CN112501482B - Si microalloyed AlZnMgCu alloy and preparation method thereof - Google Patents
Si microalloyed AlZnMgCu alloy and preparation method thereof Download PDFInfo
- Publication number
- CN112501482B CN112501482B CN202011100118.3A CN202011100118A CN112501482B CN 112501482 B CN112501482 B CN 112501482B CN 202011100118 A CN202011100118 A CN 202011100118A CN 112501482 B CN112501482 B CN 112501482B
- Authority
- CN
- China
- Prior art keywords
- alloy
- aging
- zinc
- temperature
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims abstract description 85
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 84
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 230000032683 aging Effects 0.000 claims abstract description 37
- 238000005098 hot rolling Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 239000010949 copper Substances 0.000 claims abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052710 silicon Inorganic materials 0.000 claims abstract 2
- 239000010703 silicon Substances 0.000 claims abstract 2
- 238000000137 annealing Methods 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 238000000265 homogenisation Methods 0.000 claims description 7
- 238000003723 Smelting Methods 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims 3
- -1 aluminum-zinc-magnesium-copper Chemical compound 0.000 claims 3
- 239000000126 substance Substances 0.000 claims 1
- 238000005260 corrosion Methods 0.000 abstract description 22
- 230000007797 corrosion Effects 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 5
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 abstract description 4
- 238000005728 strengthening Methods 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 abstract 1
- 238000005275 alloying Methods 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 238000003483 aging Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000004299 exfoliation Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Metal Rolling (AREA)
Abstract
一种Si微合金化AlZnMgCu合金及其制备方法,属于高强Al‑Zn‑Mg‑Cu合金领域,其中含有下列合金组分:4.0wt%‑5.0wt%的锌、1.0wt%‑2.0wt%的镁、0.5%‑1.5wt%的铜、0.15wt%‑0.5wt%的硅、不大于0.2wt%的不可避免的夹杂物,其余含量为铝。本发明采用了Si微合金化和时效处理(单级时效处理或双级时效处理两种方法),具有显著的时效强化效果,提高了合金的耐腐蚀性能,并且经过热轧后的合金强度有了进一步提升。本专利的目的,是提升Al‑Zn‑Mg‑Cu合金的强度兼耐腐蚀性能。A Si microalloyed AlZnMgCu alloy and a preparation method thereof belong to the field of high-strength Al-Zn-Mg-Cu alloys, and contain the following alloy components: 4.0wt%-5.0wt% of zinc, 1.0wt%-2.0wt% of zinc Magnesium, 0.5%-1.5wt% copper, 0.15wt%-0.5wt% silicon, no more than 0.2wt% unavoidable inclusions, and the rest are aluminum. The invention adopts Si micro-alloying and aging treatment (two methods of single-stage aging treatment or double-stage aging treatment), which has significant aging strengthening effect, improves the corrosion resistance of the alloy, and the alloy strength after hot rolling has further improvement. The purpose of this patent is to improve the strength and corrosion resistance of Al-Zn-Mg-Cu alloy.
Description
技术领域technical field
本发明属于金属合金技术领域,涉及一种经过微合金化的铝合金材料及其制备工艺。The invention belongs to the technical field of metal alloys, and relates to a microalloyed aluminum alloy material and a preparation process thereof.
技术背景technical background
Al-Zn-Mg-Cu合金(7xxx系)高强度铝合金为可热处理强化铝合金,具有密度小、强度高、加工性能好等优点,被广泛用于航空及民用行业。但其强度和腐蚀性能的平衡一直未得到很好的解决。因此本发明针对这个问题,优化合金组分产生一种新的兼顾高强度和良好耐腐蚀性的高强铝合金。Al-Zn-Mg-Cu alloy (7xxx series) high-strength aluminum alloy is a heat-treatable strengthened aluminum alloy, which has the advantages of low density, high strength and good processing performance, and is widely used in aviation and civil industries. However, the balance of its strength and corrosion performance has not been well resolved. Therefore, the present invention aims at this problem and optimizes the alloy composition to produce a new high-strength aluminum alloy with both high strength and good corrosion resistance.
Al-Zn-Mg-Cu合金的强度和耐腐蚀性能主要受基体析出相、晶界析出相和晶界附近无析出带这三种组织结构影响。合金中小而密集的基体析出相(MPt)可以显著强化合金,但与此同时形成的连续晶界相却导致高的腐蚀敏感性。为了提高合金的强度和抗腐蚀性能,就必须使合金的基体析出相(MPt)细小,弥散,同时使晶界析出相(GBP)粗大且呈不连续分布。本发明尝试将Si添加到7xxx铝合金中,希望Si能够使得晶内析出相在高温或长时间热处理条件下稳定,保持合金较高的强度,同时使得晶界析出相(GBP)不连续从而提高合金耐腐蚀性。The strength and corrosion resistance of Al-Zn-Mg-Cu alloy are mainly affected by the three microstructures of matrix precipitation, grain boundary precipitation and no precipitation zone near grain boundary. The small and dense matrix precipitates (MPt) in the alloy can significantly strengthen the alloy, but the continuous grain boundary phase formed at the same time leads to high corrosion susceptibility. In order to improve the strength and corrosion resistance of the alloy, it is necessary to make the matrix precipitate phase (MPt) of the alloy fine and dispersed, and at the same time make the grain boundary precipitate phase (GBP) coarse and discontinuous distribution. The present invention attempts to add Si to 7xxx aluminum alloys, hoping that Si can stabilize the intragranular precipitation phase under high temperature or long-term heat treatment conditions, maintain a higher strength of the alloy, and at the same time make the grain boundary precipitation phase (GBP) discontinuous to improve Alloy corrosion resistance.
本发明正是基于以上的考虑,设计了Al-Zn-Mg-Cu-Si合金,并确定此合金合适的成份范围和相应的制备工艺。Based on the above considerations, the present invention designs an Al-Zn-Mg-Cu-Si alloy, and determines the suitable composition range and corresponding preparation process of the alloy.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于发明一种Si微合金化AlZnMgCu合金及其制备方法。该合金的制备方法是在AlZnMgCu合金中添加价格便宜的Si元素,通过特殊的时效工艺,使得合金的晶内析出相在高温或长时间热处理条件下稳定,保持合金较高的强度,同时使得晶界析出相不连续从而提高合金耐腐蚀性。The purpose of the present invention is to invent a kind of Si microalloyed AlZnMgCu alloy and its preparation method. The preparation method of the alloy is to add cheap Si element to the AlZnMgCu alloy, and through a special aging process, the intragranular precipitation phase of the alloy is stabilized under high temperature or long-term heat treatment conditions, maintaining the high strength of the alloy, while making the crystal The boundary precipitation phase is discontinuous to improve the corrosion resistance of the alloy.
本发明合金中,Zn、Mg、Cu占合金的质量百分比最好为:Zn:4.0wt%-5.0wt%;Mg:1.0wt%-2.0wt%;Cu:0.5wt%-1.5wt%;Si:0.15wt%-0.5wt%,余量为Al。In the alloy of the present invention, the mass percentages of Zn, Mg and Cu in the alloy are preferably: Zn: 4.0wt%-5.0wt%; Mg: 1.0wt%-2.0wt%; Cu: 0.5wt%-1.5wt%; Si : 0.15wt%-0.5wt%, the balance is Al.
本发明通过以下技术方案实现:一种Si微合金化AlZnMgCu合金的制备方法,该方法包括下述步骤:(1)采用石墨坩埚熔炼和铁模铸造制备AlZnMgCuSi合金铸锭;(2)对合金进行450℃~500℃,13h~15h的均匀化退火处理;(3)将均匀化退火后的合金进行热轧;(4)热轧后的合金进行500℃~550℃,0.5h~1.5h的固溶处理,然后进行人工时效。人工时效的工艺有两种,第一种是将合金在125℃下时效12h~48h,然后进行第二级175℃时效3h~12h;第二种是将合金在125℃~225℃下进行单级时效0.5h~120h。The present invention is realized by the following technical solutions: a preparation method of Si microalloyed AlZnMgCu alloy, the method comprises the following steps: (1) adopting graphite crucible smelting and iron mold casting to prepare AlZnMgCuSi alloy ingot; (2) preparing the alloy for 450℃~500℃, 13h~15h homogenization annealing treatment; (3) hot rolling the alloy after homogenization annealing; (4) hot rolling the alloy after 500℃~550℃, 0.5h~1.5h Solution treatment followed by artificial aging. There are two artificial aging processes. The first is to age the alloy at 125°C for 12h to 48h, and then perform the second-stage aging at 175°C for 3h to 12h; the second is to age the alloy at 125°C to 225°C. Grade aging 0.5h ~ 120h.
步骤(1)将原料置于熔炼炉中,熔炼温度为770℃~790℃,达到温度后保温静置,使熔体中各元素成份分布均匀后进行浇铸,以获得所需的合金铸锭。Step (1) The raw material is placed in a smelting furnace, and the smelting temperature is 770 ℃~790 ℃, after reaching the temperature, the temperature is kept for standing, so that the components of each element in the melt are evenly distributed, and then casting is performed to obtain the desired alloy ingot.
步骤(3)热轧的工艺参数:将均匀化退火后的合金先进行450±10℃的保温,然后进行轧制,变形量为75%~95%。Step (3) Process parameters of hot rolling: the alloy after homogenization and annealing is first kept at 450±10° C., and then rolled, with a deformation amount of 75% to 95%.
人工时效的单级时效为:在175℃~225℃之间单级时效处理1h~10h。The single-stage aging of artificial aging is: single-stage aging treatment between 175 ℃ ~ 225 ℃ for 1h ~ 10h.
本发明在AlZnMgCu合金中复合添加Si元素,在特殊的时效工艺下,使得合金的晶内析出相在高温或长时间热处理条件下稳定,保持了合金较高的强度,同时使得晶界析出相不连续从而提高了合金的耐腐蚀性能。解决了AlZnMgCu合金强度和耐腐蚀性能不平衡的问题。In the present invention, Si element is compounded in the AlZnMgCu alloy, and under a special aging process, the intragranular precipitation phase of the alloy is stabilized under high temperature or long-term heat treatment conditions, the alloy has a high strength, and at the same time, the grain boundary precipitation phase is not affected. Continuously thereby improving the corrosion resistance of the alloy. The problem of unbalanced strength and corrosion resistance of AlZnMgCu alloy is solved.
本发明的方法中,Si元素价格相对便宜,采用的时效工艺简单,适合于工业化生产。In the method of the present invention, the price of Si element is relatively cheap, and the adopted aging process is simple, which is suitable for industrial production.
附图说明:Description of drawings:
图1:合金在125℃人工时效得到的显微硬度曲线。Figure 1: Microhardness curves of alloys artificially aged at 125°C.
图2:合金在175℃人工时效得到的显微硬度曲线。Figure 2: Microhardness curves obtained from alloys artificially aged at 175°C.
图3:合金在225℃人工时效得到的显微硬度曲线。Figure 3: Microhardness curves of alloys artificially aged at 225°C.
图4:合金在125℃人工时效24h后在175℃下人工时效得到的显微硬度曲线。Fig. 4: Microhardness curves obtained by artificial ageing at 175°C after the alloy was artificially aged at 125°C for 24h.
图5a:Al-4.5Zn-1.5Mg-1.0Cu合金热轧后540固溶1h125℃时效24h175℃时效24h晶间腐蚀照片。Figure 5a: Photo of intergranular corrosion of Al-4.5Zn-1.5Mg-1.0Cu alloy after hot rolling in 540 solution, 1h at 125°C for 24h and 24h at 175°C.
图5b:Al-4.5Zn-1.5Mg-1.0Cu-0.35Si合金热轧后540固溶1h125℃时效24h175℃时效24h晶间腐蚀照片。Fig. 5b: Photo of intergranular corrosion of Al-4.5Zn-1.5Mg-1.0Cu-0.35Si alloy after hot rolling in 540 solution, 1h, 125℃ and 24h, 175℃ and 24h aging.
具体实施方式:Detailed ways:
下面集合实施例对本发明做进一步说明,但本发明并不限于以下实施例。The following examples are set to further illustrate the present invention, but the present invention is not limited to the following examples.
实例1(即对比例):Example 1 (i.e. comparative example):
采用石墨坩埚熔炼和铁模铸造制备合金铸锭,所用原料为纯铝、纯锌、纯镁和Al-50Cu、Al-24Si中间合金,熔炼温度为780±10℃。到达熔炼温度后保温30分钟,然后用铁模浇铸。制备成合金Al4.5Zn1.5Mg1.0Cu和Al4.5Zn1.5Mg1.0Cu0.35Si,并通过XRF其实际成分(参考表1)。对该两种合金进行500℃/15h均匀化退火后水淬到室温,然后升温至450℃进行轧制(变形量90%)。进行540℃固溶1小时,水淬到室温,然后在125℃下进行单级时效,得到两种合金的时效硬度曲线(参考图1),从图1中可以看到添加Si在低温125℃下对合金的时效硬化无明显强化作用。The alloy ingots were prepared by graphite crucible melting and iron mold casting. The raw materials used were pure aluminum, pure zinc, pure magnesium and Al-50Cu, Al-24Si master alloys, and the melting temperature was 780±10℃. After reaching the smelting temperature, it is held for 30 minutes and then cast in an iron mold. The alloys Al4.5Zn1.5Mg1.0Cu and Al4.5Zn1.5Mg1.0Cu0.35Si were prepared and their actual compositions were determined by XRF (refer to Table 1). The two alloys were annealed at 500℃/15h for homogenization and then water quenched to room temperature, then heated to 450℃ for rolling (deformation 90%). Solution was carried out at 540 °C for 1 hour, water quenched to room temperature, and then single-stage aging was carried out at 125 °C to obtain the aging hardness curves of the two alloys (refer to Figure 1). There is no obvious strengthening effect on the age hardening of the alloy.
表1:合金经XRF测得的成分表Table 1: Composition table of alloys measured by XRF
实例2:采用和实例1相同的方法制备成合金Al4.5Zn1.5Mg1.0Cu、Al4.5Zn1.5Mg1.0Cu0.15Si和Al4.5Zn1.5Mg1.0Cu0.35Si(实际成分参考表1),对该三种合金进行500℃/15h均匀化退火后水淬到室温,然后升温至450℃进行轧制(变形量90%)。进行540℃固溶1小时,水淬到室温,然后在175℃下进行单级时效,得到三种合金的时效硬度曲线(参考图2),从图2中可以看到随着Si含量的增加,合金的时效硬化峰值越来越高,达到峰值也越来越慢(不含Si、含0.15Si、含0.35Si合金的硬度峰值分别为117.7HV、129.6HV、148.9HV),达到峰值后硬度下降的也越来越快。说明在中温175℃下时效,Si元素的强化作用开始变得明显。Example 2: Al4.5Zn1.5Mg1.0Cu, Al4.5Zn1.5Mg1.0Cu0.15Si and Al4.5Zn1.5Mg1.0Cu0.35Si were prepared by the same method as in Example 1 (refer to Table 1 for the actual composition). The three alloys were annealed at 500℃/15h for homogenization, then water quenched to room temperature, and then heated to 450℃ for rolling (deformation 90%). The solution was carried out at 540 °C for 1 hour, water quenched to room temperature, and then single-stage aging was carried out at 175 °C to obtain the aging hardness curves of the three alloys (refer to Figure 2). From Figure 2, it can be seen that with the increase of Si content , the age hardening peak value of the alloy is getting higher and higher, and the peak value is getting slower and slower (the hardness peaks of alloys without Si, 0.15Si, and 0.35Si are 117.7HV, 129.6HV, 148.9HV respectively), and the hardness after reaching the peak value The decline is getting faster and faster. It shows that the strengthening effect of Si element becomes obvious after aging at a medium temperature of 175 ℃.
实例3:采用和实例1相同的方法制备成合金Al4.5Zn1.5Mg1.0Cu和Al4.5Zn1.5Mg1.0Cu0.35Si(实际成分参考表1),对该两种合金进行500℃/15h均匀化退火后水淬到室温,然后升温至450℃进行轧制(变形量90%)。进行540℃固溶1小时,水淬到室温,然后在225℃下进行单级时效,得到两种合金的时效硬度曲线(参考图3),从图3中可以看到Si对合金的时效硬化作用更加明显。并且随着Si含量的增加,合金的时效硬化峰值提高,达到峰值后硬度下降速度变慢。取Al4.5Zn1.5Mg1.0Cu、Al4.5Zn1.5Mg1.0Cu0.35Si两种合金在225℃单级时效硬度峰值态(分别是1h和3h)进行晶间腐蚀和剥落腐蚀性能测试,发现含Si合金的晶间腐蚀性能要优于不含Si的合金。说明仅在高温单级时效下,Si的强化作用就可以使Al4.5Zn1.5Mg1.0Cu合金的硬度和耐腐蚀性达到较好的平衡。Example 3: Al4.5Zn1.5Mg1.0Cu and Al4.5Zn1.5Mg1.0Cu0.35Si were prepared by the same method as in Example 1 (refer to Table 1 for the actual composition), and the two alloys were homogenized at 500°C/15h After annealing, water quenched to room temperature, and then heated to 450 ℃ for rolling (deformation 90%). The solid solution was carried out at 540 °C for 1 hour, water quenched to room temperature, and then single-stage aging was carried out at 225 °C to obtain the aging hardness curves of the two alloys (refer to Figure 3). From Figure 3, we can see the aging hardening of Si to the alloy. effect is more obvious. And with the increase of Si content, the age hardening peak value of the alloy increases, and the hardness decreases slowly after reaching the peak value. Two alloys, Al4.5Zn1.5Mg1.0Cu and Al4.5Zn1.5Mg1.0Cu0.35Si, were tested for intergranular corrosion and exfoliation corrosion at the peak state of single-stage aging hardness at 225℃ (1h and 3h, respectively). The intergranular corrosion performance of the alloy is better than that of the alloy without Si. It shows that the strengthening effect of Si can make the hardness and corrosion resistance of Al4.5Zn1.5Mg1.0Cu alloy reach a better balance only under high temperature single-stage aging.
实例4:采用和实例1相同的方法制备成合金Al4.5Zn1.5Mg1.0Cu和Al4.5Zn1.5Mg1.0Cu0.35Si(实际成分参考表1),对该两种合金进行500℃/15h均匀化退火后水淬到室温,然后升温至450℃进行轧制(变形量90%)。进行540℃固溶1小时,水淬到室温,然后先在125℃下进行时效,得到两种合金的时效硬度曲线,选取125℃/24h态的两种合金进行175℃第二级时效,得到时效硬度曲线(参考图4)。可以看到,不含Si的合金硬度在第二级时效时硬度呈下降趋势,而含Si的合金硬度呈先上升后下降的趋势,说明添加Si可以使得合金在双级时效后硬度有进一步的提升。选取两种合金在二级时效的24h时效态进行晶间腐蚀和剥落腐蚀性能测试,发现含Si合金比不含Si合金的晶间腐蚀性能(参考图5a和图5b)和剥落腐蚀性能更好。说明在双级时效下,Si可以使Al4.5Zn1.5Mg1.0Cu合金的硬度和耐腐蚀性达到很好的平衡。Example 4: Al4.5Zn1.5Mg1.0Cu and Al4.5Zn1.5Mg1.0Cu0.35Si alloys were prepared by the same method as in Example 1 (refer to Table 1 for the actual composition), and the two alloys were homogenized at 500°C/15h After annealing, water quenched to room temperature, and then heated to 450 ℃ for rolling (deformation 90%). Carry out solid solution at 540 °C for 1 hour, quench with water to room temperature, and then first age at 125 °C to obtain the aging hardness curves of the two alloys. Aging hardness curve (refer to Figure 4). It can be seen that the hardness of the alloy without Si shows a decreasing trend during the second-stage aging, while the hardness of the alloy containing Si shows a trend of first increasing and then decreasing, indicating that the addition of Si can make the alloy further increase in hardness after double-aging. promote. The intergranular corrosion and exfoliation corrosion performance tests of the two alloys were carried out in the 24h aging state of secondary aging, and it was found that the Si-containing alloy had better intergranular corrosion performance (refer to Figure 5a and Figure 5b) and exfoliation corrosion performance than the Si-free alloy. . It shows that Si can make the hardness and corrosion resistance of Al4.5Zn1.5Mg1.0Cu alloy reach a good balance under double-stage aging.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011100118.3A CN112501482B (en) | 2020-10-14 | 2020-10-14 | Si microalloyed AlZnMgCu alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011100118.3A CN112501482B (en) | 2020-10-14 | 2020-10-14 | Si microalloyed AlZnMgCu alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112501482A CN112501482A (en) | 2021-03-16 |
CN112501482B true CN112501482B (en) | 2022-07-05 |
Family
ID=74953780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011100118.3A Active CN112501482B (en) | 2020-10-14 | 2020-10-14 | Si microalloyed AlZnMgCu alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112501482B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113930647A (en) * | 2021-10-11 | 2022-01-14 | 北京工业大学 | Heat treatment process for improving strength of Si microalloyed AlZnMgCu alloy |
CN115369294B (en) * | 2022-08-28 | 2023-09-12 | 北京工业大学 | Heat-resistant Al-Mg-Cu-Zn alloy and heat treatment process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104703792A (en) * | 2012-09-12 | 2015-06-10 | 阿莱利斯铝业迪弗尔私人有限公司 | Production of formed automotive structural parts from aa7xxx-series aluminium alloys |
CN108193101A (en) * | 2018-01-04 | 2018-06-22 | 北京工业大学 | Er, Zr, Si microalloying Al-Mg-Cu alloys and its thermomechanical treatment process |
CN108823472A (en) * | 2018-07-25 | 2018-11-16 | 江苏大学 | A kind of High Strength and Tenacity Al-Zn-Mg-Cu Aluminum Alloy and its heat treatment method |
CN109252076A (en) * | 2018-11-13 | 2019-01-22 | 中南大学 | A kind of anticorrosion stress-resistant Al-Zn-Mg- (Cu) alloy and preparation method thereof containing Ta |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101705401A (en) * | 2009-11-27 | 2010-05-12 | 北京工业大学 | Rare earth Er microalloyed Al-Zn-Mg-Mn-Zr alloy and preparation method thereof |
CN102108463B (en) * | 2010-01-29 | 2012-09-05 | 北京有色金属研究总院 | Aluminium alloy product suitable for manufacturing structures and preparation method |
CN101956151A (en) * | 2010-10-25 | 2011-01-26 | 四川城际轨道交通材料有限责任公司 | Heat treatment technology of high strength aluminium alloy |
JP5275321B2 (en) * | 2010-10-29 | 2013-08-28 | 昭和電工株式会社 | Manufacturing method of plastic products made of aluminum alloy |
CN103898423B (en) * | 2014-03-18 | 2016-08-24 | 北京工业大学 | A kind of chipping resistance corrosion containing erbium Al-Zn-Mg-Cu alloy two-stage time effect process |
WO2018080708A1 (en) * | 2016-10-27 | 2018-05-03 | Novelis Inc. | High strength 7xxx series aluminum alloys and methods of making the same |
CN106834830A (en) * | 2017-03-14 | 2017-06-13 | 北京工业大学 | A kind of Si microalloyings Al Mg Cu alloys |
CN110453121A (en) * | 2019-09-09 | 2019-11-15 | 广西南南铝加工有限公司 | A kind of 7xxx line aluminium alloy plate of high brightness and preparation method thereof |
CN110541096A (en) * | 2019-09-11 | 2019-12-06 | 北京科技大学 | A kind of high-strength and easy-to-weld Al-Mg-Zn-Cu alloy and its preparation method |
CN111020316B (en) * | 2019-12-20 | 2020-08-28 | 福建祥鑫股份有限公司 | High-performance 7XXX aluminum alloy capable of being quenched on line and preparation method thereof |
CN111424197B (en) * | 2020-04-14 | 2021-12-21 | 广西南南铝加工有限公司 | Corrosion-resistant aluminum alloy for aviation and preparation method thereof |
CN111763860B (en) * | 2020-06-02 | 2021-09-07 | 远东电缆有限公司 | Ultrahigh-strength aluminum alloy wire and production process thereof |
-
2020
- 2020-10-14 CN CN202011100118.3A patent/CN112501482B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104703792A (en) * | 2012-09-12 | 2015-06-10 | 阿莱利斯铝业迪弗尔私人有限公司 | Production of formed automotive structural parts from aa7xxx-series aluminium alloys |
CN108193101A (en) * | 2018-01-04 | 2018-06-22 | 北京工业大学 | Er, Zr, Si microalloying Al-Mg-Cu alloys and its thermomechanical treatment process |
CN108823472A (en) * | 2018-07-25 | 2018-11-16 | 江苏大学 | A kind of High Strength and Tenacity Al-Zn-Mg-Cu Aluminum Alloy and its heat treatment method |
CN109252076A (en) * | 2018-11-13 | 2019-01-22 | 中南大学 | A kind of anticorrosion stress-resistant Al-Zn-Mg- (Cu) alloy and preparation method thereof containing Ta |
Also Published As
Publication number | Publication date |
---|---|
CN112501482A (en) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103789583B (en) | Quick aging response type Al-Mg-Si-Cu-Zn system Alloy And Preparation Method | |
JP6607463B2 (en) | Strain-induced aging strengthening in dilute magnesium alloy sheets | |
WO2021008428A1 (en) | Ultrahigh-strength aluminum-lithium alloy and preparation method therefor | |
WO2015127805A1 (en) | High temperature baking hardened aluminum alloy material used for automobile body and preparation method thereof | |
CN102021443B (en) | Al-Er-Zr alloy and ageing strengthening process thereof | |
CN112458344B (en) | High-strength corrosion-resistant aluminum alloy and preparation method and application thereof | |
JP2024088721A (en) | Manufacturing method of aluminum alloy forging material | |
CN112501482B (en) | Si microalloyed AlZnMgCu alloy and preparation method thereof | |
JP2001517735A (en) | Aluminum alloy and heat treatment method thereof | |
CN109097646B (en) | 780-820MPa ultra-high strength aluminum alloy and preparation method thereof | |
CN103924175A (en) | Stabilized heat treatment process capable of improving corrosion resistance of aluminum-magnesium alloy containing Zn and Er | |
CN110093537A (en) | A kind of high-fracture toughness Al-Mg-Sc alloy bar and preparation method thereof | |
CN114411072B (en) | Aluminum alloy material with gradient structure and preparation method thereof | |
CN108193101B (en) | Er, Zr, Si microalloyed Al-Mg-Cu alloy and its deformation heat treatment process | |
CN112522551B (en) | A kind of Ag microalloyed aluminum alloy with rapid aging response and its preparation method and application | |
CN112626385B (en) | High-plasticity quick-aging-response aluminum alloy and preparation method and application thereof | |
CN112522550B (en) | Aluminum alloy with rapid aging response and preparation method and application thereof | |
CN110616356B (en) | Er-containing magnesium alloy and preparation method thereof | |
CN113969362A (en) | A kind of continuous gradient aluminum alloy deformation material and preparation method thereof | |
JP2011162883A (en) | High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member | |
CN104498785B (en) | A kind of Al-Mg-Er-Zr heat-resisting aluminium alloy and preparation technology thereof | |
JP2006257522A (en) | Al-Zn-Mg-Cu-BASED ALUMINUM ALLOY CONTAINING ZR AND METHOD FOR MANUFACTURING THE SAME | |
CN110656268B (en) | High-strength anti-fatigue aluminum alloy and preparation method thereof | |
CN101838762B (en) | High-hardness corrosion resistant 7000 series aluminum alloy and production method thereof | |
CN106834830A (en) | A kind of Si microalloyings Al Mg Cu alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |