JP4130614B2 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP4130614B2 JP4130614B2 JP2003173263A JP2003173263A JP4130614B2 JP 4130614 B2 JP4130614 B2 JP 4130614B2 JP 2003173263 A JP2003173263 A JP 2003173263A JP 2003173263 A JP2003173263 A JP 2003173263A JP 4130614 B2 JP4130614 B2 JP 4130614B2
- Authority
- JP
- Japan
- Prior art keywords
- colloidal
- slurry
- insulating film
- film
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
- H01L21/3212—Planarisation by chemical mechanical polishing [CMP]
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
【発明の属する技術分野】
本発明は、CMP(Chemical Mechanical Planarization)を用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
次世代の高性能LSIは、素子の高集積化が必須であり、CMPにより形成されるダマシン配線のデザインルールは、配線幅が0.07〜30μm、膜厚は100nmと厳しい設計となりつつある。
【0003】
CMP用スラリーを設計する場合には、この点を考慮して、配線幅に対し十分小さな研磨粒子を用いて、きめ細かい研磨を行なう必要がある。例えば、1次粒子径が制御された2種類以上のコロイダルシリカを含有するスラリーが提案されている(例えば、特許文献1および特許文献2参照)。これらは、被研磨面が軟らかい材料や単独の材質からなる場合には、エロージョンやスクラッチの発生を抑えながら研磨することができ、優れたCMP特性を示す。しかしながら、TaやSiO2のような硬い材料は、十分な速度で研磨することができない。また、2種類以上の材料が混在した場合には、2種類を同等の研磨速度で削るような研磨バランスに調整することが難しいという問題があった。
【0004】
【特許文献1】
特開2002−141314号公報
【0005】
【特許文献2】
特開2001−323254号公報
【0006】
【発明が解決しようとする課題】
本発明は、高い信頼性を有する半導体装置の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の一態様にかかる半導体装置の製造方法は、半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に凹部を形成する工程と、
前記凹部の内部および前記絶縁膜の上にバリア膜を介して配線材料を堆積して、導電性層を形成する工程と、
前記絶縁膜の上に堆積された前記導電性層を、スラリーを用いたCMPにより除去して前記絶縁膜の表面を露出させることにより、前記導電性層を前記凹部内部に残置する工程とを具備し、
前記スラリーは、コロイダルシリカ粒子と酸化剤と酸化抑制剤とを含有し、前記コロイダルシリカ粒子は、一次粒子径が5nm以上30nm以下の第1コロイダル粒子と、一次粒子径が第1コロイダル粒子を越える大きさの第2コロイダル粒子とを含み、下記数式で表わされる関係を満たすことを特徴とする。
【0010】
3≦d2/d1≦8 (1)
0.9<w1/(w1+w2)≦0.97 (2)
(上記数式中、d1およびd2は、それぞれ第1および第2のコロイダル粒子の平均粒子径であり、w1およびw2は、それぞれスラリー中に含有されている第1および第2のコロイダル粒子の重量である。)
本発明の他の態様にかかる半導体装置の製造方法は、半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に凹部を形成する工程と、
前記凹部の内部および前記絶縁膜の上にバリア膜を介して配線材料を堆積して、導電性層を形成する工程と、
前記絶縁膜の上に堆積された前記導電性層を、スラリーを用いたCMPにより除去して前記絶縁膜の表面を露出させることにより、前記導電性層を前記凹部内部に残置する工程とを具備し、
前記スラリーは、コロイダルシリカ粒子と酸化剤と酸化抑制剤とを含有し、前記コロイダルシリカ粒子は、一次粒子径が5nm以上30nm以下の第1コロイダル粒子と、一次粒子径が第1コロイダル粒子を越える大きさの第2コロイダル粒子とを含み、下記数式で表わされる関係を満たすことを特徴とする。
【0011】
5<d2/d1≦8 (3)
0.7≦w1/(w1+w2)≦0.97 (4)
(上記数式中、d1およびd2は、それぞれ第1および第2のコロイダル粒子の平均粒子径であり、w1およびw2は、それぞれスラリー中に含有されている第1および第2のコロイダル粒子の重量である。)
【0013】
【発明の実施の形態】
以下、本発明の実施形態を説明する。
【0014】
本発明の実施形態に用いられるCMP用スラリーにおいて、コロイダル粒子としては、例えば、コロイダルシリカ粒子が用いられる。このコロイダルシリカ粒子は、例えばSi(OC2H5)4、Si(sec−OC4H9)4、Si(OCH3)4、およびSi(OC4H9)4のようなシリコンアルコキシド化合物をゾルゲル法により加水分解することにより得ることができる。
【0015】
こうしたコロイダル粒子のうち、一次粒子径が5nm以上30nm以下のものが第1のコロイダル粒子として用いられる。一次粒子径が5nm未満の場合には、このコロイダル粒子を研磨粒子として含むスラリーの研磨特性が低下する。一方、30nmを越えると、このコロイダル粒子を研磨粒子として含むスラリーによる研磨時において、エロージョンおよびスクラッチが発生する。第1のコロイダル粒子の一次粒子径は、好ましくは10nm以上20nm以下である。
【0016】
第1のコロイダル粒子より一次粒子径が大きく、同一材料からなる粒子が、第2のコロイダル粒子として用いられる。ただし、第2のコロイダル粒子の平均粒子径および配合量は、特定の関係を満たさすように選択される。
【0017】
本発明の実施形態において、一次粒子径の異なる第1および第2のコロイダル粒子は、互いに交わることのない非常に急峻な粒度分布を有する。図1のグラフには、第1のコロイダルシリカの平均粒子径(d1)15nm、第2のコロイダルシリカの平均粒子径(d2)75nm、粒径比(d2/d1)5の粒度分布を、一例として示す。
【0018】
コロイダル粒子の一次粒子径は、SEMもしくはTEM観察により求めることができる。例えば、スラリーを希釈して試料台に均一に付着させ、加熱することにより液体成分を蒸発させる。その後、金などを蒸着してSEM観察により、10〜50万倍の倍率で写真を撮影して、ノギスなどで最長粒子径を計測する。この最長粒子径に対して垂直二等分線をひいたときの径を求め、それらの加算平均を一次粒子径とする。このような一次粒子径を100個以上算出して粒度累積曲線を求め、50%の一次粒子径を平均粒子径とする。
【0019】
本発明の実施形態に用いられるCMP用スラリーは、第1および第2のコロイダル粒子を含む研磨粒子を、純水等の水に分散させることにより調製することができる。第1のコロイダル粒子と第2のコロイダル粒子とを含む研磨粒子は、1重量%以上20重量%以下の割合でスラリー中に含有されることが好ましい。研磨粒子の含有量が1重量%未満の場合には、この研磨粒子を含むスラリーの研磨特性が低下するおそれがある。一方、20重量%を越えると、この研磨粒子を含むスラリーによる研磨時において、エロージョンおよびスクラッチが発生するおそれがある。より好ましい研磨粒子の含有量は、0.5重量%以上10重量%以下である。
【0020】
必要に応じて、酸化剤、酸化抑制剤、界面活性剤などの成分を添加して、本発明の実施形態に用いられるCMP用スラリーを調製することができる。
【0021】
酸化剤としては、例えば過硫酸アンモニウム、過硫酸カリウム、過酸化水素、硝酸第二鉄、および硝酸アンモニウムセリウム等が挙げられる。こうした酸化剤は、スラリー中に0.1〜5重量%配合することが好ましい。
【0022】
酸化抑制剤としては、キナルジン酸、キノリン酸、BTA、マロン酸、シュウ酸、およびコハク酸などの有機酸、グリシン、アラニン、およびトリプトファンなどのアミノ酸などを挙げることができる。この中で、取り扱いの点からキナルジン酸、キノリン酸、およびグリシンが好ましい。酸化抑制剤は、スラリー中に0.01〜3重量%配合することが好ましい。
【0023】
界面活性剤としては、例えばアニオン界面活性剤、カチオン界面活性剤、およびノニオン界面活性剤等を挙げることができ、これらは研磨時のエロージョンおよびスクラッチをさらに低減させる作用を有する。好適な界面活性剤としては、ドデシルベンゼンスルホン酸、ポリオキシエチレンアルキルアミン、およびポリオキシエチレンラウリルエーテル、アセチレンジオール系ノニオンなどが挙げられる。界面活性剤は、スラリー中に0.01〜1重量%配合することが好ましい。
【0024】
本発明の実施形態に用いられるCMP用スラリーのpHは特に限定されず、0.5〜12の領域で使用すればよい。例えば、pH調整剤としてのKOHを添加することによって、pHを11近傍に調整することができる。
【0025】
2種類のコロイダル粒子の粒径比および配合比を特定の範囲に規定しているので、かかるCMP用スラリーを用いることによって、エロージョンやスクラッチの発生を抑えて被研磨面を研磨することができる。しかも、硬い材質も、軟らかい材質と実質的に同等の高い速度で研磨することが可能となった。
【0026】
(実施形態1)
まず、平均粒子径(d1)が15nmの第1のコロイダルシリカと、第1のコロイダルシリカより平均粒子径(d2)が大きな第2のコロイダルシリカとを組み合わせて、種々のスラリーを調製した。
【0027】
第2のコロイダルシリカの平均粒子径(d2)は、15〜135nmの範囲で変化させることにより、粒経比(d2/d1)を1〜9とした。さらに、コロイダルシリカ全重量(w1+w2)に対する第1のコロイダルシリカの重量(w1)を、0.65〜1.0の範囲内で変化させて種々のコロイダルシリカ混合物を準備した。
【0028】
コロイダルシリカ混合物2wt%、酸化剤としての過硫酸アンモニウム2.0wt%、酸化抑制剤としての、キナルジン酸0.2wt%、キノリン酸0.3wt%、グリシン0.3wt%および添加剤などを純水に加えて、KOHにてpHを9に調整し、種々のスラリーを調製した。
【0029】
得られたスラリーを用いて、Cuダマシン配線を形成した。図2は、Cuダマシン配線の形成方法を示す工程断面図である。
【0030】
まず、図2(a)に示すように、素子(図示せず)が形成された半導体基板10上に絶縁膜11を堆積し、幅0.1μm、深さ0.1μmの凹部Aを形成しておく。凹部が形成された絶縁膜(SiO2膜)11の全面には、バリア膜としてのTa膜12(10nm)を介して、配線材料としてのCu膜13(150nm)をスパッタリング法およびメッキ法により堆積した。
【0031】
次に、Ta膜12およびCu膜13の不要部分をCMPにより除去して、図2(b)に示すように絶縁膜11表面を露出させ、Ta膜12およびCu膜13を凹部A内に選択的に埋め込んだ。
【0032】
CMPに当たっては、研磨布としてIC1000(ロデール・ニッタ社製)を用い、上述したように調製されたスラリーにより以下のように行なった。すなわち、図3に示すように、研磨布21が貼付されたターンテーブル20を100rpmで回転させつつ、半導体基板22を保持したトップリング23を300gf/cm2の研磨荷重で当接させた。トップリング23の回転数は102rpmとし、研磨布21上には、スラリー供給ノズル25から200cc/minの流量でスラリー27を供給した。なお、図3には、水供給ノズル24およびドレッサー26も併せて示してある。
【0033】
各スラリーを用いてTa膜12、Cu膜13およびSiO2膜11を研磨して、各膜の研磨速度、ディッシングおよびスクラッチを調べた。Cu膜13、Ta膜12およびSiO2膜11の研磨速度がいずれも30nm/min以上、エロージョンは20nm未満、さらに、Cu膜13上およびSiO2膜11上におけるスクラッチ数は10個/cm2未満という条件を全て満たした場合を“◎”として評価した。
【0034】
スクラッチ数が10個/cm2以上20個/cm2未満となる場合を“○”とし、スクラッチ数が20個/cm2以上40個/cm2未満の場合を“△”とした。また、Ta膜12およびSiO2膜11のいずれか一方の研磨速度が30nm/min未満の場合も“△”とし、これら両方の研磨速度が30nm/min未満の場合は“×”とした。スクラッチ数が40個/cm2以上の場合も“×”とした。
【0035】
得られた結果を、下記表1にまとめる。
【0036】
【表1】
【0037】
“◎”領域では、Cu膜13、Ta膜12およびSiO2膜11を、いずれも30nm/min以上の速度で研磨することができるので、Cu多層配線を形成するために特に優れている。Cu残りに起因した配線ショートがなく、しかも、SiO2の研磨力が十分であることから、1層目のCuCMP時に下地(STI、Wプラグ)段差をなくすような研磨が可能となる。
【0038】
“○”領域においても、ほとんどのスクラッチが浅いものなので、半導体装置においては致命的ではない。“◎”領域および“○”領域が、本発明の実施形態における第1および第2のコロイダル粒子の条件に該当する。
【0039】
Ta膜12およびSiO2膜11のいずれか一方の研磨速度が30nm/min未満の場合には、Cu膜のような軟らかい材質と、こうした硬い材質とを実質的に同等の速度で研磨することができない。このため、図2(b)に示したようにTa膜12およびCu膜13を選択的に凹部A内に埋め込むには、図5に示すように、予めTa膜12上の余分なCu膜13を除去した後、Ta膜12のCMP(タッチアップ工程)を別途行なって絶縁膜11の表面を露出しなければならない。
【0040】
“△”領域においては、発生したスクラッチの総数が少ない場合でも、半導体装置に致命的となる深いスクラッチが10個/cm2以上存在していた。
【0041】
本発明の実施形態にかかるCMP用スラリーを用いることによって、1回の研磨でCu膜およびTa膜の不要部分を除去して、ダマシン配線を形成することが可能となる。このため、工程を省略することができ、製造コストが低減される点でも有利である。
【0042】
なお、バリア膜の材質を、Ti,Nb,V,WあるいはMoなどに変更した場合も、前述と同様の効果が得られた。すなわち、バリア膜の材質によらず、本発明の実施形態にかかるCMP用スラリーを用いることによって、配線材料とともにバリア膜を研磨することが可能となった。
【0043】
(参考例)
本参考例にかかるCMP用スラリーは、STI(Shallow trench isolation)の形成に適用することも可能である。図4は、STIの形成プロセスを示す工程断面図である。
【0044】
まず、図4(a)に示すように、CMPストッパー膜31が設けられた半導体基板30に溝を形成し、その上に絶縁膜32を堆積する。ここで、CMPストッパー膜31としてはSiNが用いられ、絶縁膜32としては、例えば、有機SOGなどの塗布型絶縁膜を用いることができる。
【0045】
次いで、絶縁膜32の不要部分を、スラリーを用いたCMPにより除去して、図4(b)に示すようにCMPストッパー膜31表面を露出した。
【0046】
本参考例においては、第1のコロイダルシリカ(平均粒子径d1:10nm)と、第2のコロイダルシリカ(平均粒子径d2:60nm)とを用いて、CMP用スラリーを調製した。この場合、粒径比(d2/d1)は6であり、第1のコロイダルシリカの重量比(w1/(w1+w2))が0.9となるよう、2種類のコロイダルシリカを混合して研磨粒子とした。これを、10重量%の濃度で純水に分散させ、さらに、pH調整剤としてのKOHによりpHを11に調整した。
【0047】
得られたスラリーを用いて、以下の条件で絶縁膜32を研磨した。
【0048】
スラリー流量:300cc/min
研磨布:IC1000(ロデール・ニッタ社製)
研磨荷重:300gf/cm2
トップリングおよびテーブルの回転数はいずれも100rpmとして、3分間の研磨を行なった。用いたスラリーにおける粒子濃度が高いため、スクラッチを生じやすい環境にある。
【0049】
前述のスラリーを用いることによって、研磨後のウェハー表面におけるスクラッチは2個にとどまり、エロージョンは30nm以下に抑制された。こうして、スクラッチを生じ易いCMPストッパー膜上の絶縁膜をCMPする際にも効果を確認することができた。
【0050】
また、図4(a)に示した段差Bを効率よく平坦化できる。本参考例においては、CMPストッパー31まで削り込みを行なっているが、段差Bのみを平坦化して、絶縁膜32の途中で研磨ストップするような工程にも適用することができる。
【0051】
比較のために、粒径比(d2/d1)が3になるように第2のコロイダルシリカを選択した以外は、前述と同様の処方により第1のコロイダルシリカの重量比(w1/(w1+w2))が0.9となるようスラリーを調製した。
【0052】
得られたスラリーを用い、前述と同様の条件で絶縁膜の研磨を行なった。その結果、研磨後のウェハー表面におけるスクラッチは320個であり、エロージョンは35nm程度であった。
【0053】
このように、第1および第2のコロイダル粒子の条件が、所定の範囲から外れると、研磨後の表面状態が劣化することが確認された。
【0054】
【発明の効果】
上述したように、本発明の態様によれば、高い信頼性を有する半導体装置の製造方法が提供される。
【0055】
本発明によれば、例えば、次世代で要求されるデザインルール0.1μm以下の配線を有する高性能・高速な半導体装置を製造することが可能となり、その工業的価値は絶大である。
【図面の簡単な説明】
【図1】コロイダル粒子の粒径分布を示すグラフ図。
【図2】本発明の一実施形態にかかる半導体装置の製造方法を表わす工程断面図。
【図3】CMPの状態を示す概略図。
【図4】参考例の半導体装置の製造方法を表わす工程断面図。
【図5】従来のCMP用スラリーを用いた場合の半導体装置の製造方法における一工程を示す断面図。
【符号の説明】
10…半導体基板,11…絶縁膜,12…Ta膜,13…Cu膜,A…凹部,20…ターンテーブル,21…研磨布,22…半導体基板,23…トップリング,24…水供給ノズル,25…スラリー供給ノズル,26…ドレッサー,27…スラリー,30…半導体基板,31…CMPストッパー膜,32…絶縁膜,B…段差。
Claims (5)
- 半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に凹部を形成する工程と、
前記凹部の内部および前記絶縁膜の上にバリア膜を介して配線材料を堆積して、導電性層を形成する工程と、
前記絶縁膜の上に堆積された前記導電性層を、スラリーを用いたCMPにより除去して前記絶縁膜の表面を露出させることにより、前記導電性層を前記凹部内部に残置する工程とを具備し、
前記スラリーは、コロイダルシリカ粒子と酸化剤と酸化抑制剤とを含有し、前記コロイダルシリカ粒子は、一次粒子径が5nm以上30nm以下の第1コロイダル粒子と、一次粒子径が第1コロイダル粒子を越える大きさの第2コロイダル粒子とを含み、下記数式で表わされる関係を満たすことを特徴とする半導体装置の製造方法。
3≦d2/d1≦8 (1)
0.9<w1/(w1+w2)≦0.97 (2)
(上記数式中、d1およびd2は、それぞれ第1および第2のコロイダル粒子の平均粒子径であり、w1およびw2は、それぞれスラリー中に含有されている第1および第2のコロイダル粒子の重量である。) - 半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜に凹部を形成する工程と、
前記凹部の内部および前記絶縁膜の上にバリア膜を介して配線材料を堆積して、導電性層を形成する工程と、
前記絶縁膜の上に堆積された前記導電性層を、スラリーを用いたCMPにより除去して前記絶縁膜の表面を露出させることにより、前記導電性層を前記凹部内部に残置する工程とを具備し、
前記スラリーは、コロイダルシリカ粒子と酸化剤と酸化抑制剤とを含有し、前記コロイダルシリカ粒子は、一次粒子径が5nm以上30nm以下の第1コロイダル粒子と、一次粒子径が第1コロイダル粒子を越える大きさの第2コロイダル粒子とを含み、下記数式で表わされる関係を満たすことを特徴とする半導体装置の製造方法。
5<d2/d1≦8 (3)
0.7≦w1/(w1+w2)≦0.97 (4)
(上記数式中、d1およびd2は、それぞれ第1および第2のコロイダル粒子の平均粒子径であり、w1およびw2は、それぞれスラリー中に含有されている第1および第2のコロイダル粒子の重量である。) - 前記第1および第2のコロイダル粒子の総含有量は、前記スラリー中0.1重量%以上20重量%以下であることを特徴とする請求項1または2記載の半導体装置の製造方法。
- 前記バリア膜は、Ta,Ti,Nb,V,W,およびMoから選択される材料を含むことを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。
- 前記配線材料は、Cuを含むことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173263A JP4130614B2 (ja) | 2003-06-18 | 2003-06-18 | 半導体装置の製造方法 |
US10/838,261 US7060621B2 (en) | 2003-06-18 | 2004-05-05 | Slurry for CMP, polishing method and method of manufacturing semiconductor device |
TW093114958A TWI268955B (en) | 2003-06-18 | 2004-05-26 | Slurry for CMP, polishing method and method of manufacturing semiconductor device |
CN200410048782.2A CN1292460C (zh) | 2003-06-18 | 2004-06-18 | 用于化学机械抛光的浆料、抛光方法及半导体器件的制造方法 |
US11/407,945 US7332104B2 (en) | 2003-06-18 | 2006-04-21 | Slurry for CMP, polishing method and method of manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003173263A JP4130614B2 (ja) | 2003-06-18 | 2003-06-18 | 半導体装置の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005011932A JP2005011932A (ja) | 2005-01-13 |
JP4130614B2 true JP4130614B2 (ja) | 2008-08-06 |
Family
ID=33534716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003173263A Expired - Fee Related JP4130614B2 (ja) | 2003-06-18 | 2003-06-18 | 半導体装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7060621B2 (ja) |
JP (1) | JP4130614B2 (ja) |
CN (1) | CN1292460C (ja) |
TW (1) | TWI268955B (ja) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200604097A (en) * | 2004-07-26 | 2006-02-01 | Fuso Chemical Co Ltd | Silica sol and manufacturing method therefor |
JP4012180B2 (ja) * | 2004-08-06 | 2007-11-21 | 株式会社東芝 | Cmp用スラリー、研磨方法、および半導体装置の製造方法 |
JP2006086462A (ja) * | 2004-09-17 | 2006-03-30 | Fujimi Inc | 研磨用組成物およびそれを用いた配線構造体の製造法 |
US8251777B2 (en) * | 2005-06-30 | 2012-08-28 | Cabot Microelectronics Corporation | Polishing slurry for aluminum and aluminum alloys |
CN102863943B (zh) * | 2005-08-30 | 2015-03-25 | 花王株式会社 | 硬盘用基板用研磨液组合物、基板的研磨方法和制造方法 |
JP4390757B2 (ja) * | 2005-08-30 | 2009-12-24 | 花王株式会社 | 研磨液組成物 |
US20080220610A1 (en) * | 2006-06-29 | 2008-09-11 | Cabot Microelectronics Corporation | Silicon oxide polishing method utilizing colloidal silica |
US7837888B2 (en) * | 2006-11-13 | 2010-11-23 | Cabot Microelectronics Corporation | Composition and method for damascene CMP |
US8518296B2 (en) * | 2007-02-14 | 2013-08-27 | Micron Technology, Inc. | Slurries and methods for polishing phase change materials |
JP5329786B2 (ja) * | 2007-08-31 | 2013-10-30 | 株式会社東芝 | 研磨液および半導体装置の製造方法 |
JP5472585B2 (ja) * | 2008-05-22 | 2014-04-16 | Jsr株式会社 | 化学機械研磨用水系分散体および化学機械研磨方法 |
CN104822491A (zh) * | 2013-10-02 | 2015-08-05 | 日本碍子株式会社 | 研磨物的制造方法 |
CN106661429B (zh) * | 2014-08-26 | 2019-07-05 | 凯斯科技股份有限公司 | 抛光浆料组合物 |
US9873180B2 (en) * | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
SG11201703114QA (en) | 2014-10-17 | 2017-06-29 | Applied Materials Inc | Cmp pad construction with composite material properties using additive manufacturing processes |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
US9776361B2 (en) | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
JP6140384B1 (ja) * | 2015-09-30 | 2017-05-31 | 株式会社フジミインコーポレーテッド | 研磨用組成物 |
CN108290267B (zh) | 2015-10-30 | 2021-04-20 | 应用材料公司 | 形成具有期望ζ电位的抛光制品的设备与方法 |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME |
JP7299970B2 (ja) | 2018-09-04 | 2023-06-28 | アプライド マテリアルズ インコーポレイテッド | 改良型研磨パッドのための配合物 |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
KR102620964B1 (ko) * | 2021-07-08 | 2024-01-03 | 에스케이엔펄스 주식회사 | 반도체 공정용 연마 조성물 및 이를 이용한 연마된 물품의 제조방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69611653T2 (de) * | 1995-11-10 | 2001-05-03 | Tokuyama Corp., Tokuya | Poliersuspensionen und Verfahren zu ihrer Herstellung |
JP4132432B2 (ja) * | 1999-07-02 | 2008-08-13 | 日産化学工業株式会社 | 研磨用組成物 |
JP2001187878A (ja) * | 1999-12-28 | 2001-07-10 | Nec Corp | 化学的機械的研磨用スラリー |
MY118582A (en) | 2000-05-12 | 2004-12-31 | Kao Corp | Polishing composition |
KR100481651B1 (ko) | 2000-08-21 | 2005-04-08 | 가부시끼가이샤 도시바 | 화학 기계 연마용 슬러리 및 반도체 장치의 제조 방법 |
JP4253141B2 (ja) | 2000-08-21 | 2009-04-08 | 株式会社東芝 | 化学機械研磨用スラリおよび半導体装置の製造方法 |
JP3895949B2 (ja) | 2001-07-18 | 2007-03-22 | 株式会社東芝 | Cmp用スラリー、およびこれを用いた半導体装置の製造方法 |
JP4396963B2 (ja) | 2003-05-06 | 2010-01-13 | 信越半導体株式会社 | 研磨用組成物、その調製方法及びそれを用いたウェーハの研磨方法 |
-
2003
- 2003-06-18 JP JP2003173263A patent/JP4130614B2/ja not_active Expired - Fee Related
-
2004
- 2004-05-05 US US10/838,261 patent/US7060621B2/en not_active Expired - Lifetime
- 2004-05-26 TW TW093114958A patent/TWI268955B/zh not_active IP Right Cessation
- 2004-06-18 CN CN200410048782.2A patent/CN1292460C/zh not_active Expired - Fee Related
-
2006
- 2006-04-21 US US11/407,945 patent/US7332104B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1574238A (zh) | 2005-02-02 |
US7332104B2 (en) | 2008-02-19 |
US7060621B2 (en) | 2006-06-13 |
US20040261323A1 (en) | 2004-12-30 |
TW200513518A (en) | 2005-04-16 |
TWI268955B (en) | 2006-12-21 |
US20060197055A1 (en) | 2006-09-07 |
CN1292460C (zh) | 2006-12-27 |
JP2005011932A (ja) | 2005-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4130614B2 (ja) | 半導体装置の製造方法 | |
JP5329786B2 (ja) | 研磨液および半導体装置の製造方法 | |
JP4776269B2 (ja) | 金属膜cmp用スラリー、および半導体装置の製造方法 | |
US6924227B2 (en) | Slurry for chemical mechanical polishing and method of manufacturing semiconductor device | |
JP4012180B2 (ja) | Cmp用スラリー、研磨方法、および半導体装置の製造方法 | |
JP5472585B2 (ja) | 化学機械研磨用水系分散体および化学機械研磨方法 | |
JP4253141B2 (ja) | 化学機械研磨用スラリおよび半導体装置の製造方法 | |
US20060160475A1 (en) | Chemical mechanical polishing compositions for metal and associated materials and method of using same | |
JP3892846B2 (ja) | Cmp用スラリー、研磨方法、および半導体装置の製造方法 | |
US7833431B2 (en) | Aqueous dispersion for CMP, polishing method and method for manufacturing semiconductor device | |
JP2007266500A (ja) | タッチアップcmp用スラリーおよび半導体装置の製造方法 | |
JP2009158810A (ja) | 化学的機械的研磨用スラリーおよび半導体装置の製造方法 | |
JP3895949B2 (ja) | Cmp用スラリー、およびこれを用いた半導体装置の製造方法 | |
JP2013074036A (ja) | Cmp用スラリーおよび半導体装置の製造方法 | |
TWI294456B (ja) | ||
WO2018120808A1 (zh) | 一种用于阻挡层的化学机械抛光液 | |
TWI381456B (zh) | 研磨用組成物及研磨方法 | |
JP4719204B2 (ja) | 化学機械研磨用スラリおよび半導体装置の製造方法 | |
CN111378382B (zh) | 一种化学机械抛光液及其应用 | |
CN111378367A (zh) | 一种化学机械抛光液 | |
US20020127954A1 (en) | Process for the chemical-mechanical polishing of isolation layers produced using the STI technology, at elevated temperatures | |
JP2003100676A (ja) | 研磨用組成物 | |
CN118271971A (zh) | 一种化学机械抛光液 | |
JP2009065001A (ja) | 化学機械研磨用水系分散体、該分散体を調製するためのキット、および化学機械研磨用水系分散体の調製方法 | |
JP2003100678A (ja) | 研磨用組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080522 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110530 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120530 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140530 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |