料及び同材料を用いた光学素子に関する。
【0002】
なお、本明細書において、「非複屈折性光学樹脂材料」とは、「外部からの作用(例えば、射出成形時、押し出し成形時等に作用する応力)の履歴によって高分子結合鎖に配向が生じているにも拘らず、複屈折性の発現が全体として非常に小さく抑えられた光学樹脂材料」を意味するものとする。また、微粒子のサイズは、その形状の幾何学的な長軸方向に沿って測ったものを指すものとする。
【0003】
【従来の技術】
近年、眼鏡レンズ、透明板などの一般光学部品やオプトエレクトロニクス用の光学部品、特に音響、映像、文字情報等を記録する光ディスク装置のようなレーザ関連機器に用いる光学部品の材料として、高分子樹脂が用いられる傾向が強まっている。これは、高分子樹脂からなる光学材料(以下、「高分子光学材料」とも言う。)が、一般に他の光学材料(光学ガラス等)に比べて、軽量、安価で加工性、量産性に優れているからである。特に、高分子樹脂材料には、射出成形や押し出し成形のような成形技術が容易に適用出来るという大きな利点がある。
【0004】
しかし、これまで使用されてきた通常の高分子光学材料には、これら成形技術を適用して得られた製品が少なからず複屈折性を示すという性質があった。この事実自体は、その原因を含めて広く知られているところである。
【0005】
図1はこれを簡単に説明する為の図である。同図に示したように、成形工程を経た高分子光学材料は、一般に、ポリマーの結合鎖を形成する多数の単位(モノマー)1が体積的に配向方向をもって結合した状態にある。そして、通常光学材料として使用される高分子材料の殆どすべてについて、各単位(符号1で示した)は、屈折率に関して光学的異方性を有している。即ち、配向方向に平行な方向の偏波成分に関する屈折率nprと配向方向に垂直な方向の偏波成分に関する屈折率nvtが異なっている。
【0006】
このような光学的異方性は、良く知られているように、屈折率楕円体で表現することが出来る。図1において、各結合単位1に付記されている楕円マークJP12はその表式に従ったものである。例えば、ポリメチルメタクリレート(PMMA)の場合、各単位1(メチルメタクリレート)の屈折率は、配向方向について相対的に小さく、配向方向と垂直な方向について相対的に大きい。従って、マクロスケールでみた時の屈折率楕円体3は、図示されているように縦長となる。
【0007】
即ち、ポリメチルメタクリレートの場合、npr<nvtである。両者の差Δn=npr−nvtは、「配向複屈折値」と呼ばれる。実際のポリマー材料における配向複屈折値Δnは、そのポリマー材料の結合鎖(主鎖)の配向の度合に応じて変化する。結合鎖(主鎖)が延びきって理想状態まで配向した時のΔnの値は、「固有複屈折値」と呼ばれる。代表的な光学樹脂の固有複屈折値を表1に示した。
【0008】
このように、固有複屈折率値はあくまで理想配向条件下でのΔnの値なので、実際のポリマー材料のΔnの値をΔn(real)で表わせば、0<|Δn(real)|<固有複屈折値の関係が成立する。
【0009】
例えば、図1に示したポリメチルメタクリレートでは固有複屈折率値=−0.0043なので、実際のポリマーにおける配向複屈折率値Δn(real)は、−0.0043<Δn(real)<0となる。ここで、Δn(real)=−0.0043(理想的な配向状態での値)も、Δn(real)=0(完全な無配向状態での値)も実現は困難である。同様に、ポリスチレンでは、−0.100<Δn(real)<0である。また、ポリエチレンではΔnが正の値を示し、0<Δn(real)<+0.044である。
【0010】
このように、配向に依存した複屈折を配向複屈折と言い、屈折率楕円体の長軸方向を配向複屈折方向と呼ぶこことする。また、「配向複屈折率値Δn(real)の符号」あるいはそれと同じ「固有配向複屈折率値の符号」が正(Δn>0)であることを「複屈折性の符号が正」、同様に負(Δn<0)であることを「複屈折性の符号が負」などと表現することとする。
【0011】
【表1】
【0012】
このような複屈折性の表現方式は、棒状、針状、楕円状等の形状を持つ無機微粒子(結晶粒)にも適用出来る。その場合、微粒子の幾何学的な意味での長軸方向に平行な方向の偏波成分に関する屈折率をnpr、同長軸方向に垂直な方向の偏波成分に関する屈折率をnvtとする。そして、Δn=npr−nvtの値が正であれば「複屈折性の符号が正」、負であれば「複屈折性の符号が負」などと表現する。
【0013】
但し、長軸方向に垂直な方向の偏波成分について、屈折率が均等で無いことが一般的なので、結晶構造に対応した3軸(a軸、b軸、c軸;長軸をc軸とする)をとり、a軸方向の偏波成分に関する屈折率をna,b軸方向の偏波成分に関する屈折率をnb,c軸方向の偏波成分に関する屈折率をncとする。そして、npr=nc、nvt=(na+nb)/2とする。
【0014】
上記説明したような配向複屈折は、偏光特性が重要でないようなアプリケーションに使用される光学デバイスにおいては特に問題とされない。しかし、例えば近年開発された書込/消去型の光磁気ディスクでは、読み取りビームあるいは書き込みビームに偏光ビームが用いられているので、光路中に複屈折性の光学要素(ディスク自体、レンズ等)が存在すると、読み取りあるいは書き込みの精度に悪影響を及ぼすことになる。また、そのような例に限らず一般的に言っても、意図せざる複屈折性が存在することは多くの光学要素にとって好ましいことではない。
【0015】
一般に、光学樹脂(透光性ポリマー)を光学デバイスに成形する諸過程には、延伸、押し出し、射出等の主鎖を配向させるような力が作用する過程が含まれており、従って、殆どすべてのケースにおいて、ポリマー固有の配向複屈折が生じます。従って、上述のような問題を回避する必要性が高まっている。
【0016】
このような状況を背景に、これまでにも高分子光学材料の持つ複屈折性を低減・除去する為のいくつかの技術が提案されている。その中に、本願の発明者(複数)の内の1人が提案したタイプの技術がある。同技術では、配向複屈折率性を示す多数の無機微粒子を統計的に配向した状態で高分子マトリックス中に含有させ、高分子マトリックスの複屈折性が低減・相殺する。低減・相殺の仕方には、高分子マトリックスの配向複屈折性と無機微粒子の配向複屈折性の符号の関係(同符号/異符号)、及び、高分子マトリックスの結合鎖の配向と無機微粒子の配向の関係(統計的に平行/統計的に直交)に応じて、2つのタイプがある。これを便宜上タイプ1、タイプ2と呼ぶことにする。
【0017】
タイプ1:国際特許公開公報WO01/25364号に開示されている。同公報に記載されているように、透明な高分子樹脂中に多数の無機微粒子を分散させ、延伸などによって成形力を外部から作用させ、高分子樹脂の結合鎖と多数の無機微粒子とを統計的に「ほぼ平行」に配向させる。
【0018】
ここで、高分子樹脂と無機微粒子の組合せは、高分子樹脂の結合鎖と無機微粒子(その長軸)が平行に配向した時、両者の持つ配向複屈折性が互いに打ち消し合う関係となるものを選択する。即ち、両者の配向複屈折性の符号は互いに異符号である。
【0019】
タイプ2:特願2002−67457号の明細書/図面に記載されている。同明細書/図面に記載されているように、透明な高分子樹脂中に多数の無機微粒子を分散させ、射出などによって成形力を外部から作用させ、高分子樹脂の結合鎖と多数の無機微粒子とを統計的に「ほぼ直角」に配向させる。
【0020】
ここで、高分子樹脂と無機微粒子の組合せは、高分子樹脂の結合鎖と無機微粒子(その長軸)が垂直に配向した時、両者の持つ配向複屈折性が互いに打ち消し合う関係となるものを選択する。即ち、両者の配向複屈折性の符号は互いに同符号である。
【0021】
これらの手法は結晶ドープ法と呼ばれており、高分子樹脂の結合鎖の配向によって生じる複屈折性を統計的に配向させた多数の無機微粒子の複屈折性で減殺して、非複屈折性の光学樹脂材料を得ることができる。また、同光学樹脂材料を光学素子の材料に採用すれば非複屈折性の光学素子を得ることができる。例えば、レンズ形状を持たせれば非複屈折性のレンズが得られ、シート形状を持たせれば非複屈折性の透光シートが得られる。
【0022】
ところで、上記結晶ドープ法を実際の適用するには、同技術に適した結晶微粒子を用意する必要がある。本発明者は、好適な結晶微粒子の候補となりえるものをリストアップし、入手可能なものを入手し、実験的に結晶ドープ法を適用してみた。その結果、ある一定の効果(複屈折性の低下)は確認されたが、得られる非複屈折性光学樹脂材料の透明性に問題が生じることが判った。これは、入手可能な結晶微粒子の粒子サイズが十分に小さくないためと推測された。
【0023】
具体的に言えば、結晶ドープ法に使用できる500nm以下の結晶微粒子の方が望まれると推測されましたが、そのような結晶微粒子は市販されておらず、入手困難であることが判った。
【0024】
通常の化学実験室で比較的簡単に合成可能と考えられる候補として、炭酸カルシウムを選び、均一沈殿法あるいは不均一沈殿法により、粒径を小さくすると同時に、目的とする針状の結晶のみを得ることを試みたが、良い結果が得られなかった。これは炭酸カルシウムの結晶系には、アラゴナイト、カルサイト、バテライトがあり、針状であるアラゴナイトの合成時に最も安定なカルサイトが混入しやすいからであると考えられます。結局、本発明者は、炭酸ストロンチウムに針状結晶(ストロンチアナイト)に的を絞った。その主な理由は次の通りである。
【0025】
(1)比較的、針状の結晶粒子形態をとり易い性質がある。
【0026】
(2)屈折率n(na,nb,nc)=(1.520,1.666,1.669)であり、多くのポリマーと比較的屈折率が近く、結晶そのものが有する複屈折も大きいので、結晶ドープ法に適している。
【0027】
(3)原料(詳細後述)を天然鉱石の形で自然界で簡単に入手できる。
【0028】
(4)人体、環境に無害である。
【0029】
【発明が解決しようとする課題】
そこで、本発明の1つの目的は、結晶ドープ法に使用できる十分小さな(平均長さ500nm以下)の炭酸ストロンチウムの結晶微粒子を製造する方法を提供することにある。また、本発明のもう1つの目的は、そのような製造方法によって得られた小サイズの炭酸ストロンチウム結晶微粒子を結晶ドープ法に用いて非複屈折性光学樹脂材料を得ることにある。
【0030】
【課題を解決するための手段】
本発明は、均一沈殿法あるいは炭酸ガス化合法(不均一法とも言う)によって、炭酸ストロンチウムの結晶微粒子を得るに際し、氷点下の温度環境下で炭酸ストロンチウムの結晶微粒子を生成させることにより、上記課題を解決したものである。
【0031】
先ず本発明に従えば、「ストロンチウム塩を水に溶解させるとともに、前記に水中で尿素を加水分解し、前記電離したSr2+イオンと前記加水分解時に発生する炭酸イオンとを反応させることにより、平均粒子サイズが500nm以下の炭酸ストロンチウムの微粒子を生成する炭酸ストロンチウムの製造方法において;前記水に水の凝固点を降下させる凝固点降下物質が添加され、前記炭酸ストロンチウムの結晶微粒子の生成が氷点下で行なわれることを特徴とする、前記製造方法」が提供される。
【0032】
ここで、前記尿素の加水分解が、尿素の加水分解酵素を共存させて促進されることが好ましい。
【0033】
本発明によれば、更に、「水に水酸化ストロンチウムを加えた懸濁液を調整し、前記懸濁液に炭酸ガスを吹き込み、Sr2+イオンと炭酸イオンとを反応させ、平均粒子サイズが500nm以下の炭酸ストロンチウムの微粒子を生成する炭酸ストロンチウムの製造方法において;前記懸濁液に水の凝固点を降下させる凝固点降下物質が添加され、前記炭酸ストロンチウムの結晶微粒子の生成が氷点下で行なわれることを特徴とする、前記製造方法」が提供される。
【0034】
なお、凝固点降下物質としては、例えばエチレングリコールを用いることが出来る。また、凝固点降下物質は、前記凝固点が氷点下5度を下回るように添加されることが好ましい。
【0035】
更に、本発明に従えば、「結合鎖の配向によって生じた配向複屈折性を有する透明な高分子樹脂と、前記高分子樹脂中に分散した多数の無機微粒子とを含み、前記無機微粒子は、前記高分子樹脂内で前記高分子樹脂の配向複屈折性を減殺するように統計的に配向している、非複屈折性光学樹脂材料」について、多数の無機微粒子として、上記製造方法のいずれかによって製造された炭酸ストロンチウムの微粒子が採用される。
【0036】
このように、本発明の基本的な特徴は、炭酸ストロンチウムの微粒子をいわゆる均一沈殿法(請求項1〜3)または炭酸ガス化合法(不均一法とも言う)で合成する際に、水の凝固点を下げ、氷点下の液中で微粒子を合成・生成した点にあります。このように、氷点下の温度環境を採用したのは、次のような理由によるものである。
【0037】
本発明は上述のように、均一沈殿法または炭酸ガス化合法(不均一法)を利用するもので、いずれも、2つの方法に共通する傾向として「水温を下げる程、小さい粒径の炭酸ストロンチウム結晶微粒子が得られる」を確認した。しかし、両方法とも水中(液体の水の共存下)で行う方法である以上、氷点を越えて温度を下げると水が凍ってしまい、結局、水が凍らない範囲の低温では、1μm以下の微粒子を得ることは困難であった。
【0038】
本発明では、「合成反応を阻害せずに、水の凝固点を降下させることが可能な溶媒(凝固点降下物質)を加える」ことで、この問題をクリアした。実際に使用するに適した凝固点降下物質には、エチレングリコールがある。
【0039】
なお、ここで、本発明が利用している「均一沈殿法」及び「炭酸ガス化合法(不均一法)」について、炭酸ストロンチウム合成時に即して一般的な事項をまとめておく。
【0040】
1.均一沈殿法:ストロンチウム塩を水に溶かし、電離したSr2+イオンと尿素の加水分解時に発生する炭酸イオンとを反応させることにより炭酸ストロンチウムを合成する方法である。反応式は下記のようになる。
【0041】
尿素の加水分解;
(NH2 )2CO+3H2 O→2NH4OH+CO2 ↑ (*)
(*)から水中で生じるCO3 2とSr2+との反応;
Sr2++CO3 2- →Sr↓
反応開始時は液相のみであり、反応生成物が沈殿することから、「均一沈殿法」と呼ばれる。室温以下では、反応速度が遅く、反応を促進するためには(即ち、数時間程度で反応を終了させるためには)約70℃以上に加温する必要があります。但し、通常は尿素の加水分解酵素(ウレアーゼ)を添加し、低温(20℃以下)でも反応を早く進めることができる。
【0042】
2.炭酸ガス化合法(不均一法)
水に水酸化ストロンチウムを加えた懸濁液を調整し、そこに炭酸ガスを吹き込んでいくことにより、Sr2+イオンと炭酸イオンとを反応させ、炭酸ストロンチウムを合成する方法である。反応開始時に液相と固相が反応系内に存在するため、不均一法とも呼ばれている。
【0043】
【実施例】
以下、均一沈殿法あるいは炭酸ガス化合法(不均一法)を適用した、本発明のいくつかの実施例について説明する。
【0044】
[実施例1(均一沈殿法を適用)]
水375gに対し、尿素81.75g(水に対し21.8wt%)、硝酸ストロンチウム30.75g(水に対し8.2wt%)を添加した。さらに反応を氷点下で行なうために反応液に有機溶媒としてエチレングリコールを75.00g(水に対し20wt%)添加した。この溶液を図2に示す実験系のビーカーへ入れ、超音波を照射しながら、攪拌し、冷却した。
【0045】
攪拌モーターとして新東科学株式会社製、スリーワンモーターBLh600を、超音波照射機能付ウォーターバスとして本多電子株式会社製、超音波洗浄器W−113MK−II、クーラーとしてトーマス科学機器株式会社製、密閉タンク型ハンディクーラーTRL−C13を用いた。
【0046】
クーラーにより、ウォーターバス中のエチレングリコール系不凍液(トーマス科学機器株式会社製、ナイブライン;登録商標)を循環させることにより、反応液の温度を−5℃まで下げ、−5℃に保った。続いて消化酵素Urease1.50gを反応液に添加した。消化酵素添加後、反応液中では結晶の析出が始まり、白濁した。反応液の温度を−5℃に保ちながら、12時間反応させた。
【0047】
その後、反応液の温度を20℃まで上げ、20℃に保ちながら12時間、結晶を熟成させた。得られた結晶をろ過により取り出し、乾燥させた。乾燥後の結晶の走査型電子顕微鏡(SEM)観察写真を図3(a)〜(c)に示す。各写真における観察倍率は、図3(a)では3000倍、図3(b)では20000倍、図3(c)では100000倍である。各写真中のスケールとの比較から分かるように、長さが500nm以下(おおよそ平均400nm程度)の炭酸ストロンチウム針状結晶微粒子が得られている。
【0048】
[実施例2(均一沈殿法を適用)]
水375gに対し、尿素81.75g(水に対し21.8wt%)、硝酸ストロンチウム30.75g(水に対し8.2wt%)を添加した。さらに反応を氷点下で行なうために反応液に有機溶媒としてエチレングリコールを75.00g(水に対し20wt%)添加した。この溶液を図2に示す実験系のビーカーへ入れ、超音波を照射しながら、攪拌し、冷却した。
【0049】
攪拌モーターとして新東科学株式会社製、スリーワンモーターBLh600を、超音波照射機能付ウォーターバスとして本多電子株式会社製、超音波洗浄器W−113MK−II、クーラーとしてトーマス科学機器株式会社製、密閉タンク型ハンディクーラー TRL−C13を用いた。クーラーにより、ウォーターバス中のエチレングリコール系不凍液(トーマス科学機器株式会社製、ナイブライン;登録商標)を循環させることにより、反応液の温度を−5℃まで下げ、−5℃に保った。
【0050】
続いて消化酵素Urease1.50gを反応液に添加した。消化酵素添加後、反応液中では結晶の析出が始まり、白濁した。反応液の温度を−5℃に保ちながら、12時間反応させた。その後、反応液の温度を0℃まで上げ、0℃に保ちながら24時間、結晶を熟成させた。得られた結晶をろ過により取り出し、乾燥させた。乾燥後の結晶の走査型電子顕微鏡(SEM)観察写真を図4(a)〜(c)に示す。各写真における観察倍率は、図4(a)では3000倍、図4(b)では20000倍、図4(c)では100000倍である。各写真中のスケールとの比較から分かるように、平均の長さがおおよそ200nm程度の炭酸ストロンチウム針状結晶微粒子が得られている。
【0051】
[実施例3(炭酸ガス化合法(不均一法))]
水300gに対し、メタノール60g(水に対し20wt%)と、水酸化ストロンチウム八水和物80g(水に対し26.7wt%)とを加えた懸濁液を調整した。この懸濁液をビーカーに入れ、図5に示すような実験系を組んだ。生成した粒子の凝集をできる限り防ぎつつ、反応系にエネルギーを与えて結晶核の生成を促すために、攪拌モーター(新東科学株式会社製、スリーワンモーターBLh600)によって懸濁液を撹拌した。さらに、超音波照射機能付ウォーターバス(本多電子株式会社製、超音波洗浄器W−113MK−II)によって超音波を照射した。懸濁液の温度を−10℃に保つためにクーラー(トーマス科学機器株式会社製、密閉タンク型ハンディクーラーTRL−C13)を用いてウォーターバス中の市販のエチレングリコール系不凍液(トーマス科学機器株式会社製、ナイブライン;登録商標)を循環させた。
【0052】
CO2 ガスとN2 ガスをガス混合器(コフロック株式会社、MiNi−Gascom PMG−1)を用いて、体積比でCO2 :N2 =30:70の割合で混合し、懸濁液中に200ml/minの流量で導入した。pHが7付近で安定するまで、この懸濁液中にの混合ガスを導入した後、混合ガス導入を止めた。
この懸濁液とは別にシランカップリング溶液を調整した。水40gに対し、酢酸を加えpH5.3程度とし、さらにシランカップリング剤(3−グリシドオキシプロピルトリメトキシシラン)を添加し、約3時間撹拌することにより調整した。
【0053】
シランカップリング剤の量は、炭酸ストロンチウムに対して30wt%とした。調整したシランカップリング溶液を懸濁液へ加え、24時間攪拌モーターによって攪拌しながら、表面処理を行った。未反応分を取り除くため、懸濁液を0.1μmポアサイズの濾紙で吸引濾過し、生成物を500mlのアセトン中に入れて24時間撹拌して洗浄し、もう一度濾過してできた生成物を真空乾燥機で乾燥させた。得られた結晶のSEM観察写真を図6に示す。観察倍率は100000倍である。同写真から、平均長さ200nm以下の炭酸ストロンチウム結晶が得られたことが確認できた。
【0054】
上述のような方法で合成した結晶微粒子は、混練やモノマーに添加して重合する方法、あるいは、ポリマー溶液に添加し、溶媒を除去後に溶融させる方法などにより、樹脂中へ分散させることができる。マトリックス樹脂の透明性を維持する上で、合成された結晶微粒子が500nm以下の平均長さを有することは極めて有利であり、微量(5wt%以下)の添加濃度であれば、高い透明性が維持される。特に200nm以下であればマトリックス樹脂の透明性が殆ど損なわれない。この炭酸ストロンチウム結晶微粒子を添加した樹脂は、多くのフィルム状、バルク状の光学素子に応用可能である。
【0055】
炭酸ストロンチウムは二軸性の複屈折結晶であり、前述したように、それぞれの光学軸方向の屈折率は、n(na,nb,nc)=(1.520,1.666,1.669)である。
【0056】
針状結晶の長軸方向は、屈折率1.520の光学軸方向とほぼ一致する。したがって、針状結晶の配向方向に対して負の複屈折効果を持つ。上述した本発明に従った製造方法により得られる炭酸ストロンチウム結晶微粒子は、針状(棒状)の形態であるため、粘性のある媒体内に分散させた状態で応力を作用させることにより、統計的に所定の方向に配向させることができる。
【0057】
例えば後述する実施例に示すように、ポリマーフィルム中に添加し、ポリマーフィルムを熱延伸することにより、針状結晶を熱延伸方向に沿って統計的に配向させることができる。この時、ポリマー主鎖も延伸方向に沿って統計的に配向するから、結局、針状結晶とポリマー主鎖は、統計的に平行な関係で配向する。
【0058】
また、ポリマーペレット中に炭酸ストロンチウムの棒状結晶微粒子を添加し、このポリマーペレットを射出成形法や押出成形法に使用し、ポリマー溶融時の流動によって配向させることができる。
【0059】
通常、棒状結晶微粒子の統計的な配向方向は、押出成形法では押出成形方向に沿った方向となる。この時、ポリマー主鎖も押出方向に沿って統計的に配向するから、結局、針状結晶とポリマー主鎖は、統計的に平行な関係で配向する。
【0060】
これに対して、狭いゲートから広い金型内への射出成形を行なえば、射出方向と直交する方向への統計的配向が可能になる。一方、ポリマー主鎖は射出方向に沿って統計的に配向するから、結局、針状結晶とポリマー主鎖は、直交する統計的配向関係を示す。
【0061】
但し、一般の射出成形では、溶融ポリマーの流動挙動が金型形状などに依存する3次元的なより複雑なものであるため、ポリマー主鎖と針状結晶の配向方向の関係はケースバイケースで異なってくる。とは言え、流動挙動と金型形状などとの関係を解析し、適切に成形条件を定めることにより、ポリマー主鎖と針状結晶の配向方向を、統計的にほぼ直交させることも、同一方向となるようにすることも可能である。
【0062】
さて、本発明で得られる炭酸ストロンチウム針状結晶を結晶ドープ法で使用して非複屈折性光学樹脂を得る場合、配向複屈折が正負いずれのポリマーとも組み合わせることが可能である。配向複屈折が正のポリマー中へ分散させる場合には、炭酸ストロンチウム針状結晶をポリマー主鎖と平行に統計的配向させて、配向複屈折性を減殺させ合えば良く、配向複屈折が負のポリマー中へ分散させる場合には、炭酸ストロンチウム針状結晶をポリマー主鎖と垂直に統計的配向させて、配向複屈折性を減殺させ合えば良い。
【0063】
このような特性を、例えば極力複屈折を小さくしたいピックアップレンズやエフシータレンズ(fθレンズ)などの種々のレンズ、CD基板、DVD基板、液晶ディスプレイなどの偏光を利用するデバイスに用いる種々のフィルムなど成形デバイスに生かすことも可能であり、また位相差板のように所定の複屈折を持たせた光学素子の成形にも利用可能である。
【0064】
なお、既述の通り、ポリマー主鎖と針状結晶を同一方向に配向させて、ポリマーの配向複屈折を低減する技術に関しては、国際特許公開公報WO01/25364号にその詳細が記載されている。また、ポリマー主鎖と針状結晶とほぼ直交させ、ポリマーの配向複屈折を低減する技術に関しては、特願2002−67457号にその詳細が記載されている。
【0065】
以下、上記説明した製造方法によって得られた炭酸ストロンチウム結晶微粒子を結晶ドープ法に使用した非複屈折性光学樹脂及び同材料からなる光学素子の例について説明する。
【0066】
[実施例4]
上述した均一沈殿法(実施例1または実施例2)により合成した炭酸ストロンチウム針状結晶微粒子(平均粒径約400nm)を0.03g計り取り、サンプル管へ入れた。そこに純正化学株式会社製テトラヒドロフランを6.0g加えた。本多電子株式会社製超音波洗浄器W−113MK−IIを用いて、24kHz、5分間の超音波照射を行い、炭酸ストロンチウム針状結晶微粒子をテトラヒドロフラン中に分散させた。
【0067】
さらにJSR株式会社製透明樹脂アートン(登録商標)を1.5g加え、東京理化器械株式会社製振盪機マルチシェーカーMMS−310型により、140rpm、12時間振とうした。得られたポリマー溶液を水平なガラス板上にナイフコーターを用いて展開し、室温で溶媒を蒸発させた。
【0068】
ガラス板より厚さ約50μmのポリマーフィルムを剥がし、東京理化器械株式会社製真空定温乾燥器VOS−301SDを用い、100Pa(パスカル)、70℃で24時間減圧乾燥した。
【0069】
上述のようにして得られたフィルムサンプルを、株式会社エー・アンド・デイ社製汎用試験機RTC−1210Aを用い、延伸温度230℃においてフィルムの一軸延伸を行った。延伸したフィルムの複屈折を有限会社ユニオプト製ABR−10Aを用いて測定した。その結果を図7のグラフに示した。
【0070】
図7において、横軸は延伸倍率、縦軸は複屈折の大きさを表わしている。複屈折の大きさは、(nmax −nmin)/2(nmax +nmin)で表わすことができる。ここで、nmax、nminはそれぞれ複屈折性によって生じる最大屈折率値及び最小屈折率値を表わす。▲印は炭酸ストロンチウムを分散していない透明樹脂アートン(登録商標)フィルムの結果を示し、■は炭酸ストロンチウムを2wt%添加・分散させたアートン(登録商標)フィルムの結果を示している。
【0071】
このグラフから、炭酸ストロンチウムを添加することにより、延伸によって顕在化するアートンの正の配向複屈折が低減され、比較的大きな延伸倍率においては、複屈折性の符号が負に転じていることがわかる。このことから、例えば延伸倍率に応じて添加量を適宜調節することで、配向複屈折を非常に小さなものにできることがわかる。
【0072】
[実施例5]
上述した均一沈殿法(実施例1または実施例2)により合成した炭酸ストロンチウム針状結晶微粒子(平均粒径約400nm)を二軸エクストルーダーを用いて、透明樹脂ポリメタクリル酸メチル(三菱レイヨン株式会社製、アクリペット;登録商標(VH)へ混練し、ペレットとした。この時の炭酸ストロンチウム針状結晶の添加濃度は、重量比でメタクリル酸メチル100に対し0.02の割合とした。
【0073】
このペレットを、射出成形機(日精樹脂工業株式会社製、HM−7型)を用いて、平板状(35mm×35mm×2mm)に射出成形した。このときの射出成形条件は、ノズル温度260℃、シリンダ温度260℃、金型温度70℃とした。得られた平板状試料のリタデーション(=[複屈折値Δn]×[光路長])の面内分布を、複屈折測定装置(有限会社ユニオプト社製、自動複屈折測定装置あBR−10A−EX)を用いて測定した。その結果を図8(a)、(b)に示す。図8(a)は比較試料(無添加のポリメタクリル酸メチルの同一条件射出成形で得られる板状体で非複屈折性樹脂板試料と同サイズ)のレターデーション測定結果を表わしたレターデーションマップ、図8(b)は、実施例5で得られた非複屈折性樹脂板試料について、レターデーションの測定結果を表わしたレターデーションマップである。
【0074】
測定は、平板状試料を厚み方向に透過するレーザー光を用いて行った。そして、図8(a)、(b)のリタデーションマップは、35mmの辺で囲まれる平面を、ほぼ垂直に透過する光が受けるリタデーションの値を、1mm角のセグメントで表わしたものである。測定範囲は、周辺部による光の屈折・回折等が及ぼす誤差を避けるために、図8(c)の網目模様で表わした、周辺から約5mm内側の領域とした。
【0075】
各セグメント内のリタデーションは、各セグメントに垂直に入射する偏光に対し最も屈折率が小さくなる方向を「進相軸」、それに直交する最も屈折率が大きくなる方向を「遅相軸」と定義し、それぞれの方向の偏光間の位相差によりリタデーションを求めた。各セグメント内の直線は、進相軸の方向を表わし、それに直交する方向が遅相軸となる。リタデーションの大きさは濃淡グレードで表わされている。
【0076】
金型の溶融したポリマーが流れ込む部位はゲートと呼ばれ、リタデーションマップの右端中央付近が平板試料のゲートに最も近い部分に相当する。したがって、リタデーションマップの右側から溶融したポリマーが金型へ流れ込み、左側へ進んで行ったわけである。
【0077】
図8(a)のゲート付近を見ると、ゲート位置に相当する部位から放射状に進相軸(屈折率が小さい方向)が分布している。遅相軸(屈折率が大きい方向)は進相軸と直交するので、ゲート位置を中心に同心円を考えた時、その円周に沿うような方向へ向いている。
【0078】
ポリメタクリル酸メチルの配向複屈折は負である(ポリマー主鎖の配向方向の屈折率がそれと直交する方向よりも小さい)ことから、ポリメタクリル酸メチルの主鎖はゲートから放射方向へ配向していることがわかる。同様にして、試料各部分でのポリメタクリル酸メチルの配向方向を知ることができる。ただし、これは各セグメントの厚さ方向全域での平均値であり、表面近傍の薄い層ではより内部とは配向方向が異なる部位もある。しかし、表面層以外のほとんどの部分では統計的にこの方向に配向していると考えてよい。
【0079】
次に、図8(a)と図8(b)を比較すると、炭酸ストロンチウムの針状結晶を添加したポリメタクリル酸メチルの方が試料全体のリタデーションが小さくなっていることがわかる。測定範囲内全域でのリタデーションの平均値は、ポリメタクリル酸メチル:6.5nm、炭酸ストロンチウム針状結晶添加ポリメタクリル酸メチル:3.9nmであった。
【0080】
また、走査型電子顕微鏡により、射出成形品内部の針状結晶の配向状況を観察したところ、ゲート付近では前述の同心円の円周方向に沿うように、ゲートから最も遠い位置では図8(b)中の進相軸に沿うような方向に、それぞれ配向していることが確認できた。このことは、ポリマー主鎖とほぼ直交する方向に、長軸方向の屈折率が短軸方向の屈折率より小さい炭酸ストロンチウム針状結晶が配向することにより、ポリメタクリル酸メチルの負の配向複屈折を相殺できたことを意味している。
【0081】
このように相対的に小さな断面積を有する開口から相対的に大きな断面積を有する流動空間内へ送り込み、流動させた後に固化させることで、ポリマー主鎖と針状結晶がほぼ直交するような配向関係を形成することは可能である。このような例としては、センターゲートから溶融ポリマーを流し込み、円盤形状に成形する光ディスク基板の成形法などが挙げられる。本実施例のようにサイドゲートであっても、開口と流動空間内との関係が前述の通りであればもちろん可能である。
【0082】
なお、上記各実施例はあくまで例示であり、ポリマー主鎖と針状結晶を同じ方向に統計的に配向させる場合、ポリマー主鎖と針状結晶が直交するように統計的に配向する場合のいずれにおいても、配向複屈折の符号の関係を考慮して、様々な配向複屈折を有するポリマーをマトリックスとする非複屈折性光学材料あるいは同材料からなる光学素子を得ることができる。
【0083】
正、負の配向複屈折を有するポリマーの例は、前述の表1に示した。入手可能な商品では、正の配向複屈折を有するポリマーとして、例えばゼオノア(登録商標;日本ゼオン株式会社製)、ゼオネックス(登録商標;日本ゼオン株式会社製)、及び上記実施例で用いたアートン(登録商標;製)がある。
【0084】
【発明の効果】
本願発明によれば、反応液(水)の凝固点を降下させる簡単な手法を導入することで、結晶ドープ法に使用できる平均長さ500nm以下の炭酸ストロンチウムの結晶微粒子を製造することができる。また、そのような方法で得られた小サイズの炭酸ストロンチウム結晶微粒子を結晶ドープ法に用いて、樹脂マトリックスの透明性が保持された非複屈折性光学樹脂材料を得ることができる。
【図面の簡単な説明】
【図1】高分子樹脂材料が配向時に示す複屈折性について説明する図である。
【図2】実施例1及び実施例2で使用した実験系の概要を示した図である。
【図3】実施例1で得られた炭酸ストロンチウム針状結晶微粒子の走査型電子顕微鏡(SEM)観察写真で、観察倍率は、図3(a)では3000倍、図3(b)では20000倍、図3(c)では100000倍である。
【図4】実施例2で得られた炭酸ストロンチウム針状結晶微粒子の走査型電子顕微鏡(SEM)観察写真で、観察倍率は、図4(a)では3000倍、図4(b)では20000倍、図4(c)では100000倍である。
【図5】実施例3で使用した実験系の概要を示した図である。
【図6】実施例3で得られた炭酸ストロンチウム針状結晶微粒子の走査型電子顕微鏡(SEM)観察写真で、観察倍率は100000倍である。
【図7】実施例4における比較試料及び非複屈折性樹脂フィルムの複屈折測定結果を表わすグラフである。
【図8】(a)は、実施例5に関連して、比較試料のレターデーション測定結果を表わしたレターデーションマップ、(b)は実施例5で得られた非複屈折性樹脂板試料について、レターデーションの測定結果を表わしたレターデーションマップ、(c)は実施例5における比較試料及び非複屈折性樹脂板試料のレターデーション測定範囲について説明する図である。
【符号の説明】
1 モノマー(結合鎖構成単位)
2 屈折率楕円体(ミクロスケール)
3 屈折率楕円体(マクロスケール)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing fine particulate strontium carbonate having orientation birefringence, a non-birefringent optical material containing fine particulate strontium carbonate produced by the method, and an optical element using the material. More specifically, a method for producing particulate strontium carbonate having a long axis having an average size (length) of 500 nm or less on average, and a non-birefringent optical material containing particulate strontium carbonate produced by the method And an optical element using the same material.
[0002]
In this specification, “non-birefringent optical resin material” means “orientation of polymer-bonded chains due to the history of external action (for example, stress acting during injection molding, extrusion molding, etc.). In spite of the occurrence, it means “optical resin material in which the expression of birefringence is suppressed to be extremely small as a whole”. Further, the size of the fine particles refers to that measured along the geometric major axis direction of the shape.
[0003]
[Prior art]
In recent years, polymer resins have been used as materials for general optical components such as eyeglass lenses and transparent plates, optical components for optoelectronics, especially optical components used in laser-related devices such as optical disk devices for recording sound, video, character information, etc. The tendency to use is increasing. This is because an optical material made of a polymer resin (hereinafter also referred to as “polymer optical material”) is generally lighter, less expensive, and more workable and mass-productive than other optical materials (such as optical glass). Because. In particular, the polymer resin material has a great advantage that a molding technique such as injection molding or extrusion molding can be easily applied.
[0004]
However, ordinary polymer optical materials that have been used so far have a property that a number of products obtained by applying these molding techniques exhibit birefringence. This fact itself is widely known including its cause.
[0005]
FIG. 1 is a diagram for simply explaining this. As shown in the figure, the polymer optical material that has undergone the molding process is generally in a state in which a large number of units (monomers) 1 that form a polymer bond chain are bonded in a volumetric orientation direction. And about almost all the polymeric materials normally used as an optical material, each unit (it showed with the code | symbol 1) has optical anisotropy regarding a refractive index. That is, the refractive index npr related to the polarization component in the direction parallel to the alignment direction is different from the refractive index nvt related to the polarization component in the direction perpendicular to the alignment direction.
[0006]
Such optical anisotropy can be expressed by a refractive index ellipsoid as well known. In FIG. 1, the ellipse mark JP12 attached to each connecting
[0007]
That is, in the case of polymethyl methacrylate, npr <nvt. The difference Δn = npr−nvt between them is called “orientation birefringence value”. The orientation birefringence value Δn in an actual polymer material varies depending on the degree of orientation of the bond chain (main chain) of the polymer material. The value of Δn when the bond chain (main chain) extends to the ideal state is called “inherent birefringence value”. Table 1 shows intrinsic birefringence values of typical optical resins.
[0008]
Thus, since the intrinsic birefringence value is the value of Δn under ideal orientation conditions, if the value of Δn of an actual polymer material is represented by Δn (real), 0 <| Δn (real) | <intrinsic birefringence A refraction value relationship is established.
[0009]
For example, since the intrinsic birefringence value = −0.0043 in the polymethyl methacrylate shown in FIG. 1, the orientation birefringence value Δn (real) in an actual polymer is −0.0043 <Δn (real) <0. Become. Here, it is difficult to realize both Δn (real) = − 0.0043 (value in an ideal alignment state) and Δn (real) = 0 (value in a complete non-alignment state). Similarly, in the case of polystyrene, −0.100 <Δn (real) <0. In polyethylene, Δn indicates a positive value, and 0 <Δn (real) <+ 0.044.
[0010]
Thus, the birefringence depending on the orientation is called orientation birefringence, and the major axis direction of the refractive index ellipsoid is called the orientation birefringence direction. In addition, “sign of orientation birefringence value Δn (real)” or the same “sign of intrinsic orientation birefringence value” is positive (Δn> 0), “sign of birefringence is positive”, and the like Is negative (Δn <0) is expressed as “the sign of birefringence is negative”.
[0011]
[Table 1]
[0012]
Such a birefringence expression method can also be applied to inorganic fine particles (crystal grains) having a bar shape, needle shape, elliptical shape, or the like. In this case, the refractive index for the polarization component in the direction parallel to the major axis direction in the geometric sense of the fine particles is npr, and the refractive index for the polarization component in the direction perpendicular to the major axis direction is nvt. When the value of Δn = npr−nvt is positive, it is expressed as “birefringence sign is positive”, and when negative, “birefringence sign is negative”.
[0013]
However, since the refractive index is generally not uniform with respect to the polarization component in the direction perpendicular to the major axis direction, the three axes corresponding to the crystal structure (a axis, b axis, c axis; major axis as c axis) The refractive index for the polarization component in the a-axis direction is na, the refractive index for the polarization component in the b-axis direction is nb, and the refractive index for the polarization component in the c-axis direction is nc. Then, npr = nc and nvt = (na + nb) / 2.
[0014]
Oriented birefringence as described above is not particularly problematic in optical devices used in applications where polarization properties are not important. However, for example, in a recently developed write / erase type magneto-optical disk, a polarized beam is used as a read beam or a write beam, so that a birefringent optical element (disk itself, lens, etc.) is included in the optical path. If present, it will adversely affect read or write accuracy. Moreover, not only in such an example but generally speaking, the presence of unintended birefringence is not preferable for many optical elements.
[0015]
In general, various processes for molding optical resins (translucent polymers) into optical devices include processes in which forces such as stretching, extrusion, injection, and the like cause orientation of the main chain, and therefore almost all In this case, the orientation birefringence inherent to the polymer occurs. Therefore, there is an increasing need to avoid the above problems.
[0016]
Against this background, several techniques for reducing / removing the birefringence of polymer optical materials have been proposed. Among them, there is a type of technology proposed by one of the inventors of the present application. In this technology, a large number of inorganic fine particles exhibiting oriented birefringence are contained in a polymer matrix in a statistically oriented state, and the birefringence of the polymer matrix is reduced or offset. The reduction / cancellation method includes the relationship between the orientation birefringence of the polymer matrix and the orientation birefringence of the inorganic fine particles (same sign / different sign), and the orientation of the binding chains of the polymer matrix and the inorganic fine particles. There are two types depending on the orientation relationship (statistically parallel / statistically orthogonal). This will be referred to as
[0017]
Type 1: It is disclosed in International Patent Publication WO01 / 25364. As described in the same publication, a large number of inorganic fine particles are dispersed in a transparent polymer resin, and a molding force is applied from the outside by stretching, etc. Thus, it is oriented “substantially parallel”.
[0018]
Here, the combination of the polymer resin and the inorganic fine particle is such that when the polymer resin bond chain and the inorganic fine particle (its major axis) are oriented in parallel, the orientation birefringence of both cancels each other. select. That is, the signs of the orientation birefringence of both are different signs.
[0019]
Type 2: Described in the specification / drawing of Japanese Patent Application No. 2002-67457. As described in the same specification / drawing, a large number of inorganic fine particles are dispersed in a transparent polymer resin, and a molding force is applied from the outside by injection or the like, so that the polymer resin bond chain and the large number of inorganic fine particles Are orientated statistically “almost perpendicular”.
[0020]
Here, the combination of the polymer resin and the inorganic fine particles is such that when the polymer resin bond chain and the inorganic fine particles (its long axis) are oriented vertically, the orientation birefringence of the two cancels each other. select. That is, the signs of the orientation birefringence of both are the same.
[0021]
These methods are called crystal dope methods, and the birefringence caused by the orientation of the polymer resin bond chain is reduced by the birefringence of a large number of statistically oriented inorganic fine particles. An optical resin material can be obtained. Further, if the optical resin material is employed as a material for an optical element, a non-birefringent optical element can be obtained. For example, if a lens shape is provided, a non-birefringent lens can be obtained, and if a sheet shape is provided, a non-birefringent translucent sheet can be obtained.
[0022]
By the way, in order to actually apply the crystal doping method, it is necessary to prepare crystal fine particles suitable for the technique. The present inventor has listed candidates that can be suitable crystal fine particle candidates, obtained available ones, and applied the crystal doping method experimentally. As a result, a certain effect (decreased birefringence) was confirmed, but it was found that there was a problem in the transparency of the obtained non-birefringent optical resin material. This was presumed to be because the particle size of the available crystal fine particles was not sufficiently small.
[0023]
Specifically, it was speculated that crystal fine particles of 500 nm or less that can be used in the crystal doping method were desired, but such crystal fine particles were not commercially available and proved difficult to obtain.
[0024]
Calcium carbonate is selected as a candidate that can be synthesized relatively easily in a normal chemical laboratory, and the desired particle-like crystals are obtained at the same time as the particle size is reduced by homogeneous precipitation or heterogeneous precipitation. I tried to do that, but I didn't get good results. This is probably because the calcium carbonate crystal system includes aragonite, calcite, and vaterite, and the most stable calcite is likely to be mixed during the synthesis of needle-shaped aragonite. Eventually, the inventor focused on acicular crystals (strontianite) on strontium carbonate. The main reason is as follows.
[0025]
(1) It is relatively easy to take the form of needle-like crystal particles.
[0026]
(2) Refractive index n (na, nb, nc) = (1.520, 1.666, 1.669), which is relatively close to the refractive index of many polymers, and the crystal itself has a large birefringence. Suitable for crystal doping.
[0027]
(3) Raw materials (detailed later) can be easily obtained in nature in the form of natural ores.
[0028]
(4) Harmless to human body and environment.
[0029]
[Problems to be solved by the invention]
Accordingly, one object of the present invention is to provide a method for producing sufficiently small (average length of 500 nm or less) crystal particles of strontium carbonate that can be used in a crystal doping method. Another object of the present invention is to obtain a non-birefringent optical resin material by using small-sized strontium carbonate crystal fine particles obtained by such a production method in a crystal doping method.
[0030]
[Means for Solving the Problems]
In the present invention, when obtaining strontium carbonate crystal fine particles by a uniform precipitation method or a carbon dioxide compounding method (also referred to as a heterogeneous method), the strontium carbonate crystal fine particles are produced in a temperature environment below freezing point, thereby obtaining the above-mentioned problem. It has been solved.
[0031]
First, according to the present invention, “the strontium salt is dissolved in water and urea is hydrolyzed in the water, and the ionized Sr2+In a method for producing strontium carbonate, which generates fine particles of strontium carbonate having an average particle size of 500 nm or less by reacting ions with carbonate ions generated during the hydrolysis; a freezing point depressing substance that lowers the freezing point of water in water Is added, and the production of the crystal fine particles of the strontium carbonate is performed below freezing point.
[0032]
Here, it is preferable that the hydrolysis of urea is promoted in the presence of a urea hydrolase.
[0033]
According to the present invention, further, “a suspension of strontium hydroxide added to water is prepared, carbon dioxide gas is blown into the suspension, and Sr2+In the method for producing strontium carbonate, in which ions and carbonate ions are reacted to produce fine particles of strontium carbonate having an average particle size of 500 nm or less; a freezing point depressant that lowers the freezing point of water is added to the suspension; The above-mentioned production method is provided, characterized in that the formation of strontium crystal fine particles is performed below freezing point.
[0034]
In addition, as a freezing point depressing substance, for example, ethylene glycol can be used. The freezing point depressing substance is preferably added so that the freezing point is below 5 degrees below freezing.
[0035]
Further, according to the present invention, “a transparent polymer resin having orientation birefringence generated by orientation of a binding chain, and a large number of inorganic fine particles dispersed in the polymer resin, Regarding the non-birefringent optical resin material statistically oriented so as to reduce the orientation birefringence of the polymer resin within the polymer resin, as a large number of inorganic fine particles, any one of the above production methods Fine particles of strontium carbonate produced by
[0036]
As described above, the basic feature of the present invention is that when the fine particles of strontium carbonate are synthesized by a so-called homogeneous precipitation method (claims 1 to 3) or a carbon dioxide gas compound method (also called a heterogeneous method), the freezing point of water. The point is that the fine particles were synthesized and generated in a solution below freezing point. The reason why the sub-freezing temperature environment is adopted is as follows.
[0037]
As described above, the present invention uses a uniform precipitation method or a carbon dioxide gas compound method (non-uniform method), and both have a tendency common to the two methods: “Strontium carbonate having a smaller particle diameter as the water temperature is lowered. Crystalline fine particles are obtained ”. However, since both methods are performed in water (in the coexistence of liquid water), if the temperature is lowered beyond the freezing point, the water freezes, and eventually, fine particles of 1 μm or less at a low temperature where water does not freeze. It was difficult to get.
[0038]
In the present invention, this problem is cleared by adding a solvent (freezing point depressing substance) that can lower the freezing point of water without inhibiting the synthesis reaction. A freezing point depressant suitable for practical use is ethylene glycol.
[0039]
Here, the “homogeneous precipitation method” and “carbon dioxide gas compounding method (heterogeneous method)” used in the present invention are summarized in general matters in the synthesis of strontium carbonate.
[0040]
1. Uniform precipitation method: Sr dissolved in water and ionized Sr2+In this method, strontium carbonate is synthesized by reacting ions and carbonate ions generated during the hydrolysis of urea. The reaction formula is as follows.
[0041]
Hydrolysis of urea;
(NH2 )2CO + 3H2 O → 2NHFourOH + CO2 ↑ (*)
CO generated in water from (*)Three 2And Sr2+Reaction with;
Sr2++ COThree 2- → Sr ↓
Since the reaction is only in the liquid phase at the start of the reaction and the reaction product precipitates, this is called “homogeneous precipitation”. Below room temperature, the reaction rate is slow, and to accelerate the reaction (ie, to complete the reaction in a few hours), it is necessary to heat it above about 70 ° C. However, usually, a urea hydrolase (urease) is added, and the reaction can be advanced rapidly even at a low temperature (20 ° C. or lower).
[0042]
2. Carbon dioxide compound method (non-uniform method)
By preparing a suspension of strontium hydroxide in water and blowing carbon dioxide there, Sr2+In this method, strontium carbonate is synthesized by reacting ions with carbonate ions. Since the liquid phase and the solid phase exist in the reaction system at the start of the reaction, it is also called a heterogeneous method.
[0043]
【Example】
Hereinafter, several examples of the present invention to which a uniform precipitation method or a carbon dioxide compound method (non-uniform method) is applied will be described.
[0044]
[Example 1 (application of uniform precipitation method)]
To 375 g of water, 81.75 g of urea (21.8 wt% with respect to water) and 30.75 g of strontium nitrate (8.2 wt% with respect to water) were added. Further, in order to carry out the reaction at below freezing point, 75.00 g (20 wt% with respect to water) of ethylene glycol as an organic solvent was added to the reaction solution. This solution was put into the beaker of the experimental system shown in FIG. 2, stirred and cooled while irradiating ultrasonic waves.
[0045]
Shinto Kagaku Co., Ltd., Three-One Motor BLh600 as an agitator motor, Honda Electronics Co., Ltd. as an ultrasonic irradiation water bath, ultrasonic cleaner W-113MK-II, Cooler manufactured by Thomas Scientific Instruments Co., Ltd., sealed A tank type handy cooler TRL-C13 was used.
[0046]
The temperature of the reaction solution was lowered to −5 ° C. and kept at −5 ° C. by circulating an ethylene glycol antifreeze solution (Thomas Scientific Instruments Co., Ltd., Nybrine; registered trademark) in a water bath with a cooler. Subsequently, 1.50 g of the digestive enzyme Urease was added to the reaction solution. After the digestive enzyme was added, crystals started to precipitate in the reaction solution and became cloudy. The reaction was carried out for 12 hours while maintaining the temperature of the reaction solution at −5 ° C.
[0047]
Thereafter, the temperature of the reaction solution was raised to 20 ° C., and the crystals were aged for 12 hours while maintaining the temperature at 20 ° C. The obtained crystal was taken out by filtration and dried. Scanning electron microscope (SEM) observation photographs of the crystals after drying are shown in FIGS. The observation magnification in each photograph is 3000 times in FIG. 3 (a), 20000 times in FIG. 3 (b), and 100000 times in FIG. 3 (c). As can be seen from the comparison with the scale in each photograph, strontium carbonate needle crystal particles having a length of 500 nm or less (approximately about 400 nm on average) are obtained.
[0048]
[Example 2 (applying uniform precipitation method)]
To 375 g of water, 81.75 g of urea (21.8 wt% with respect to water) and 30.75 g of strontium nitrate (8.2 wt% with respect to water) were added. Further, in order to carry out the reaction at below freezing point, 75.00 g (20 wt% with respect to water) of ethylene glycol as an organic solvent was added to the reaction solution. This solution was put into the beaker of the experimental system shown in FIG. 2, stirred and cooled while irradiating ultrasonic waves.
[0049]
Shinto Kagaku Co., Ltd., Three-One Motor BLh600 as an agitator motor, Honda Electronics Co., Ltd. as an ultrasonic irradiation water bath, ultrasonic cleaner W-113MK-II, Cooler manufactured by Thomas Scientific Instruments Co., Ltd., sealed A tank type handy cooler TRL-C13 was used. The temperature of the reaction solution was lowered to −5 ° C. and kept at −5 ° C. by circulating an ethylene glycol antifreeze solution (Thomas Scientific Instruments Co., Ltd., Nybrine; registered trademark) in a water bath with a cooler.
[0050]
Subsequently, 1.50 g of the digestive enzyme Urease was added to the reaction solution. After the digestive enzyme was added, crystals started to precipitate in the reaction solution and became cloudy. The reaction was carried out for 12 hours while maintaining the temperature of the reaction solution at −5 ° C. Thereafter, the temperature of the reaction solution was raised to 0 ° C., and the crystals were aged for 24 hours while maintaining the temperature at 0 ° C. The obtained crystal was taken out by filtration and dried. Scanning electron microscope (SEM) observation photographs of the crystals after drying are shown in FIGS. The observation magnification in each photograph is 3000 times in FIG. 4 (a), 20000 times in FIG. 4 (b), and 100000 times in FIG. 4 (c). As can be seen from the comparison with the scale in each photograph, strontium carbonate needle crystal particles having an average length of about 200 nm are obtained.
[0051]
[Example 3 (carbon dioxide compound method (non-uniform method))]
A suspension in which 60 g of methanol (20 wt% with respect to water) and 80 g of strontium hydroxide octahydrate (26.7 wt% with respect to water) were added to 300 g of water was prepared. This suspension was put into a beaker and an experimental system as shown in FIG. 5 was assembled. The suspension was stirred by a stirring motor (manufactured by Shinto Kagaku Co., Ltd., Three-One Motor BLh600) in order to give energy to the reaction system and promote the formation of crystal nuclei while preventing aggregation of the generated particles as much as possible. Furthermore, ultrasonic waves were irradiated by a water bath with an ultrasonic irradiation function (manufactured by Honda Electronics Co., Ltd., ultrasonic cleaner W-113MK-II). In order to maintain the temperature of the suspension at −10 ° C., a commercially available ethylene glycol antifreeze solution (Thomas Scientific Instruments Co., Ltd.) in a water bath using a cooler (Thomas Scientific Instruments Co., Ltd., closed tank type handy cooler TRL-C13). Manufactured, Nybrine; registered trademark).
[0052]
CO2 gas and N2 gas were mixed at a volume ratio of CO2: N2 = 30: 70 using a gas mixer (Cofflock Co., Ltd., MiNi-Gascom PMG-1), and 200 ml / min in the suspension. Introduced at flow rate. After the mixed gas was introduced into the suspension until the pH was stabilized at around 7, the mixed gas introduction was stopped.
A silane coupling solution was prepared separately from this suspension. Acetic acid was added to 40 g of water to adjust the pH to about 5.3, and a silane coupling agent (3-glycidoxypropyltrimethoxysilane) was further added, followed by stirring for about 3 hours.
[0053]
The amount of the silane coupling agent was 30 wt% with respect to strontium carbonate. The prepared silane coupling solution was added to the suspension, and surface treatment was performed while stirring with a stirring motor for 24 hours. In order to remove unreacted components, the suspension was filtered with suction through a 0.1 μm pore size filter paper, the product was washed by stirring in 500 ml of acetone for 24 hours, and the product obtained by filtration once more was vacuumed. It was dried with a dryer. A SEM observation photograph of the obtained crystal is shown in FIG. The observation magnification is 100,000 times. From the photograph, it was confirmed that strontium carbonate crystals having an average length of 200 nm or less were obtained.
[0054]
Crystal fine particles synthesized by the above-described method can be dispersed in the resin by kneading, adding to a monomer and polymerizing, or adding to a polymer solution and melting after removing the solvent. In maintaining the transparency of the matrix resin, it is extremely advantageous that the synthesized crystal fine particles have an average length of 500 nm or less, and high transparency is maintained if the addition concentration is very small (5 wt% or less). Is done. In particular, if it is 200 nm or less, the transparency of the matrix resin is hardly impaired. The resin to which the strontium carbonate crystal fine particles are added can be applied to many film and bulk optical elements.
[0055]
Strontium carbonate is a biaxial birefringent crystal, and as described above, the refractive index in the direction of each optical axis is n (na, nb, nc) = (1.520, 1.666, 1.669). It is.
[0056]
The major axis direction of the needle-like crystal substantially coincides with the optical axis direction having a refractive index of 1.520. Therefore, it has a negative birefringence effect with respect to the orientation direction of the acicular crystals. Since the strontium carbonate crystal fine particles obtained by the production method according to the present invention described above are in the form of needles (rods), by applying stress in a state dispersed in a viscous medium, It can be oriented in a predetermined direction.
[0057]
For example, as shown in the examples described later, the needle-like crystals can be statistically oriented along the direction of hot stretching by adding the polymer film to the polymer film and thermally stretching the polymer film. At this time, since the polymer main chain is also statistically oriented along the stretching direction, the needle crystals and the polymer main chain are eventually oriented in a statistically parallel relationship.
[0058]
In addition, rod-like crystal particles of strontium carbonate can be added to the polymer pellets, and the polymer pellets can be used in an injection molding method or an extrusion molding method, and can be oriented by flow during polymer melting.
[0059]
Usually, the statistical orientation direction of the rod-like crystal fine particles is a direction along the extrusion molding direction in the extrusion molding method. At this time, since the polymer main chain is also statistically oriented along the extrusion direction, the needle crystal and the polymer main chain are eventually oriented in a statistically parallel relationship.
[0060]
In contrast, if injection molding is performed from a narrow gate into a wide mold, statistical orientation in a direction perpendicular to the injection direction is possible. On the other hand, since the polymer main chain is statistically oriented along the injection direction, the needle crystal and the polymer main chain show a statistical orientation relationship orthogonal to each other.
[0061]
However, in general injection molding, the flow behavior of the molten polymer is more complicated three-dimensionally depending on the mold shape, etc., so the relationship between the orientation direction of the polymer main chain and the needle crystal is on a case-by-case basis. Come different. Nonetheless, by analyzing the relationship between flow behavior and mold shape, etc., and by appropriately determining the molding conditions, the orientation direction of the polymer main chain and the needle crystal can be statistically almost orthogonal, or the same direction. It is also possible to make it.
[0062]
When the strontium carbonate needle crystal obtained in the present invention is used in a crystal doping method to obtain a non-birefringent optical resin, it can be combined with any polymer having positive and negative orientation birefringence. When dispersing in a polymer having a positive orientation birefringence, the strontium carbonate needle crystals may be statistically oriented parallel to the polymer main chain to reduce the orientation birefringence, and the orientation birefringence is negative. In the case of dispersing in a polymer, strontium carbonate needle-like crystals may be statistically oriented perpendicularly to the polymer main chain to reduce the orientation birefringence.
[0063]
With such characteristics, for example, various lenses such as pickup lenses and Ftheta lenses (fθ lenses) for which birefringence is to be minimized, various films used for devices using polarized light such as CD substrates, DVD substrates, liquid crystal displays, etc. It can be used in a molding device, and can also be used to mold an optical element having a predetermined birefringence such as a retardation plate.
[0064]
As described above, the technology for reducing the orientation birefringence of the polymer by orienting the polymer main chain and the needle crystal in the same direction is described in detail in International Patent Publication No. WO01 / 25364. . Japanese Patent Application No. 2002-67457 describes details of a technique for reducing the orientation birefringence of the polymer by making the polymer main chain and the needle crystal substantially orthogonal to each other.
[0065]
Hereinafter, an example of a non-birefringent optical resin in which strontium carbonate crystal particles obtained by the above-described manufacturing method are used in a crystal doping method and an optical element made of the same material will be described.
[0066]
[Example 4]
0.03 g of strontium carbonate needle crystal particles (average particle diameter of about 400 nm) synthesized by the above-described uniform precipitation method (Example 1 or Example 2) was weighed and put into a sample tube. 6.0 g of Tetrachemical Co., Ltd. tetrahydrofuran was added thereto. Using an ultrasonic cleaner W-113MK-II manufactured by Honda Electronics Co., Ltd., ultrasonic irradiation was performed at 24 kHz for 5 minutes to disperse the strontium carbonate needle crystal particles in tetrahydrofuran.
[0067]
Furthermore, 1.5 g of transparent resin Arton (registered trademark) manufactured by JSR Corporation was added, and shaken with a shaker multi-shaker MMS-310 model manufactured by Tokyo Rika Kikai Co., Ltd. at 140 rpm for 12 hours. The obtained polymer solution was developed on a horizontal glass plate using a knife coater, and the solvent was evaporated at room temperature.
[0068]
A polymer film having a thickness of about 50 μm was peeled off from the glass plate, and dried under reduced pressure at 100 Pa (Pascal) and 70 ° C. for 24 hours using a vacuum constant temperature dryer VOS-301SD manufactured by Tokyo Rika Kikai Co., Ltd.
[0069]
The film sample obtained as described above was uniaxially stretched at a stretching temperature of 230 ° C. using a general-purpose tester RTC-1210A manufactured by A & D Corporation. The birefringence of the stretched film was measured using ABR-10A manufactured by UNIOPT Co., Ltd. The results are shown in the graph of FIG.
[0070]
In FIG. 7, the horizontal axis represents the draw ratio and the vertical axis represents the birefringence magnitude. The magnitude of birefringence can be expressed by (nmax−nmin) / 2 (nmax + nmin). Here, nmax and nmin represent the maximum refractive index value and the minimum refractive index value caused by birefringence, respectively. The symbol ▲ indicates the result of the transparent resin Arton (registered trademark) film in which strontium carbonate is not dispersed, and the symbol ■ indicates the result of Arton (registered trademark) film in which 2 wt% of strontium carbonate is added and dispersed.
[0071]
From this graph, it can be seen that by adding strontium carbonate, the positive orientation birefringence of arton manifested by stretching is reduced, and the sign of birefringence turns negative at a relatively large stretching ratio. . From this, it can be seen that, for example, the orientation birefringence can be made very small by appropriately adjusting the addition amount according to the draw ratio.
[0072]
[Example 5]
Using a biaxial extruder, strontium carbonate needle crystal fine particles (average particle diameter of about 400 nm) synthesized by the homogeneous precipitation method (Example 1 or Example 2) described above were used to prepare a transparent resin polymethyl methacrylate (Mitsubishi Rayon Co., Ltd.). Kneaded into a registered trademark (VH) to give pellets, and the concentration of strontium carbonate needle crystals added at this time was 0.02 with respect to 100 methyl methacrylate.
[0073]
This pellet was injection-molded into a flat plate shape (35 mm × 35 mm × 2 mm) using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd., model HM-7). The injection molding conditions at this time were a nozzle temperature of 260 ° C., a cylinder temperature of 260 ° C., and a mold temperature of 70 ° C. The in-plane distribution of retardation (= [birefringence value Δn] × [optical path length]) of the obtained flat sample was measured using a birefringence measuring device (manufactured by UNIOPTO Co., Ltd., automatic birefringence measuring device BR-10A-EX). ). The results are shown in FIGS. 8 (a) and 8 (b). FIG. 8A is a retardation map showing the retardation measurement results of a comparative sample (a plate-like body obtained by injection molding under the same conditions of additive-free polymethyl methacrylate and the same size as a non-birefringent resin plate sample). FIG. 8B is a retardation map showing the measurement results of retardation for the non-birefringent resin plate sample obtained in Example 5.
[0074]
The measurement was performed using laser light that passed through the flat sample in the thickness direction. The retardation maps shown in FIGS. 8A and 8B represent the value of retardation received by light that passes through a plane surrounded by a side of 35 mm substantially perpendicularly as 1 mm square segments. The measurement range was an area approximately 5 mm inside from the periphery, represented by the mesh pattern of FIG.
[0075]
Retardation within each segment is defined as the “fast axis” where the refractive index is the smallest relative to the polarized light perpendicular to each segment, and the “slow axis” is the direction where the refractive index is the largest perpendicular to it. The retardation was obtained from the phase difference between the polarized lights in each direction. The straight line in each segment represents the direction of the fast axis, and the direction orthogonal thereto is the slow axis. The size of the retardation is expressed in shades.
[0076]
The portion where the molten polymer flows in the mold is called a gate, and the center of the right end of the retardation map corresponds to the portion closest to the gate of the plate sample. Therefore, the polymer melted from the right side of the retardation map flows into the mold and proceeds to the left side.
[0077]
Looking at the vicinity of the gate in FIG. 8A, the fast axis (direction in which the refractive index is small) is distributed radially from the portion corresponding to the gate position. Since the slow axis (direction in which the refractive index is large) is orthogonal to the fast axis, when concentric circles are considered around the gate position, they are oriented in the direction along the circumference.
[0078]
Since the orientation birefringence of polymethyl methacrylate is negative (the refractive index in the orientation direction of the polymer main chain is smaller than the direction perpendicular thereto), the main chain of polymethyl methacrylate is oriented radially from the gate. I understand that. Similarly, the orientation direction of polymethyl methacrylate in each part of the sample can be known. However, this is an average value in the entire thickness direction of each segment, and in a thin layer near the surface, there is a portion where the orientation direction is different from the inside. However, it can be considered that most parts other than the surface layer are statistically oriented in this direction.
[0079]
Next, comparing FIG. 8A and FIG. 8B, it can be seen that the retardation of the whole sample is smaller in the case of polymethyl methacrylate to which needle crystals of strontium carbonate are added. The average value of retardation in the entire measurement range was polymethyl methacrylate: 6.5 nm, and strontium carbonate needle crystal added polymethyl methacrylate: 3.9 nm.
[0080]
Further, when the orientation state of the acicular crystals inside the injection-molded product was observed with a scanning electron microscope, it was shown in FIG. It was confirmed that each was oriented in a direction along the fast axis. This is because the strontium carbonate needle-like crystals whose refractive index in the major axis direction is smaller than the refractive index in the minor axis direction are oriented in a direction substantially perpendicular to the polymer main chain, thereby causing negative orientation birefringence of polymethyl methacrylate. This means that we were able to offset
[0081]
In this way, the polymer main chain and the needle-like crystal are almost orthogonally crossed by being sent from the opening having a relatively small cross-sectional area into a flow space having a relatively large cross-sectional area and solidifying after flowing. It is possible to form a relationship. An example of such a method is a method of forming an optical disk substrate in which a molten polymer is poured from a center gate and formed into a disk shape. Even in the case of the side gate as in the present embodiment, it is of course possible if the relationship between the opening and the flow space is as described above.
[0082]
In addition, each said Example is an illustration to the last, either when the polymer main chain and the needle-like crystal are statistically oriented in the same direction, or when the polymer main chain and the needle-like crystal are statistically oriented so as to be orthogonal However, in consideration of the relationship of the signs of orientation birefringence, a non-birefringent optical material having a polymer having various orientation birefringence as a matrix or an optical element made of the same material can be obtained.
[0083]
Examples of polymers having positive and negative orientation birefringence are shown in Table 1 above. Among the available products, polymers having positive orientation birefringence include, for example, ZEONOR (registered trademark; manufactured by ZEON CORPORATION), ZEONEX (registered trademark; manufactured by ZEON CORPORATION), and Arton ( Registered trademark; manufactured).
[0084]
【The invention's effect】
According to the present invention, by introducing a simple technique for lowering the freezing point of the reaction liquid (water), strontium carbonate crystal fine particles having an average length of 500 nm or less that can be used in the crystal doping method can be produced. In addition, a non-birefringent optical resin material in which the transparency of the resin matrix is maintained can be obtained by using small-sized strontium carbonate crystal particles obtained by such a method in a crystal doping method.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining birefringence exhibited by a polymer resin material during orientation.
2 is a diagram showing an outline of an experimental system used in Example 1 and Example 2. FIG.
3 is a scanning electron microscope (SEM) observation photograph of the strontium carbonate needle crystal fine particles obtained in Example 1, and the observation magnification is 3000 times in FIG. 3 (a) and 20000 times in FIG. 3 (b). In FIG. 3C, it is 100,000 times.
4 is a scanning electron microscope (SEM) observation photograph of the strontium carbonate needle crystal fine particles obtained in Example 2, and the observation magnification is 3000 times in FIG. 4 (a) and 20000 times in FIG. 4 (b). In FIG. 4C, it is 100,000 times.
5 is a diagram showing an outline of an experimental system used in Example 3. FIG.
6 is a scanning electron microscope (SEM) observation photograph of strontium carbonate needle crystal fine particles obtained in Example 3, with an observation magnification of 100000 times. FIG.
7 is a graph showing the birefringence measurement results of a comparative sample and a non-birefringent resin film in Example 4. FIG.
8A is a retardation map showing the retardation measurement results of a comparative sample in relation to Example 5, and FIG. 8B is a non-birefringent resin plate sample obtained in Example 5. The retardation map showing the measurement results of retardation, (c) is a diagram for explaining the retardation measurement range of the comparative sample and the non-birefringent resin plate sample in Example 5.
[Explanation of symbols]
1 Monomer (bonded chain constituent unit)
2 Refractive index ellipsoid (micro scale)
3 Refractive index ellipsoid (macro scale)
Claims (9)
前記水に水の凝固点を降下させる凝固点降下物質が添加され、前記炭酸ストロンチウムの結晶微粒子の生成が氷点下で行なわれることを特徴とする、前記製造方法。The average particle size along the long axis is obtained by dissolving strontium salt in water, hydrolyzing urea in water, and reacting the ionized Sr 2+ ions with carbonate ions generated during the hydrolysis. In the method for producing strontium carbonate, wherein strontium carbonate fine particles having a diameter of 500 nm or less
The method according to claim 1, wherein a freezing point depressing substance that lowers the freezing point of water is added to the water, and the formation of the crystal fine particles of the strontium carbonate is performed below the freezing point.
前記懸濁液に水の凝固点を降下させる凝固点降下物質が添加され、前記炭酸ストロンチウムの結晶微粒子の生成が氷点下で行なわれることを特徴とする、前記製造方法。A suspension in which strontium hydroxide is added to water is prepared, carbon dioxide gas is blown into the suspension, Sr 2+ ions and carbonate ions are reacted, and a carbon dioxide having an average particle size along the major axis of 500 nm or less. In a method for producing strontium carbonate that produces fine particles of strontium;
The method according to claim 1, wherein a freezing point depressing substance that lowers the freezing point of water is added to the suspension, and the crystalline fine particles of the strontium carbonate are generated below freezing point.
前記無機微粒子は、前記高分子樹脂内で前記高分子樹脂の配向複屈折性を減殺するように統計的に配向している、非複屈折性光学樹脂材料であって;
前記多数の無機微粒子は、請求項1〜請求項7のいずれか1項に記載された製造方法のいずれかによって製造された炭酸ストロンチウムの微粒子であることを特徴とする、前記非複屈折性光学樹脂材料。A transparent polymer resin having orientation birefringence generated by the orientation of the binding chain, and a large number of inorganic fine particles dispersed in the polymer resin,
The inorganic fine particles are non-birefringent optical resin materials that are statistically oriented in the polymer resin so as to reduce the orientation birefringence of the polymer resin;
The non-birefringent optical system, wherein the large number of inorganic fine particles are fine particles of strontium carbonate produced by any one of the production methods according to any one of claims 1 to 7. Resin material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002196394A JP4140884B2 (en) | 2002-07-04 | 2002-07-04 | Method for producing strontium carbonate, non-birefringent optical resin material and optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002196394A JP4140884B2 (en) | 2002-07-04 | 2002-07-04 | Method for producing strontium carbonate, non-birefringent optical resin material and optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004035347A JP2004035347A (en) | 2004-02-05 |
JP4140884B2 true JP4140884B2 (en) | 2008-08-27 |
Family
ID=31704501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002196394A Expired - Fee Related JP4140884B2 (en) | 2002-07-04 | 2002-07-04 | Method for producing strontium carbonate, non-birefringent optical resin material and optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4140884B2 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004109355A (en) * | 2002-09-17 | 2004-04-08 | Yasuhiro Koike | Method for manufacturing optical material, optical material and optical element |
JP2005227427A (en) * | 2004-02-12 | 2005-08-25 | Sumitomo Chemical Co Ltd | Retardation film |
JP2005306640A (en) * | 2004-04-20 | 2005-11-04 | Fuji Photo Film Co Ltd | Method for manufacturing crystal of alkaline earth metal carbonate and crystal of alkaline earth metal carbonate |
DE102005025717A1 (en) * | 2004-08-14 | 2006-02-23 | Solvay Barium Strontium Gmbh | Strontium carbonate dispersion and redispersible powder obtainable therefrom |
JP4849793B2 (en) * | 2004-10-22 | 2012-01-11 | 宇部マテリアルズ株式会社 | Tabular strontium carbonate particles |
JP4273066B2 (en) * | 2004-10-26 | 2009-06-03 | 宇部マテリアルズ株式会社 | Acicular strontium carbonate particles |
JP4249115B2 (en) * | 2004-10-26 | 2009-04-02 | 宇部マテリアルズ株式会社 | Method for producing strontium carbonate fine particles |
JP4800671B2 (en) | 2004-12-15 | 2011-10-26 | 富士フイルム株式会社 | Carbonate crystals, process for producing the same, and transparent optical resin composition |
JP5081372B2 (en) * | 2004-12-15 | 2012-11-28 | 富士フイルム株式会社 | Method for producing carbonate |
TWI392701B (en) * | 2005-06-24 | 2013-04-11 | Fujifilm Corp | Optical resin composition and the preparing method thereof |
WO2006137344A1 (en) * | 2005-06-24 | 2006-12-28 | Fujifilm Corporation | Optical resin composition and process for producing the same |
JP2007099614A (en) * | 2005-09-12 | 2007-04-19 | Ube Material Industries Ltd | Strontium carbonate fine powder |
JP2008158462A (en) * | 2006-12-26 | 2008-07-10 | Tomoegawa Paper Co Ltd | Diffusing polarizer and optical element including the same |
KR101057546B1 (en) | 2007-06-05 | 2011-08-17 | 주식회사 엘지화학 | Optically anisotropic compound and resin composition containing same |
KR100993451B1 (en) | 2007-06-05 | 2010-11-09 | 주식회사 엘지화학 | Optically anisotropic compound and resin composition containing same |
US8501037B2 (en) | 2007-08-23 | 2013-08-06 | Lg Chem, Ltd. | Optically anisotropic compound and resin composition comprising the same |
KR101227216B1 (en) | 2008-07-04 | 2013-01-28 | 미쓰이 가가쿠 가부시키가이샤 | Polarizing diffuser film, method for producing polarizing diffuser film, and liquid crystal display device comprising polarizing diffuser film |
JP4920666B2 (en) * | 2008-12-02 | 2012-04-18 | 宇部マテリアルズ株式会社 | Method for producing acicular strontium carbonate particles |
JP2010231080A (en) * | 2009-03-27 | 2010-10-14 | Mitsui Chemicals Inc | Screen |
JP2011117992A (en) * | 2009-11-30 | 2011-06-16 | Mitsui Chemicals Inc | Polarizing diffusion film, method for manufacturing the polarizing diffusion film, and liquid crystal display device including the polarizing diffusion film |
JP2011145642A (en) * | 2009-12-16 | 2011-07-28 | Mitsui Chemicals Inc | Polarizing diffusion film, method for manufacturing the polarizing diffusion film, and liquid crystal display device including the polarizing diffusion film |
TW201207442A (en) | 2009-12-25 | 2012-02-16 | Mitsui Chemicals Inc | Polarizing diffusion film, method for fabricating the same, and liquid crystal display apparatus including the same |
JP2011236110A (en) * | 2010-04-12 | 2011-11-24 | Nitto Denko Corp | Method for producing organic-inorganic composite particle, particle dispersion, particle-dispersed resin composition, and method for producing organic-inorganic composite particle |
KR20130040819A (en) | 2010-04-12 | 2013-04-24 | 닛토덴코 가부시키가이샤 | Ion-conducting organic-inorganic composite particles, particle-containing resin composition, and ion-conducting molded body |
JP6058250B2 (en) * | 2010-04-12 | 2017-01-11 | 日東電工株式会社 | Particle-dispersed resin composition, particle-dispersed resin molded body, and production method thereof |
JP5679729B2 (en) * | 2010-07-30 | 2015-03-04 | 日東電工株式会社 | Retardation film and method for producing the same |
TWI516448B (en) | 2011-02-15 | 2016-01-11 | 宇部材料股份有限公司 | Preparation of needle - like strontium carbonate particles |
KR101384454B1 (en) * | 2012-02-14 | 2014-05-07 | 전남대학교산학협력단 | Method for fixing strontium and composition therefor |
US9067799B2 (en) | 2012-09-28 | 2015-06-30 | Ube Material Industries, Ltd. | Acicular strontium carbonate fine powder treated with a combination of compounds containing a polyoxyalkylene group |
EP3061728A4 (en) | 2013-10-25 | 2017-06-21 | Ube Material Industries, Ltd. | Needle-like strontium carbonate fine powder and method for producing same |
JP6555483B2 (en) | 2014-03-20 | 2019-08-07 | 宇部興産株式会社 | Acicular strontium carbonate fine particles and dispersions thereof |
US20180171077A1 (en) * | 2015-06-12 | 2018-06-21 | Ube Industries, Ltd. | Polyimide precursor composition and polyimide composition |
CN107850717A (en) * | 2015-08-20 | 2018-03-27 | 宇部兴产株式会社 | Optical film and image display device |
JP6729598B2 (en) * | 2015-10-30 | 2020-07-22 | 宇部興産株式会社 | Aqueous resin dispersion composition containing alkaline earth metal compound particles |
US20190092913A1 (en) * | 2016-03-03 | 2019-03-28 | Dai Nippon Printing Co., Ltd. | Polyimide film, method for producing polyimide film, and polyimide precursor resin composition |
KR20210002453A (en) | 2018-05-01 | 2021-01-08 | 우베 고산 가부시키가이샤 | Strontium carbonate particles, optical film and image display device |
-
2002
- 2002-07-04 JP JP2002196394A patent/JP4140884B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004035347A (en) | 2004-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4140884B2 (en) | Method for producing strontium carbonate, non-birefringent optical resin material and optical element | |
JP3648201B2 (en) | Non-birefringent optical resin material | |
JP2004109355A (en) | Method for manufacturing optical material, optical material and optical element | |
US8461243B2 (en) | Optical resin composition and method for producing the same | |
JP2009298658A (en) | Inorganic fine particle dispersion liquid, organic-inorganic composite composition, molding and optical component | |
JP2009001475A (en) | Method for manufacturing strontium carbonate fine particle | |
TWI275471B (en) | Non-birefringent optical resin material and manufacturing method of the same | |
JP4800671B2 (en) | Carbonate crystals, process for producing the same, and transparent optical resin composition | |
US20080260614A1 (en) | Process for Producing Carbonate Particles | |
TWI373453B (en) | Method for producing carbonate | |
US8663590B2 (en) | Carbonate and method for producing the same | |
JP4273066B2 (en) | Acicular strontium carbonate particles | |
JP5081372B2 (en) | Method for producing carbonate | |
JP2008247692A (en) | Carbonate and its production method | |
JP2006176367A (en) | Method for producing carbonate crystal | |
JP2007055866A (en) | Strontium carbonate crystal, method for producing the same and resin composition | |
JP4920666B2 (en) | Method for producing acicular strontium carbonate particles | |
TWI392701B (en) | Optical resin composition and the preparing method thereof | |
CN117886349A (en) | Barium sulfate for light diffusion and preparation method and application thereof | |
JP2006299001A (en) | Method for making inorganic/organic composite thermoplastic material and resin composition for optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040210 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050210 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080606 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |