JP4110620B2 - Heat treatment method of aluminum alloy - Google Patents
Heat treatment method of aluminum alloy Download PDFInfo
- Publication number
- JP4110620B2 JP4110620B2 JP18283198A JP18283198A JP4110620B2 JP 4110620 B2 JP4110620 B2 JP 4110620B2 JP 18283198 A JP18283198 A JP 18283198A JP 18283198 A JP18283198 A JP 18283198A JP 4110620 B2 JP4110620 B2 JP 4110620B2
- Authority
- JP
- Japan
- Prior art keywords
- minutes
- treatment
- temperature
- artificial aging
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims description 43
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 11
- 230000032683 aging Effects 0.000 claims description 35
- 238000005266 casting Methods 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 10
- 229910018566 Al—Si—Mg Inorganic materials 0.000 claims description 6
- 239000000243 solution Substances 0.000 description 32
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000003483 aging Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
Images
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、Al―Si―Mg系(JIS規格のAC4C等)のアルミニウム合金のT6熱処理に関する。
【0002】
【従来の技術】
アルミニウム合金製の鋳造品は、鋳造後に機械的性質(引っ張り強度、0.2%耐力等)を改善するために、熱処理を行うことが望ましい。例えば、Al―Si―Mg系合金では、共晶点より57℃低い温度、すなわち520℃程度で5〜6時間以上保持した後に急冷する溶体化処理を行い、次いで200℃以下で4〜10時間保持する人工時効処理を行うT6熱処理を行っている。
【0003】
しかし、この方法では、溶体化処理、人工時効処理ともに長時間を必要とするから、生産性が低いとともに、エネルギー消費量が大きいという問題点があった。
【0004】
【発明が解決しようとする課題】
上記問題を解決するために、特開平7―310150には、溶体化処理を簡素化する技術が記載されている。すなわち、溶体化処理温度をAl―Si系合金の共晶点577℃近傍の557℃〜570℃程度に急速に昇温した後に急冷することで、約1時間以内で溶体化処理が可能になるというものである。しかし、実用面を考慮すると、溶体化処理温度は、550℃以下にしておかないと鋳物のバーニング(局部溶解)が起きる可能性がある。また、人工時効処理については、上述の従来技術と変わらないので、T6処理全体で考えると、5時間程度必要であり、やはり生産性は低い。
【0005】
また、特開平9―228010には、溶体化処理を省くために鋳物を型から取り出した直後(鋳物温度が400℃〜470℃のとき)に直接焼入れをしてから人工時効処理を行う熱処理方法が記載されている。この方法によれば、最短2時間程度で熱処理を行うことができるので、生産性についてはかなり高いといえるが、焼入れ直前の鋳物温度がばらつくと、機械的性質もばらつくという工程管理上の問題がある。
【0006】
本発明は、上記不具合を解決したものであり、アルミニウム合金製の鋳造品の機械的性質を向上させるための熱処理において、機械的性質の安定性を確保しつつ熱処理時間を大幅に短縮し、生産性の向上、エネルギー消費量削減を図り、製品のコストダウンを可能にする熱処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、流動粒子加熱型の高速熱処理炉を用いて、鋳造した鋳物の溶体化処理及び、人工時効処理を行うJIS−AC4Cに相当するAl−Si−Mg系のアルミニウム合金の熱処理方法において、前記溶体化処理は、溶体化処理温度を520℃〜550℃に設定し、溶体化処理時間は、前記溶体化処理温度が520℃〜530℃では35分〜60分間、前記溶体化処理温度が530℃〜550℃では25分〜60分間に設定し、前記人工時効処理は、人工時効処理温度を200℃〜230℃に設定し、人工時効処理時間は、前記人工時効処理温度が200℃〜210℃では20分〜60分間、前記人工時効処理温度が210℃〜220℃では10分〜40分間、前記人工時効処理温度が220℃〜230℃では10分〜15分間に設定することを特徴とする。
【0008】
熱処理炉を、従来の雰囲気加熱型のものに比して、鋳物の昇温速度が5〜10倍である流動粒子加熱型等の高速熱処理炉のものに変更することで、鋳物の昇温にかかる時間を短縮することができるとともに、溶体化処理時間及び人工時効処理時間を大幅に短縮しても、従来の熱処理条件を行った場合と同等の機械的性質を有するアルミニウム合金鋳物を製造することができるものである。
【0010】
このような熱処理条件にて、流動粒子加熱型等の高速熱処理炉を用いて、溶体化処理及び、人工時効処理を行うことにより、さらに確実に、安定した機械的性質を有するアルミニウム合金鋳物を短時間にて製造することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施例を図面を用いて説明する。
【0012】
JIS規格AC4C合金に近い組成のAl―Si―Mg系合金を鋳造し、試料を切り出し、各種の温度と時間にて溶体化処理をした後、水焼入れを実施し、その後、各種の温度と時間にて人工時効処理を行った。このように熱処理を行った後、試料の硬度を測定した。
【0013】
図5は、今回試験を行った熱処理条件の一覧である。ここで、溶体化処理時間は、試料を炉内に挿入した直後から、試料を炉から取り出し水焼入れを行うまでの時間とする(すなわち、試料の昇温時間も溶体化処理時間に含まれることになる。)。同様に、人工時効処理時間も、試料を炉内に挿入した直後から、炉から取り出すまでの時間とする(試料の昇温時間を含む。)。尚、本試験に使用した試料の化学組成は、図6に示す通りであった。
【0014】
図1は、図5において、試験条件1〜4において処理時間を横軸に取った場合の試料の硬度を測定した結果である。図5に示すように、試験条件1〜4は、溶体化処理の温度の影響のみを把握するため、人工時効処理は、従来の処理条件(雰囲気加熱型の炉にて170℃×300分)に固定して行った。溶体化処理は、本発明に係る流動粒子加熱型の炉を用いて行い、処理温度の影響を把握するため処理温度を520℃〜550℃まで10℃きざみで変化させている。
【0015】
図1の結果より、条件1、すなわち溶体化処理温度が520℃のときは25分以上、条件2〜条件4、すなわち溶体化処理温度が530℃〜550℃のときは15分以上処理を行えば、従来条件(条件13)にて処理した場合と同等以上の硬度が得られることが分かる。ただし、試料内部の昇温時間も考慮すると、さらに10分の余裕をとり、520℃では、35分以上、530℃〜550℃では、25分以上処理を行うことが望ましい。
【0016】
以上の結果は、Al―Si―Mg系合金の析出硬化相であるMg2Siが、温度が高い方が早く固溶するため、溶体化温度を高くすることで短時間で鋳物の溶体化を完了させることができる事を示している。これらの実験結果より、昇温速度の速い流動粒子加熱型の炉を用い、処理温度を520℃以上にすることにより、溶体化処理時間(昇温時間を含む)を、従来の5〜6時間から最短で25分にまで短縮可能であることが分かる。
【0017】
次に、図2は、図5において、試験条件5〜12において処理時間を横軸に取った場合の試料の硬度を測定した結果である。図5に示すように、試験条件5〜12は、人工時効処理の温度の影響のみを把握するため、溶体化処理は、図1の結果良好であった一条件(流動粒子加熱型の炉にて540℃×25分)に固定して行った。人工時効処理は、本発明に係る流動粒子加熱型の炉を用いて行い、処理温度の影響を把握するため処理温度を170℃〜240℃まで10℃きざみで変化させている。
【0018】
図2の結果より、条件8〜条件9、すなわち人工時効処理温度が200℃〜210℃のときは20〜60分、条件10、すなわち人工時効処理温度が220℃のときは10〜40分、条件11、すなわち人工時効処理温度が230℃のときは10〜15分の間処理を行えば、従来条件(条件13)にて処理した場合と同等の硬度が得られることが分かる。
【0019】
以上の結果によると、低温側にて処理すると硬度の最大値は高くなるが、最大値に到達するまでの時間は長くなり、逆に、高温側にて処理すると硬度の最大値に到達するまでの時間は短くなるが、硬度の最大値が低くなってしまうという傾向がある。この傾向は、一般的に知られている傾向を一致するものである。これらの実験結果より、昇温速度の速い流動粒子加熱型等の炉を用い、処理温度を220℃〜230℃にすることにより、人工時効処理時間(昇温時間を含む)を、従来の4〜10時間から最短で10分にまで短縮可能であることが分かる。
【0020】
図3及び図4は、以上の結果を踏まえて、結果が良好であった一条件(溶体化処理が540℃×25分、人工時効処理が220℃×25分に固定)にて、流動粒子加熱型の炉を用いて熱処理を行った鋳物において、引っ張り強度と0.2%耐力を測定し、従来条件(条件13)にて処理した場合のものとの比較を行った結果(n=5づつ)を示す。
【0021】
この結果より、本発明に係る流動粒子加熱型等の炉にて所定条件下にて処理した鋳物は、従来条件にて処理した鋳物に比して、引っ張り強度、0.2耐力及びこれらのばらつき共に、同等であると判断することができる。尚、試料の化学組成は、図7に示す通りであった。
【0022】
以上をまとめると、本発明の高速熱処理条件における最適範囲は、図8に示す通りである。
【0023】
まず、溶体化処理の処理条件について説明する。処理温度を520℃以上としたのは、以下の理由による。すなわち、本発明は生産性向上等が目的であり、処理時間をあまり長時間とすると本発明の優位性を喪失してしまうので、本発明においては、溶体化処理時間及び人工時効処理時間共に、60分以内を想定しているところ、溶体化処理は、520℃未満では時効硬化反応(Al―Si―Mg系合金においてはMg2Siの析出反応)を起こすために必要な過飽和固溶体が60分以内では得られず、従来条件にて処理したものに比して機械的性質が劣ってしまうからである。また、処理温度を550℃以下としたのは、前述したように、550℃以上では、鋳物のバーニングが発生する可能性があるからである。処理時間については、520℃では35分以上、530℃〜550℃では25分以上としたのは、それ未満の処理時間では、十分な過飽和固溶体が得られない場合があり、試料ごと、あるいは試料の部位ごとで機械的性質のばらつきが大きくなってしまうからである。処理時間を60分以内としたのは、上述した生産性の観点からである。
【0024】
次に、人工時効処理の処理条件について説明する。人工時効処理中の時効析出過程は、過飽和固溶体→中間相→安定相となっており、このうち、合金の強度向上に最も寄与する硬化析出相は中間相であり、中間相の析出形態は微細で均一な方が強度は高くなるものである。図8において、人工時効処理温度を200℃〜230℃としたのは、200℃未満では、60分以内では時効硬化反応(Mg2Siの析出反応)が十分に進行しない、すなわち中間相の析出が十分ではないので、従来条件にて処理した場合と同等の機械的性質が得られないからであり、また、230℃を超えると、中間相が粗大化したり、安定相が析出して(いわゆる過時効状態)強度が低下するためである。また、処理時間について図8に示す範囲に設定したのは、各処理温度において図8に示す最短時間未満では、中間相の析出が不十分になったり、不均一になる場合があるからであり、また、各処理温度において図8に示す最長時間を超えると、高温側(220℃及び230℃)では前述の過時効状態となるからであり、低温側(200℃及び210℃)では前述のように生産性(処理時間60分以下を想定)を考慮したからである。
【0025】
このように、本発明によれば、溶体化処理については昇温も含めて最短で25分、人工時効処理は昇温も含めて最短で10分という短時間にて、従来の熱処理条件を行った場合と同等の機械的性質を有するアルミニウム合金鋳物を製造することができる。すなわち、鋳物の熱処理に要する時間が、従来の10時間程度から最短で約40分にまで短縮することができる。また、鋳造後直接焼入れるのではなく溶体化処理を行うので、鋳物の取り出し温度がばらついても、熱処理後の機械的性質は安定したものになるのである。
【0026】
以上、本発明を上記実施の態様に即して説明したが、本発明は上記態様に限定されるものではなく、本発明の原理に準ずる各種態様を含むものである。
【0027】
【発明の効果】
以上説明したように、本発明によれば、アルミニウム合金製の鋳造品の機械的性質を向上させるための熱処理において、機械的性質の安定性を確保しつつ熱処理時間を大幅に短縮し、生産性の向上、エネルギー消費量削減を図り、製品のコストダウンを可能にする熱処理方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における溶体化処理条件と鋳物の硬度との関係を示す図である。
【図2】本発明の一実施形態における人工時効処理条件と鋳物の硬度との関係を示す図である。
【図3】本発明条件と従来条件にて熱処理した場合の鋳物の引っ張り強度を示す図である。
【図4】本発明条件と従来条件にて熱処理した場合の鋳物の0.2%耐力を示す図である。
【図5】試験を行った熱処理条件の一覧表である。
【図6】図1及び図2に示す試験を行った際の試料の化学組成を示す表である。
【図7】図3及び図4に示す試験を行った際の試料の化学組成を示す表である。
【図8】本発明の高速熱処理条件における最適範囲を示す表である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a T6 heat treatment of an Al—Si—Mg based (such as JIS standard AC4C) aluminum alloy.
[0002]
[Prior art]
A cast product made of an aluminum alloy is preferably subjected to heat treatment in order to improve mechanical properties (tensile strength, 0.2% proof stress, etc.) after casting. For example, in an Al—Si—Mg alloy, a solution treatment is performed in which the temperature is 57 ° C. lower than the eutectic point, that is, at about 520 ° C. for 5 to 6 hours or more and then rapidly cooled, and then at 200 ° C. or less for 4 to 10 hours. T6 heat treatment is performed to perform artificial aging treatment.
[0003]
However, since this method requires a long time for both the solution treatment and the artificial aging treatment, there are problems that productivity is low and energy consumption is large.
[0004]
[Problems to be solved by the invention]
In order to solve the above problem, JP-A-7-310150 describes a technique for simplifying the solution treatment. That is, when the solution treatment temperature is rapidly raised to about 557 ° C. to 570 ° C. in the vicinity of the eutectic point 577 ° C. of the Al—Si based alloy and then rapidly cooled, the solution treatment can be performed within about one hour. That's it. However, in consideration of practical use, casting burning (local melting) may occur unless the solution treatment temperature is set to 550 ° C. or lower. Further, since the artificial aging treatment is not different from the above-described conventional technology, it takes about 5 hours when considering the entire T6 treatment, and the productivity is still low.
[0005]
Japanese Patent Laid-Open No. 9-228010 discloses a heat treatment method in which artificial aging treatment is performed after directly quenching (when the casting temperature is 400 ° C. to 470 ° C.) immediately after the casting is taken out of the mold in order to eliminate the solution treatment. Is described. According to this method, heat treatment can be performed in a minimum of about 2 hours, so it can be said that the productivity is quite high, but if the casting temperature just before quenching varies, there is a problem in process control that mechanical properties also vary. is there.
[0006]
The present invention solves the above-mentioned problems, and in heat treatment for improving the mechanical properties of aluminum alloy castings, the heat treatment time is greatly shortened while ensuring the stability of the mechanical properties. An object of the present invention is to provide a heat treatment method capable of improving the property and reducing the energy consumption and reducing the cost of the product.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to
[0008]
By changing the heat treatment furnace to that of a high-speed heat treatment furnace such as a fluidized particle heating type in which the heating rate of the casting is 5 to 10 times that of the conventional atmosphere heating type, the temperature of the casting can be increased. To produce an aluminum alloy casting having the same mechanical properties as those under conventional heat treatment conditions, even when the time required for solution treatment and artificial aging treatment time can be greatly shortened while being able to shorten such time. It is something that can be done.
[0010]
Under such heat treatment conditions, by performing solution treatment and artificial aging treatment using a fluidized particle heating type high-speed heat treatment furnace, an aluminum alloy casting having stable mechanical properties can be shortened more reliably. Can be manufactured in time.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0012]
Cast an Al-Si-Mg alloy with a composition close to that of JIS standard AC4C alloy, cut out the sample, solution treatment at various temperatures and times, then water quenching, and then at various temperatures and times The artificial aging treatment was performed at After performing the heat treatment in this way, the hardness of the sample was measured.
[0013]
FIG. 5 is a list of heat treatment conditions in which the test was conducted this time. Here, the solution treatment time is the time from immediately after the sample is inserted into the furnace until the sample is taken out of the furnace and water quenching is performed (that is, the temperature raising time of the sample is also included in the solution treatment time). become.). Similarly, the artificial aging treatment time is also defined as the time from immediately after the sample is inserted into the furnace until it is taken out from the furnace (including the temperature raising time of the sample). The chemical composition of the sample used in this test was as shown in FIG.
[0014]
FIG. 1 shows the result of measuring the hardness of the sample when the processing time is taken on the horizontal axis in
[0015]
From the result of FIG. 1, when the
[0016]
The above results indicate that Mg 2 Si, which is the precipitation hardening phase of Al—Si—Mg alloy, dissolves faster at higher temperatures. Indicates that it can be completed. From these experimental results, by using a fluidized particle heating type furnace with a high temperature rising rate and setting the processing temperature to 520 ° C. or higher, the solution treatment time (including the temperature rising time) is reduced to the conventional 5 to 6 hours. It can be seen that it can be shortened to 25 minutes at the shortest.
[0017]
Next, FIG. 2 is a result of measuring the hardness of the sample when the processing time is taken on the horizontal axis in
[0018]
From the results of FIG. 2, Condition 8 to Condition 9, that is, when the artificial aging treatment temperature is 200 ° C. to 210 ° C., 20 to 60 minutes,
[0019]
According to the above results, the maximum value of hardness increases when processed on the low temperature side, but the time to reach the maximum value becomes long. Conversely, the maximum value of hardness is reached when processed on the high temperature side. However, the maximum value of hardness tends to be low. This tendency agrees with a generally known tendency. From these experimental results, by using a furnace such as a fluidized particle heating type with a high temperature rise rate, the treatment temperature is set to 220 ° C. to 230 ° C., whereby the artificial aging treatment time (including the temperature rise time) is reduced to the conventional 4 It can be seen that it can be shortened from 10 hours to 10 minutes at the shortest.
[0020]
FIGS. 3 and 4 are based on the above results, and in one condition where the results were good (solution treatment was fixed at 540 ° C. × 25 minutes, artificial aging treatment was fixed at 220 ° C. × 25 minutes). In a casting that was heat-treated using a heating furnace, the tensile strength and 0.2% proof stress were measured, and the result of comparison with the case of processing under the conventional conditions (condition 13) (n = 5) One by one).
[0021]
From this result, the casting processed under the predetermined conditions in the furnace such as the fluidized particle heating mold according to the present invention has a tensile strength, 0.2 proof stress and variations thereof compared with the casting processed under the conventional conditions. Both can be judged to be equivalent. The chemical composition of the sample was as shown in FIG.
[0022]
In summary, the optimum range for the rapid thermal processing conditions of the present invention is as shown in FIG.
[0023]
First, processing conditions for the solution treatment will be described. The reason why the processing temperature is set to 520 ° C. or more is as follows. That is, the purpose of the present invention is to improve productivity, etc., and if the treatment time is too long, the superiority of the present invention is lost, so in the present invention, both the solution treatment time and the artificial aging treatment time, Assuming a time of 60 minutes or less, the solution treatment is less than 520 ° C., and the supersaturated solid solution necessary for causing an age hardening reaction (precipitation reaction of Mg 2 Si in an Al—Si—Mg based alloy) is 60 minutes. This is because the mechanical properties are inferior to those processed under conventional conditions. The reason why the processing temperature is set to 550 ° C. or lower is that, as described above, casting casting may occur at 550 ° C. or higher. The treatment time is 35 minutes or more at 520 ° C. and 25 minutes or more at 530 ° C. to 550 ° C. The treatment time shorter than that may not provide a sufficient supersaturated solid solution. This is because the variation in mechanical properties increases for each part. The reason for setting the processing time within 60 minutes is from the viewpoint of productivity mentioned above.
[0024]
Next, processing conditions for the artificial aging process will be described. The aging precipitation process during the artificial aging treatment is supersaturated solid solution → intermediate phase → stable phase. Of these, the hardened precipitation phase that contributes most to the improvement of the strength of the alloy is the intermediate phase, and the precipitation form of the intermediate phase is fine The more uniform, the higher the strength. In FIG. 8, the artificial aging treatment temperature is set to 200 ° C. to 230 ° C. When the temperature is less than 200 ° C., the age hardening reaction (precipitation reaction of Mg 2 Si) does not proceed sufficiently within 60 minutes. Is not sufficient, the same mechanical properties as when treated under conventional conditions cannot be obtained, and if it exceeds 230 ° C., the intermediate phase becomes coarse or a stable phase precipitates (so-called This is because the strength is reduced. Further, the reason why the processing time is set in the range shown in FIG. 8 is that the precipitation of the intermediate phase may become insufficient or non-uniform at less than the shortest time shown in FIG. 8 at each processing temperature. In addition, when the maximum time shown in FIG. 8 is exceeded at each processing temperature, the above-mentioned overaging state is brought about on the high temperature side (220 ° C. and 230 ° C.), and on the low temperature side (200 ° C. and 210 ° C.) This is because productivity (assuming a processing time of 60 minutes or less) is considered.
[0025]
As described above, according to the present invention, the conventional heat treatment conditions are performed in a short time of 25 minutes at the shortest including the temperature rise for the solution treatment and 10 minutes at the shortest including the temperature rise for the artificial aging treatment. It is possible to produce an aluminum alloy casting having mechanical properties equivalent to that of the case. That is, the time required for the heat treatment of the casting can be shortened from about 10 hours to about 40 minutes at the shortest. In addition, since the solution treatment is performed instead of directly quenching after casting, the mechanical properties after the heat treatment become stable even if the casting take-off temperature varies.
[0026]
As mentioned above, although this invention was demonstrated according to the said embodiment, this invention is not limited to the said aspect, The various aspect according to the principle of this invention is included.
[0027]
【The invention's effect】
As described above, according to the present invention, in the heat treatment for improving the mechanical properties of an aluminum alloy casting, the heat treatment time is greatly shortened while ensuring the stability of the mechanical properties, and the productivity is improved. It is possible to provide a heat treatment method that can improve the cost and reduce the energy consumption and reduce the cost of the product.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between solution treatment conditions and casting hardness in an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between artificial aging treatment conditions and casting hardness in an embodiment of the present invention.
FIG. 3 is a diagram showing the tensile strength of a casting when heat-treated under the conditions of the present invention and the conventional conditions.
FIG. 4 is a diagram showing the 0.2% proof stress of a casting when heat-treated under the conditions of the present invention and the conventional conditions.
FIG. 5 is a list of heat treatment conditions under test.
6 is a table showing the chemical composition of the sample when the test shown in FIGS. 1 and 2 was performed. FIG.
7 is a table showing chemical compositions of samples when the tests shown in FIGS. 3 and 4 are performed. FIG.
FIG. 8 is a table showing the optimum range under the rapid heat treatment conditions of the present invention.
Claims (1)
前記溶体化処理は、溶体化処理温度を520℃〜550℃に設定し、
溶体化処理時間は、前記溶体化処理温度が520℃〜530℃では35分〜60分間、前記溶体化処理温度が530℃〜550℃では25分〜60分間に設定し、
前記人工時効処理は、人工時効処理温度を200℃〜230℃に設定し、人工時効処理時間は、前記人工時効処理温度が200℃〜210℃では20分〜60分間、
前記人工時効処理温度が210℃〜220℃では10分〜40分間、前記人工時効処理温度が220℃〜230℃では10分〜15分間に設定することを特徴とするアルミニウム合金の熱処理方法。In a heat treatment method for an Al-Si-Mg-based aluminum alloy corresponding to JIS-AC4C for performing solution treatment of cast castings and artificial aging treatment using a fluidized particle heating type high-speed heat treatment furnace,
In the solution treatment, the solution treatment temperature is set to 520 ° C. to 550 ° C.,
The solution treatment time is set to 35 minutes to 60 minutes when the solution treatment temperature is 520 ° C. to 530 ° C., and is set to 25 minutes to 60 minutes when the solution treatment temperature is 530 ° C. to 550 ° C.,
In the artificial aging treatment, the artificial aging treatment temperature is set to 200 ° C. to 230 ° C., and the artificial aging treatment time is 20 minutes to 60 minutes when the artificial aging treatment temperature is 200 ° C. to 210 ° C.
An aluminum alloy heat treatment method, wherein the artificial aging treatment temperature is set to 10 minutes to 40 minutes at 210 ° C. to 220 ° C. , and the artificial aging treatment temperature is set to 10 minutes to 15 minutes at 220 ° C. to 230 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18283198A JP4110620B2 (en) | 1998-06-29 | 1998-06-29 | Heat treatment method of aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18283198A JP4110620B2 (en) | 1998-06-29 | 1998-06-29 | Heat treatment method of aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000017413A JP2000017413A (en) | 2000-01-18 |
JP4110620B2 true JP4110620B2 (en) | 2008-07-02 |
Family
ID=16125239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18283198A Expired - Lifetime JP4110620B2 (en) | 1998-06-29 | 1998-06-29 | Heat treatment method of aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110620B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316747A (en) | 1999-08-31 | 2001-11-16 | Asahi Tec Corp | NON-Cu CAST Al ALLOY AND HEAT TREATING METHOD THEREFOR |
CN1468320A (en) * | 2000-08-08 | 2004-01-14 | ������������ʽ���� | Aluminum alloy formed by precipitation hardening and method for heat treatment thereof |
JP4723060B2 (en) * | 2000-08-09 | 2011-07-13 | 旭テック株式会社 | Rotary heat treatment furnace, heat treatment apparatus, and heat treatment method |
JP4709362B2 (en) * | 2000-09-27 | 2011-06-22 | 旭テック株式会社 | Hot air blowing type fluidized bed furnace and heat treatment apparatus using the same |
US7025927B2 (en) | 2000-08-09 | 2006-04-11 | Asahi Tec Corporation | Hot air blowing type fluidized-bed furnace, rotary heat-treatment furnace, heat-treatment apparatus, and method of heat treatment |
JP4699605B2 (en) * | 2000-12-27 | 2011-06-15 | 旭テック株式会社 | Multi-layer heat treatment furnace, heat treatment apparatus, and heat treatment method |
CN104561855A (en) * | 2014-07-23 | 2015-04-29 | 霍山汇能汽车零部件制造有限公司 | Heat treatment process for 4032 aluminum alloy |
-
1998
- 1998-06-29 JP JP18283198A patent/JP4110620B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000017413A (en) | 2000-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111360266A (en) | A kind of laser selective melting forming Inconel718 alloy and its heat treatment method | |
JP2008525629A (en) | Heat treatment of aluminum alloy high pressure die castings. | |
JP4035664B2 (en) | Simple manufacturing method and apparatus for heat-treatable aluminum alloy castings | |
JP4110620B2 (en) | Heat treatment method of aluminum alloy | |
KR100415270B1 (en) | Copper Base Alloy, and Methods for Producing Casting and Forging Employing Copper Base Alloy | |
US6752885B1 (en) | Method for the treatment of structure castings from an aluminum alloy to be used therefor | |
JPH1112674A (en) | Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy | |
JP4106113B2 (en) | Heat treatment method for heat-resistant iron-nickel superalloy material body and heat-treated material body | |
JPH09316572A (en) | Heat treatment for titanium alloy casting | |
JP4755072B2 (en) | Method for manufacturing aluminum alloy cylinder block | |
CN112501482B (en) | Si microalloyed AlZnMgCu alloy and preparation method thereof | |
JPH06116691A (en) | Method for heat-treating ti-al intermetallic compound series ti alloy | |
JPH09104955A (en) | Method for heat treating magnesinum-yttrium-rare earth-zirconium base alloy | |
US2263823A (en) | Method of producing and treating aluminum alloy castings | |
KR20050043748A (en) | Aluminum-silicon alloys having improved mechanical properties | |
US1860947A (en) | Aluminum alloy casting and process of making the same | |
JPS633020B2 (en) | ||
JPH05339688A (en) | Production of molding material for casting metal | |
CN117888011B (en) | Al-4.5Cu-xSc heat-resistant aluminum alloy and preparation method thereof | |
JPH0499140A (en) | Mold materials for plastic molding | |
SU1014934A1 (en) | Method for heat treating stainless steel | |
JPH07310150A (en) | Method for heat-treating aluminum alloy | |
JP2024071043A (en) | Casting aluminum alloy, aluminum alloy member, and method for manufacturing aluminum alloy member | |
JPH03199358A (en) | Manufacture of high toughness ti-al intermetallic compound series ti alloy material | |
JPH04210457A (en) | Manufacture of fe-ni base precipitation hardened superalloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070320 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |