JP4125913B2 - 無線送信装置、無線受信装置および無線通信システム - Google Patents
無線送信装置、無線受信装置および無線通信システム Download PDFInfo
- Publication number
- JP4125913B2 JP4125913B2 JP2002151486A JP2002151486A JP4125913B2 JP 4125913 B2 JP4125913 B2 JP 4125913B2 JP 2002151486 A JP2002151486 A JP 2002151486A JP 2002151486 A JP2002151486 A JP 2002151486A JP 4125913 B2 JP4125913 B2 JP 4125913B2
- Authority
- JP
- Japan
- Prior art keywords
- symbol
- antenna
- frequency
- transmitted
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Radio Transmission System (AREA)
Description
【発明の属する技術分野】
本発明は、無線送信装置、無線受信装置および無線通信システムに関する。
【0002】
【従来の技術】
従来のアンテナダイバーシチとして、送信信号を複数のアンテナを用いて同時に送信することで最大比合成のダイバーシチ効果を得ることができるSTTD(Space Time block coding based Transmit antenna Diversity)と呼ばれる送信ダイバーシチがある。STTDでは、たとえば、送信アンテナの数を2つとした場合、一方の送信アンテナのシンボルパターンを操作することで、2つの送信アンテナからの信号を最大比合成することが可能となり、1つの受信アンテナで高いダイバーシチ効果を得ることができる。なお、以下では、説明を簡単にするため、それぞれ、送信アンテナの数を2つとした場合を例にとって説明する。
【0003】
図14は、従来のSTTD方式による送信ダイバーシチを説明するための図である。図14において、S0,S1は、送信データ(シンボル)の系列であり、h0,h1は、それぞれ、アンテナ#0とアンテナ#1からの伝搬路のフェージングであり、R0,R1は、それぞれ、受信信号である(後述する図15においても同様)。図14に示すように、STTDでは、アンテナ#1への出力は、2つのシンボル(S0とS1)を対として時間的に反転し(S1,S0の順序)、各シンボルに複素共役の処理を行い(S1*,S0*)、さらに奇数番目のシンボルに正負反転の処理を行う(−S1*)ことによって得られる。受信側では、各時刻において、それぞれ、R0=h0S0−h1S1*、R1=h0S1+h1S0*が得られる。この式をもとに、所定の演算を行うことで、元のシンボルS0,S1を取り出すことができる。
【0004】
一方、このようなSTTD送信ダイバーシチをマルチキャリア伝送システムに適用する方法として、STTDをそのままサブキャリアごとに処理する方法や、STTDをマルチキャリア伝送用にアレンジして、時間軸上ではなく周波数軸上にシンボルを配置して送信ダイバーシチを行う方法(以下「SFTD(Space Frequency block coding based Transmit antenna Diversity)」という)が考えられる。STTDでは、時間軸方向に順序を変えたり位相を変えたりするため時間的遅延が生じるが、SFTDでは、マルチキャリア伝送方式を用いて、周波数軸上にシンボルを配置して同一時刻に複数の帯域で信号を送信するため、STTDと同様の効果を得ながらも、処理遅延の短縮化を図ることができる。
【0005】
図15は、従来のSFTD方式による送信ダイバーシチを説明するための図である。図15に示すように、SFTDでは、周波数軸上にシンボルを配置して同一時刻に複数の帯域で信号を送信する。具体的には、図14に示すSTTDの場合との対比において、アンテナ#1への出力は、2つのシンボル(S0とS1)を対として周波数帯域的に反転し(S1,S0の順序)、各シンボルに複素共役の処理を行い(S1*,S0*)、さらに奇数番目のシンボルに正負反転の処理を行う(−S1*)ことによって得られる。受信側では、各帯域において、それぞれ、R0=h0S0−h1S1*、R1=h0S1+h1S0*が得られる。この式をもとに、所定の演算を行うことで、元のシンボルS0,S1を取り出すことができる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の送信ダイバーシチにおいては、STTDもSFTDも、アンテナ間のフェージング相関が高くなると性能が劣化するという問題がある。すなわち、STTDもSFTDも、異なるアンテナ間ではフェージング相関が低いと仮定し、同じアンテナでは、隣り合うシンボルでフェージングは同じとみなして処理している。このため、いずれの方式においても、アンテナ間のフェージング相関が高い伝搬環境では性能が劣化してしまう。
【0007】
本発明は、かかる点に鑑みてなされたものであり、マルチキャリア伝送システムにおいて、高性能な送信ダイバーシチを実現することができる、つまり、アンテナ間のフェージング相関が高い伝搬環境においても高い送信ダイバーシチ効果を得ることができる無線送信装置、無線受信装置および無線通信システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の無線送信装置は、第1のシンボルを第1の周波数で第1のアンテナから送信するとともに、前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信する第1送信手段と、第3のシンボルを前記第2の周波数で第2のアンテナから送信するとともに、前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信する第2送信手段と、前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得る第1演算手段と、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得る第2演算手段と、を具備する構成を採る。
【0010】
本発明の無線受信装置は、第1の周波数で第1のアンテナから送信された第1のシンボル、前記第1のシンボルの位相を調整して得られる第2のシンボルであって、第2の周波数で前記第1のアンテナから送信された前記第2のシンボル、前記第2の周波数で第2のアンテナから送信された第3のシンボル、および、前記第3のシンボルの位相を調整して得られる第4のシンボルであって、前記第1の周波数で前記第2のアンテナから送信された前記第4のシンボルを受信する受信手段と、前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを合成する合成手段と、を具備し、前記第2のシンボルは、前記第1のシンボルの位相調整を複素共役の処理により行って得られたものであり、前記第4のシンボルは、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って得られたものである構成を採る。
【0012】
本発明の無線送信方法は、第1のシンボルを第1の周波数で第1のアンテナから送信するステップと、前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信するステップと、第3のシンボルを前記第2の周波数で第2のアンテナから送信するステップと、前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信するステップと、前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得るステップと、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得るステップと、を具備するようにした。
【0014】
本発明の無線受信方法は、第1の周波数で第1のアンテナから送信された第1のシンボル、前記第1のシンボルの位相を調整して得られる第2のシンボルであって、第2の周波数で前記第1のアンテナから送信された前記第2のシンボル、前記第2の周波数で第2のアンテナから送信された第3のシンボル、および、前記第3のシンボルの位相を調整して得られる第4のシンボルであって、前記第1の周波数で前記第2のアンテナから送信された前記第4のシンボルを受信するステップと、前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを合成するステップと、を具備し、前記第2のシンボルは、前記第1のシンボルの位相調整を複素共役の処理により行って得られたものであり、前記第4のシンボルは、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って得られたものであるようにした。
【0016】
本発明の無線通信システムは、第1のシンボルを第1の周波数で第1のアンテナから送信するとともに、前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信し、第3のシンボルを前記第2の周波数で第2のアンテナから送信するとともに、前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信する無線送信装置と、前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを受信して合成する無線受信装置と、を具備し、前記無線送信装置は、前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得て、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得る構成を採る。
【0018】
これらの構成およびこれらの方法によれば、送信側において、複素共役の処理が行われた送信データおよび複素共役と正負反転の処理が行われた送信データを異なる送信アンテナ上において周波数軸上に離散して配置するため、従来のSTTDおよびSFTDと同様の効果が得られ、アンテナ間のフェージング相関が高い伝搬環境においても、高いダイバーシチ効果を得ることができる。
【0056】
【発明の実施の形態】
本発明の骨子は、マルチキャリア伝送システムにおいて、複数(N本)のアンテナを用いて送信ダイバーシチを行う場合に、データをN個分複製し、複製したデータを周波数軸上に離散して配置することである。配置の間隔は、伝搬環境に基づいてサブキャリア間のフェージング相関が低くなるように決定する。これにより、アンテナ間のフェージング相関が高い伝搬環境においても高い送信ダイバーシチ効果を得ることができ、マルチキャリア伝送システムにおいて、高性能な送信ダイバーシチを実現することができる。
【0057】
まず、本発明の基本原理について、図1を用いて説明する。図1は、本発明の送信ダイバーシチの基本原理を説明するための図である。
【0058】
ここで、S0,S1は、送信データ(シンボル)の系列である。h00,h01,h10,h11は、それぞれ、アンテナ#0とサブキャリア#0(図示せず)のフェージング、アンテナ#0とサブキャリア#1(図示せず)のフェージング、アンテナ#1とサブキャリア#0のフェージング、アンテナ#1とサブキャリア#1のフェージングである。R0,R1は、それぞれ、サブキャリア#0で受信される信号およびサブキャリア#1で受信される信号である。なお、サブキャリア#0とサブキャリア#1は、実際上は周波数軸上において離れた位置に存在しているが、説明を簡単にするため、ここでは#0,#1と連続番号にしている。
【0059】
本発明では、たとえば、図1に示すように、図15に示す従来のSFTDの場合との対比において、周波数軸上にシンボルを配置する際に、複製されたシンボル(S0とS0*:S1と−S1*)を異なるアンテナ上において、つまり、同一のアンテナ上において対となるシンボル(S0とS1:−S1*とS0*)を、フェージング相関が低くなるように間隔Lfだけ離して配置する。ここで、S0*は、シンボルS0に対して複素共役の処理を行った結果であり、−S1*は、シンボルS1に対して複素共役と正負反転の処理を行った結果である。
【0060】
このとき、異なるアンテナ間ではフェージングの相関が低いと仮定している。同じアンテナにおいては、上記のように、シンボルが離散して配置されているため、フェージングの相関は低くなる。たとえば、アンテナ#0において、シンボルS0とシンボルS1とで異なるフェージングh00、h01の影響を受けている。したがって、アンテナ間のフェージング相関が高い伝搬環境であっても、複製されたシンボル(S0とS0*:S1と−S1*)を離散して配置したサブキャリア間のフェージング相関は低いため、送信ダイバーシチ効果が得られて高い性能を保持することができる。
【0061】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0062】
(実施の形態1)
図2は、本発明の実施の形態1に係る無線通信装置の送信側の構成を示すブロック図、図3は、図2に示す無線通信装置の受信側の構成を示すブロック図である。ここでは、一例として、送信アンテナの数が2つの場合を例にとって説明する。
【0063】
図2に示す送信側の無線通信装置(以下単に「送信機」という)100は、分割部102、変調部104−1、104−2、シリアル/パラレル(S/P)変換部106−1、106−2、複製部108−1、108−2、離散マッピング部110−1、110−2、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)部112−1、112−2、送信RF部114−1、114−2、および送信アンテナ116−1、116−2を有する。また、送信機100は、受信アンテナ118、受信RF部120、および離散間隔決定部122を有する。
【0064】
一方、図3に示す受信側の無線通信装置(以下単に「受信機」という)200は、受信アンテナ202、受信RF部204、高速フーリエ変換(FFT:Fast Fourier Transform)部206、データデマッピング部208、MMSE合成部210、パラレル/シリアル(P/S)変換部212、および復調部214を有する。また、受信機200は、遅延プロファイル推定部216、送信RF部218、および送信アンテナ220を有する。
【0065】
次いで、上記構成を有する無線通信装置の動作について、図4を用いて説明する。図4は、本発明の実施の形態1に係る無線通信装置による送信ダイバーシチを説明するための図である。ここでは、送信データ(シンボル)の系列S0,S1,S2,S3を送信する場合を例にとって説明する。
【0066】
まず、送信機100において、時系列で入力される送信データの系列S0,S1,S2,S3は、分割部102で、偶数番号のシンボルS0,S2と奇数番号のシンボルS1,S3に分割される。分割後のシンボル系列は、2つのアンテナ系列に出力される。この場合、偶数番号のシンボルS0,S2は、変調部104−1に出力され、奇数番号のシンボルS1,S3は、変調部104−2に出力される。
【0067】
偶数番号のシンボルS0,S2は、おのおの、順次、変調部104−1で変調処理され、S/P変換部106−1でパラレル変換された後、複製部108−1で複製されて送信アンテナと同数(ここでは2つ)になる。
【0068】
複製されたシンボル(S0,S0:S2,S2)は、離散マッピング部110−1で離散マッピング処理される。具体的には、複製されたシンボルは、サブキャリア間のフェージング相関が低くなるように、つまり、複製されたシンボル間において回線状態に差が出るように、周波数軸上に離散して配置される。たとえば、図4に示すように、複製されたシンボルS0とS0、S2とS2は、それぞれ、周波数軸上で離れた位置(サブキャリア)に配置される。このとき、配置する間隔(離散間隔)(図1のLf参照)は、離散間隔決定部122によって決定される。
【0069】
離散マッピング処理された信号は、IFFT部112−1でIFFT処理された後、送信RF部114−1でアップコンバート処理されて、送信アンテナ116−1(アンテナ#0)から送信される。
【0070】
一方、奇数番号のシンボルS1,S3は、おのおの、順次、変調部104−2で変調処理され、S/P変換部106−2でパラレル変換された後、複製部108−2で複製されて送信アンテナと同数(ここでは2つ)になる。
【0071】
複製されたシンボル(S1,S1:S3,S3)は、離散マッピング部110−2で離散マッピング処理される。具体的には、複製されたシンボルは、サブキャリア間のフェージング相関が低くなるように、つまり、複製されたシンボル間において回線状態に差が出るように、周波数軸上に離散して配置される。たとえば、図4に示すように、複製されたシンボルS1とS1、S3とS3は、それぞれ、周波数軸上で離れた位置(サブキャリア)に配置される。このとき、配置する間隔(離散間隔)(図1のLf参照)は、同じく離散間隔決定部122によって決定される。
【0072】
なお、離散マッピング処理の一方法として、データを周波数軸上に配置するときにインタリーブを使用することも可能である。図5は、インタリーブを使用して離散マッピングを行う場合の一例を示す図である。この場合、たとえば、同図に示すように、アンテナ#0とアンテナ#1とで同じインタリーブパターンを使用する。このように、データを周波数軸上に離散して配置する際にインタリーブを使用することにより、周波数軸上に離散して配置されるデータがランダムに並び替えられ、サブキャリア間のフェージング相関を確実にさらに低くすることができる。
【0073】
離散マッピング処理された信号は、IFFT部112−2でIFFT処理された後、送信RF部114−2でアップコンバート処理されて、送信アンテナ116−2(アンテナ#1)から送信される。
【0074】
その後、受信機200において、送信機100から送信された信号を1つの受信アンテナ202で受信する。
【0075】
アンテナ202で受信された信号は、受信RF部204でダウンコンバート処理された後、順次、FFT部206でFFT処理され、データデマッピング部208でデマッピング処理される。その後、デマッピング処理された信号に対して、MMSE合成部210でMMSE合成を行う。MMSE合成の際には、図4に示すように、同じデータが送信されているサブキャリアに対して所定の合成処理を行う。
【0076】
具体的には、たとえば、シンボルS0とS1が同時に送信されている2つのサブキャリアを、データデマッピング部208でデマッピング処理することにより取り出して、MMSE合成を行う。この場合、アンテナ#0の2つのサブキャリアとアンテナ#1の2つのサブキャリアとで合計4つの伝搬路を通過してきた信号に対してMMSE合成を行う。
【0077】
ここで、上記のように、h00をアンテナ#0とサブキャリア#0のフェージング、h01をアンテナ#0とサブキャリア#1のフェージング、h10をアンテナ#1とサブキャリア#0のフェージング、h11をアンテナ#1とサブキャリア#1のフェージングとすると、サブキャリア#0,#1で受信される信号R0,R1は、それぞれ、次の(式1)、(式2)、
【数1】
【数2】
で表される。なお、上記のように、サブキャリア#0とサブキャリア#1は、実際上は周波数軸上において離れた位置に存在しているが、説明を簡単にするため、ここでは#0,#1と連続番号にしている。
【0078】
これを行列で表現すると、次の(式3)、
【数3】
になる。
【0079】
そして、次の(式4)の演算を行って、
【数4】
元のシンボルS0,S1を取り出す。なお、各フェージングh00,h01,h10,h11は、パイロット信号などを用いて推定する。
【0080】
MMSE合成によって取り出されたシンボル(S0,S1,S2,S3)は、P/S変換部212でシリアル変換された後、復調部214で復調され、所望の復調データが得られる。
【0081】
また、受信機200は、遅延プロファイル推定部216で、受信信号の遅延プロファイルを推定する。遅延プロファイルによって伝搬環境(伝搬路の状況)を正確に把握することができる。推定された遅延プロファイルの情報は、送信RF部218でアップコンバート処理された後、送信アンテナ220から送信される。
【0082】
その後、送信機100は、受信機200から送信された遅延プロファイル情報を受信アンテナ118で受信する。アンテナ118で受信された信号は、受信RF部120でダウンコンバート処理された後、離散間隔決定部122に送られる。
【0083】
離散間隔決定部122では、受信機200からフィードバックされてきた遅延プロファイル情報(伝搬環境)に基づいて、データを離散する間隔(図1のLf参照)を決定する。離散間隔は、サブキャリア間のフェージング相関が低くなるように決定される。具体的には、たとえば、最大伝搬遅延が小さいほど離散間隔を大きくとり、最大伝搬遅延が大きいほど離散間隔を小さくとる。これにより、確実にフェージング相関を低くすることができる。
【0084】
このように、本実施の形態によれば、送信機100側では、送信データを送信アンテナの数(2つ)分複製し複製された送信データを周波数軸上に離散して配置するため、この配置の間隔を遅延プロファイル(伝搬環境)に基づいてサブキャリア間のフェージング相関が低くなるように決定することで、アンテナ間のフェージング相関が高い伝搬環境においても高い送信ダイバーシチ効果を得ることができ、マルチキャリア伝送システムにおいて、高性能な送信ダイバーシチを実現することができる。フェージング相関が低くなるように離散して配置されたデータは受信機200側においても相関が低く保たれるので、アンテナ間のフェージング相関が高くなったとしても送信ダイバーシチ効果は劣化しないためである。
【0085】
また、受信機200側では、複数のサブキャリアで受信された信号をMMSE合成して受信するため、送信機100から同時刻に同サブキャリアで送信された信号を確実に分離して復調することができる。
【0086】
なお、本実施の形態では、複製されたデータを同一の送信アンテナ上において周波数軸上に離散して配置するようにしているが(図4参照)、これに限定されるわけではなく、前述のように、複製されたデータを異なる送信アンテナ上において周波数軸上に離散して配置することも可能である(図1参照)。
【0087】
また、本実施の形態では、受信機200側から遅延プロファイル情報を送信機100側にフィードバックするようにしているが、フィードバックする情報はこれに限定されない。たとえば、遅延プロファイル情報に代えて、各サブキャリアのフェージング状態を受信機200側で測定して送信機100側に通知するようにしてもよい。各サブキャリアのフェージング状態としては、たとえば、受信電界強度、SIR、SNRなどを使用することができる。また、受信機200側から、送信に使用すべきサブキャリアを指定する信号を送信機100側に送るようにしてもよい。このとき、指定されるサブキャリアは、フェージング相関の低いサブキャリアである。いずれの場合においても、送信機100は、フェージング相関の低いサブキャリアを確実に知ることができ、この情報に基づいて送信データの離散間隔を決定することで、確実にサブキャリア間のフェージング相関を低くすることができる。
【0088】
(実施の形態2)
図6は、本発明の実施の形態2に係る無線通信装置の送信側の構成を示すブロック図である。なお、この送信側の無線通信装置(送信機)300は、図2に示す送信機100と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略する。また、図6に示す無線通信装置の受信側(受信機)は、図3に示す受信機200と全く同様の基本的構成を有するため、その説明を省略する。
【0089】
本実施の形態の特徴は、従来のSTTDやSFTDと同様に、データの位相を調整することである。具体的には、複製されたデータのうち一部のデータに対して複素共役の処理または複素共役と正負反転の処理を行うことである。そのため、アンテナ#0(送信アンテナ116−1)の系列においては、複製部108−1と離散マッピング部110−1との間に複素演算部302が設けられ、アンテナ#1(送信アンテナ116−2)の系列においては、複製部108−2と離散マッピング部110−2との間に複素演算部304が設けられている。ここでは、たとえば、複素演算部302は、データに対して複素共役の処理を行い、複素演算部304は、データに対して複素共役と正負反転の処理を行う。
【0090】
図7は、本発明の実施の形態2に係る無線通信装置による送信ダイバーシチを説明するための図である。この場合、アンテナ#0で送信される複製シンボルS0,S2に対しては、複素共役の処理が行われて、それぞれ、S0*,S2*となり、アンテナ#1で送信される複製シンボルS1,S3に対しては、複素共役と正負反転の処理が行われて、それぞれ、−S1*,−S3*となる。そして、離散マッピング部110−1において、シンボルS0とS0*、S2とS2*は、それぞれ、周波数軸上で離れた位置(サブキャリア)に配置され、離散マッピング部110−2において、シンボルS1と−S1*、S3と−S3*は、それぞれ、帯域的に反転されて周波数軸上で離れた位置(サブキャリア)に配置される。
【0091】
このとき、サブキャリア#0,#1で受信される信号R0,R1は、それぞれ、次の(式5)、(式6)、
【数5】
【数6】
で表される。
【0092】
これを行列で表現すると、次の(式7)、
【数7】
になる。
【0093】
そして、次の(式8)の演算を行って、
【数8】
元のシンボルS0,S1を取り出す。なお、各フェージングh00,h01,h10,h11は、上記のように、パイロット信号などを用いて推定する。
【0094】
ここで、アンテナ間のフェージング相関が高くなってしまった場合について説明する。
【0095】
この場合、h00=h10,h01=h11となり、上記の(式8)は、次の(式9)、
【数9】
の形になって、逆行列を求めることができる。よって、アンテナ間のフェージング相関が高くなったとしても元のシンボルS0,S1を取り出すことができる。したがって、アンテナ間のフェージング相関が高い場合であっても、良好な受信特性を維持することができる。
【0096】
このように、本実施の形態によれば、複製された送信データを周波数軸上に離散して配置する際に、複製された送信データの位相を調整する、具体的には、複素共役の処理または複素共役と正負反転の処理を行うため、従来のSTTDおよびSFTDと同様の効果が得られ、アンテナ間のフェージング相関が高い伝搬環境においても、高いダイバーシチ効果を得ることができる。
【0097】
なお、本実施の形態では、アンテナ#0で送信される複製データに対して複素共役の処理を行い、アンテナ#1で送信される複製データに対して複素共役と正負反転の処理を行うようにしているが、処理の内容は逆であっても良い。
【0098】
また、本実施の形態では、複素共役の処理が行われた複製データおよび複素共役と正負反転の処理が行われた複製データを異なる送信アンテナ上において周波数軸上に離散配置するようにしているが(図7参照)、これに限定されるわけではなく、すでに説明したように、複素共役の処理が行われた複製データおよび複素共役と正負反転の処理が行われた複製データを同一の送信アンテナ上において周波数軸上に離散して配置することも可能である(図1参照)。
【0099】
(実施の形態3)
図8は、本発明の実施の形態3に係る無線通信装置の受信側の構成を示すブロック図である。なお、この受信側の無線通信装置(受信機)400は、図3に示す受信機200と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略する。また、図8に示す無線通信装置の送信側(送信機)は、図2に示す送信機100と全く同様の基本的構成を有するため、その説明を省略する。
【0100】
本実施の形態の特徴は、図3に示すMMSE合成部210に代えて、干渉キャンセラ部402を有することである。干渉キャンセラは、干渉レプリカを生成して受信信号から差し引くことにより、干渉除去された所望の信号を出力する。干渉キャンセラの構成は、周知である。図9は、干渉キャンセラの構成の一例を示すブロック図である。また、図10は、本発明の実施の形態3に係る無線通信装置における受信信号の処理手順の一例を示す図であり、図4に示す受信信号の処理手順に対応している。
【0101】
このように、本実施の形態によれば、受信信号の複数の周波数成分を合成して送信データを取り出す際に干渉キャンセラを動作させるため、同時に送信された信号を確実に分離して受信することができ、受信性能の向上を図ることができる。
【0102】
(実施の形態4)
図11は、本発明の実施の形態4に係る無線通信装置の送信側の構成を示すブロック図、図12は、図11に示す無線通信装置の受信側の構成を示すブロック図である。なお、図11に示す送信側の無線通信装置(送信機)500は、図2に示す送信機100と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略する。また、図12に示す受信側の無線通信装置(受信機)600は、図3に示す受信機200と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その説明を省略する。
【0103】
本実施の形態の特徴は、複製された送信データを周波数軸上ではなく時間軸上に離散して配置することである。このため、送信機500には、データを時間軸上に配置する離散マッピング部502−1,502−2と、複製データを一時蓄積するバッファ504−1,504−2とが設けられている。時間軸上の離散間隔は、離散間隔決定部122aによって決定される。一方、受信機600には、ドップラ周波数を推定(測定)するドップラ周波数推定部602が設けられている。なお、複製データの位相を調整する場合、具体的には、複素共役の処理または複素共役と正負反転の処理を行う場合、送信機500に、図6に示す複素演算部302,304を設けることができる。
【0104】
図13は、本発明の実施の形態4に係る無線通信装置による送信ダイバーシチを説明するための図である。ここでは、一例として、たとえば、送信データ(シンボル)の系列S0,S1を、位相を調整して送信する場合を示している(図14参照)。この場合、図14に示すSTTDの場合との対比において、時間軸上にシンボルを配置する際に、複製されたシンボル(S0とS0*:S1と−S1*)を異なるアンテナ上において、つまり、同一のアンテナ上において対となるシンボル(S0とS1:−S1*とS0*)を、フェージング相関が低くなるように間隔Ltだけ離して配置する。このとき、配置の時間間隔Ltは、受信機600(たとえば、移動局)側で測定されたドップラ周波数に基づいて、フェージング相関が低くなるような時間に決定される。
【0105】
このように、本実施の形態によれば、送信データを送信アンテナの数(2つ)分複製し複製された送信データを時間軸上に離散して配置するため、この配置の間隔をドップラ周波数に基づいてフェージング相関が低くなるように決定することで、アンテナ間のフェージング相関が高い伝搬環境においても高い送信ダイバーシチ効果を得ることができ、マルチキャリア伝送システムにおいて、高性能な送信ダイバーシチを実現することができる。
【0106】
【発明の効果】
以上説明したように、本発明によれば、マルチキャリア伝送システムにおいて、高性能な送信ダイバーシチを実現することができる、つまり、アンテナ間のフェージング相関が高い伝搬環境においても高い送信ダイバーシチ効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の送信ダイバーシチの基本原理を説明するための図
【図2】本発明の実施の形態1に係る無線通信装置の送信側の構成を示すブロック図
【図3】図2に示す無線通信装置の受信側の構成を示すブロック図
【図4】本発明の実施の形態1に係る無線通信装置による送信ダイバーシチを説明するための図
【図5】インタリーブを使用して離散マッピングを行う場合の一例を示す図
【図6】本発明の実施の形態2に係る無線通信装置の送信側の構成を示すブロック図
【図7】本発明の実施の形態2に係る無線通信装置による送信ダイバーシチを説明するための図
【図8】本発明の実施の形態3に係る無線通信装置の受信側の構成を示すブロック図
【図9】干渉キャンセラの構成の一例を示すブロック図
【図10】本発明の実施の形態3に係る無線通信装置における受信信号の処理手順の一例を示す図
【図11】本発明の実施の形態4に係る無線通信装置の送信側の構成を示すブロック図
【図12】図11に示す無線通信装置の受信側の構成を示すブロック図
【図13】本発明の実施の形態4に係る無線通信装置による送信ダイバーシチを説明するための図
【図14】従来のSTTD方式による送信ダイバーシチを説明するための図
【図15】従来のSFTD方式による送信ダイバーシチを説明するための図
【符号の説明】
100,300,500 送信機
102 分割部
104−1,104−2 変調部
106−1,106−2 パラレル/シリアル変換部
108−1,108−2 複製部
110−1,110−2,502−1,502−2 離散マッピング部
112−1,112−2 IFFT部
114−1,114−2,218 送信RF部
116−1,116−2,220 送信アンテナ
118,202 受信アンテナ
120,204 受信RF部
122,122a 離散間隔決定部
200,400,600 受信機
206 FFT部
208 データデマッピング部
210 MMSE合成部
212 パラレル/シリアル変換部
214 復調部
216 遅延プロファイル推定部
302,304 複素演算部
400 干渉キャンセラ部
504−1,504−2 バッファ
602 ドップラ周波数推定部
Claims (5)
- 第1のシンボルを第1の周波数で第1のアンテナから送信するとともに、前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信する第1送信手段と、
第3のシンボルを前記第2の周波数で第2のアンテナから送信するとともに、前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信する第2送信手段と、
前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得る第1演算手段と、
前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得る第2演算手段と、
を具備する無線送信装置。 - 第1の周波数で第1のアンテナから送信された第1のシンボル、
前記第1のシンボルの位相を調整して得られる第2のシンボルであって、第2の周波数で前記第1のアンテナから送信された前記第2のシンボル、
前記第2の周波数で第2のアンテナから送信された第3のシンボル、および、
前記第3のシンボルの位相を調整して得られる第4のシンボルであって、前記第1の周波数で前記第2のアンテナから送信された前記第4のシンボルを受信する受信手段と、
前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを合成する合成手段と、を具備し、
前記第2のシンボルは、前記第1のシンボルの位相調整を複素共役の処理により行って得られたものであり、
前記第4のシンボルは、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って得られたものである、
無線受信装置。 - 第1のシンボルを第1の周波数で第1のアンテナから送信するステップと、
前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信するステップと、
第3のシンボルを前記第2の周波数で第2のアンテナから送信するステップと、
前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信するステップと、
前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得るステップと、
前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得るステップと、
を具備する無線送信方法。 - 第1の周波数で第1のアンテナから送信された第1のシンボル、
前記第1のシンボルの位相を調整して得られる第2のシンボルであって、第2の周波数で前記第1のアンテナから送信された前記第2のシンボル、
前記第2の周波数で第2のアンテナから送信された第3のシンボル、および、
前記第3のシンボルの位相を調整して得られる第4のシンボルであって、前記第1の周波数で前記第2のアンテナから送信された前記第4のシンボルを受信するステップと、
前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを合成するステップと、を具備し、
前記第2のシンボルは、前記第1のシンボルの位相調整を複素共役の処理により行って得られたものであり、
前記第4のシンボルは、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って得られたものである、
無線受信方法。 - 第1のシンボルを第1の周波数で第1のアンテナから送信するとともに、前記第1のシンボルの位相を調整して得られる第2のシンボルを第2の周波数で前記第1のアンテナから送信し、第3のシンボルを前記第2の周波数で第2のアンテナから送信するとともに、前記第3のシンボルの位相を調整して得られる第4のシンボルを前記第1の周波数で前記第2のアンテナから送信する無線送信装置と、
前記第1のシンボル、前記第2のシンボル、前記第3のシンボル、および、前記第4のシンボルを受信して合成する無線受信装置と、を具備し、
前記無線送信装置は、前記第1のシンボルの位相調整を複素共役の処理により行って前記第2のシンボルを得て、前記第3のシンボルの位相調整を複素共役の処理および正負反転の処理により行って前記第4のシンボルを得る、
無線通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002151486A JP4125913B2 (ja) | 2002-05-24 | 2002-05-24 | 無線送信装置、無線受信装置および無線通信システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002151486A JP4125913B2 (ja) | 2002-05-24 | 2002-05-24 | 無線送信装置、無線受信装置および無線通信システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008068127A Division JP4898727B2 (ja) | 2008-03-17 | 2008-03-17 | 送信装置、受信装置、送信方法および受信方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003347979A JP2003347979A (ja) | 2003-12-05 |
JP4125913B2 true JP4125913B2 (ja) | 2008-07-30 |
Family
ID=29769072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002151486A Expired - Lifetime JP4125913B2 (ja) | 2002-05-24 | 2002-05-24 | 無線送信装置、無線受信装置および無線通信システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4125913B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008167498A (ja) * | 2008-03-17 | 2008-07-17 | Matsushita Electric Ind Co Ltd | 無線送信装置、無線受信装置および無線通信システム |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY143899A (en) | 2004-08-12 | 2011-07-29 | Interdigital Tech Corp | Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system |
WO2006103758A1 (ja) * | 2005-03-30 | 2006-10-05 | Fujitsu Limited | 移動端末、無線通信装置及び無線通信方法 |
JPWO2006100767A1 (ja) * | 2005-03-23 | 2008-08-28 | 三菱電機株式会社 | 無線通信システム |
CN1841962A (zh) | 2005-03-30 | 2006-10-04 | 松下电器产业株式会社 | 发送系统和方法及接收系统和方法 |
JP4591969B2 (ja) * | 2005-12-27 | 2010-12-01 | 三洋電機株式会社 | 通信方法ならびにそれを利用した無線装置および通信システム |
JP4425880B2 (ja) * | 2006-01-18 | 2010-03-03 | 株式会社エヌ・ティ・ティ・ドコモ | 通信装置、移動局及び方法 |
CN101043244A (zh) * | 2006-03-20 | 2007-09-26 | 松下电器产业株式会社 | 多天线通信系统的单载波块传输中的发送分集方法 |
WO2007129621A1 (ja) * | 2006-05-02 | 2007-11-15 | Panasonic Corporation | マルチキャリア通信における無線通信基地局装置および無線通信方法 |
US20080080434A1 (en) * | 2006-09-28 | 2008-04-03 | Guy Wolf | Method and apparatus of system scheduler |
JP4974641B2 (ja) * | 2006-10-24 | 2012-07-11 | 三洋電機株式会社 | 無線装置 |
JP4932555B2 (ja) * | 2007-03-20 | 2012-05-16 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局、ユーザ装置、送信方法及び受信方法 |
US8295335B2 (en) * | 2009-12-31 | 2012-10-23 | Intel Corporation | Techniques to control uplink power |
JP2012178727A (ja) * | 2011-02-25 | 2012-09-13 | Sharp Corp | 受信装置、送信装置、受信方法、送信方法、プログラムおよび無線通信システム |
-
2002
- 2002-05-24 JP JP2002151486A patent/JP4125913B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008167498A (ja) * | 2008-03-17 | 2008-07-17 | Matsushita Electric Ind Co Ltd | 無線送信装置、無線受信装置および無線通信システム |
Also Published As
Publication number | Publication date |
---|---|
JP2003347979A (ja) | 2003-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11283659B2 (en) | Communication device | |
US10700905B2 (en) | Pilot symbol patterns for transmission through a plurality of antennas | |
US10075314B2 (en) | Pilot symbol patterns for transmission through a plurality of antennas | |
US7436903B2 (en) | Multicarrier transmitter and method for transmitting multiple data streams with cyclic delay diversity | |
JP4125913B2 (ja) | 無線送信装置、無線受信装置および無線通信システム | |
US6362781B1 (en) | Method and device for adaptive antenna combining weights | |
CN105356987B (zh) | 使用具有聚合频谱的中继的方法和系统 | |
EP2045942B1 (en) | Multicarrier signal receiving apparatus and multicarrier signal transmitting apparatus | |
KR100922980B1 (ko) | 다중 안테나를 사용하는 직교주파수분할다중 시스템에서 채널 추정 장치 및 방법 | |
EP0955754B1 (en) | Method and apparatus for achieving and maintaining symbol synchronization in an OFDM transmission system | |
EP1724957A1 (en) | Data transmission method and data reception method | |
WO2007037415A1 (ja) | 無線送信装置、無線受信装置、無線通信システム、無線送信方法および無線受信方法 | |
JP2003304215A (ja) | Ofdm通信装置およびofdm通信方法 | |
CN101119350B (zh) | 正交频分复用系统、快速同步的方法和发送端设备 | |
WO2007058193A1 (ja) | マルチキャリア受信装置、マルチキャリア通信システムおよび復調方法 | |
JP4898727B2 (ja) | 送信装置、受信装置、送信方法および受信方法 | |
CN101257468B (zh) | 一种多载波调制的子载波映射和逆映射的方法和装置 | |
WO2006028061A1 (ja) | Mimo送信装置、mimo受信装置、およびパイロットシンボル伝送方法 | |
JPH11308129A (ja) | マルチキャリア伝送方法及びアダプティブ受信装置 | |
JP2003110520A (ja) | 受信装置及び受信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080415 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4125913 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110516 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120516 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130516 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |