[go: up one dir, main page]

JP4102316B2 - Method for continuous casting of molten metal - Google Patents

Method for continuous casting of molten metal Download PDF

Info

Publication number
JP4102316B2
JP4102316B2 JP2004041858A JP2004041858A JP4102316B2 JP 4102316 B2 JP4102316 B2 JP 4102316B2 JP 2004041858 A JP2004041858 A JP 2004041858A JP 2004041858 A JP2004041858 A JP 2004041858A JP 4102316 B2 JP4102316 B2 JP 4102316B2
Authority
JP
Japan
Prior art keywords
molten metal
mold
electromagnetic coil
injection nozzle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004041858A
Other languages
Japanese (ja)
Other versions
JP2005230847A (en
Inventor
雅弘 谷
健彦 藤
健司 梅津
義人 三村
裕彦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004041858A priority Critical patent/JP4102316B2/en
Publication of JP2005230847A publication Critical patent/JP2005230847A/en
Application granted granted Critical
Publication of JP4102316B2 publication Critical patent/JP4102316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型内の溶融金属に電磁力を作用させ、初期凝固の不安定を抑制して、鋳片の表面性状を改善する溶融金属の連続鋳造方法に関するものである。   The present invention relates to a molten metal continuous casting method for improving the surface properties of a slab by applying electromagnetic force to molten metal in a mold to suppress instability of initial solidification.

通常、溶融金属の連続鋳造においては、鋳型壁と凝固シェルの間に、所要の潤滑性を付与するため、溶鋼湯面に、潤滑剤パウダー(以下「パウダー」と記載することがある。)が添加される。溶融したパウダーは、上下に振動する鋳型壁と、一定速度で引き抜かれる凝固シェルの相対運動によって、鋳型壁と凝固シェルの間隙に流入する。
この流入の際に発生する動圧によって、メニスカスや凝固シェル先端が変形する。この変形が、鋳型オシレーションの周期で繰り返されて、鋳片表面に、オシレーションマーク(周期的な皺)が形成されるが、適切な深さの周期的なオシレーションマークは、鋳造操業や鋳片の表面品質の安定化に寄与する。
Normally, in continuous casting of molten metal, a lubricant powder (hereinafter sometimes referred to as “powder”) is provided on the surface of the molten steel in order to provide the required lubricity between the mold wall and the solidified shell. Added. The melted powder flows into the gap between the mold wall and the solidified shell by the relative movement of the mold wall that vibrates up and down and the solidified shell that is pulled out at a constant speed.
The meniscus and the tip of the solidified shell are deformed by the dynamic pressure generated during the inflow. This deformation is repeated at the mold oscillation cycle to form an oscillation mark (periodic flaw) on the surface of the slab. Contributes to stabilizing the surface quality of the slab.

鋳片の表面品質を確保するには、溶融金属の初期凝固における不安定性を解消するとともに、鋳型と凝固シェル間における潤滑性を確保することであり、このための方法又は装置が種々提案されている。
例えば、(特許文献1)には、溶融金属を潤滑剤とともに一定周期で振動する水冷鋳型に注入し、鋳片を、連続的に下方に引き抜く連続鋳造方法において、鋳型周りに設けた電磁コイルに交流電流を連続的に通電し、発生する電磁力を利用して、鋳型内の溶融金属を凸状に盛り上げて、鋳片の表面性状を改善する方法が記載されている。
In order to ensure the surface quality of the slab, it is necessary to eliminate instability in the initial solidification of the molten metal and ensure lubricity between the mold and the solidified shell, and various methods and apparatuses for this purpose have been proposed. Yes.
For example, in (Patent Document 1), in a continuous casting method in which molten metal is poured into a water-cooled mold that vibrates with a lubricant at a constant cycle, and a slab is continuously drawn downward, an electromagnetic coil provided around the mold is used. A method of improving the surface properties of a slab by continuously energizing an alternating current and using the generated electromagnetic force to raise the molten metal in the mold in a convex shape is described.

また、(特許文献2)には、電磁コイルにより鋳型内の溶融金属に電磁力を付与する際、交流磁場の付与により電磁力を間欠的に印加し、凝固シェルと鋳型壁の間へのパウダーの流れ込みを一層推進し、さらに、表面性状の改善を図る方法が記載されている。
さらに、(特許文献3)には、連鋳鋳型を取り囲むように配置したソレノイド状電磁コイル、又は、連鋳鋳型の側壁に埋設したソレノイド状電磁コイルに交流電流を通電し、凝固を開始しようとする溶融金属に、電磁力を、溶融金属が鋳型壁から離れる方向に印加しつつ連続鋳造して、鋳片の表面品質を改善する方法が記載されている。
Further, (Patent Document 2) discloses that when electromagnetic force is applied to molten metal in a mold by an electromagnetic coil, the electromagnetic force is intermittently applied by applying an alternating magnetic field, and powder between the solidified shell and the mold wall is applied. Describes a method of further promoting the flow of water and improving the surface properties.
Further, in Patent Document 3, an alternating current is applied to a solenoidal electromagnetic coil arranged so as to surround a continuous casting mold or a solenoidal electromagnetic coil embedded in a side wall of the continuous casting mold to start solidification. A method for improving the surface quality of a slab is described by continuously casting an electromagnetic force on the molten metal while applying an electromagnetic force in a direction away from the mold wall.

また、(特許文献4)には、溶鋼メニスカス近傍に電磁コイルにより交流電磁力を付与しつつ連続鋳造を行う方法において、下向き方向に開口した吐出口を備える溶融金属注入ノズルを、前記吐出口が前記電磁コイルの中心より下方に位置するように、鋳型内に配設することにより、鋳片の表面性状を改善する方法が記載されている。
特開昭52−32824号公報 特開昭64−83348号公報 国際公開WO96/05926号公報 特開平11−188460号公報
Further, in (Patent Document 4), in a method of performing continuous casting while applying AC electromagnetic force by an electromagnetic coil in the vicinity of a molten steel meniscus, a molten metal injection nozzle having a discharge port opened in a downward direction is provided. A method is described in which the surface properties of the slab are improved by disposing it in the mold so as to be positioned below the center of the electromagnetic coil.
JP 52-32824 A JP-A-64-83348 International Publication WO 96/05926 JP-A-11-188460

上記の(特許文献1)〜(特許文献3)の方法では、表面性状の改善は図ることができる場合があるものの、鋳型内鋳造方向の電磁力の分布に対して、溶融金属注入ノズルの吐出孔が適切な範囲にないと、溶融金属注入ノズルからの吐出流と、電磁力により溶融金属内に誘起される溶融金属の流動が干渉して、鋳型内の溶鋼の流動が不安定になり、溶融金属のメニスカスに擾乱が発生することがあり、鋳片の表面性状の改善が鋳型周方向に不均一になり、メニスカス部においてパウダーが溶鋼中に巻き込まれ、凝固シェルに捕捉され、鋳片欠陥となるという課題があることがわかった。   In the methods of (Patent Document 1) to (Patent Document 3) described above, the surface properties may be improved, but the discharge of the molten metal injection nozzle with respect to the distribution of electromagnetic force in the casting direction in the mold. If the holes are not in the proper range, the flow of molten metal injected from the molten metal injection nozzle interferes with the flow of molten metal induced in the molten metal by electromagnetic force, and the flow of molten steel in the mold becomes unstable. Disturbances may occur in the molten metal meniscus, and the improvement in the surface properties of the slab becomes non-uniform in the circumferential direction of the mold, and the powder is caught in the molten steel at the meniscus and trapped in the solidified shell, resulting in slab defects It became clear that there was a problem of becoming.

また、(特許文献4)の方法の様に、下向き方向に開口した吐出口を備える溶融金属注入ノズルを、前記吐出口が前記電磁コイルの中心より下方に位置するように、鋳型内に配設することで、溶融金属注入ノズルからの吐出流と、電磁力により溶融金属内に誘起される溶融金属の流動との干渉による流動の乱れが、メニスカスへ及ぼす影響を抑制し、鋳型内の溶鋼の流動を安定させる傾向にある。   Further, as in the method of (Patent Document 4), a molten metal injection nozzle having a discharge port that opens downward is disposed in the mold so that the discharge port is positioned below the center of the electromagnetic coil. This suppresses the influence of the flow turbulence caused by the interference between the discharge flow from the molten metal injection nozzle and the flow of the molten metal induced in the molten metal by electromagnetic force on the meniscus, and the molten steel in the mold It tends to stabilize the flow.

しかし、溶融金属注入ノズルの吐出口が下向き方向に開口していることから、電磁力により溶融金属内に誘起される溶融金属の流動との干渉は抑制できるものの、下向きの溶鋼流の速度が大きいため、鋳型内の溶鋼流が不均一になり易い。また、ノズルの浸漬深さ等に制限があり、またメニスカスから離れた位置で溶鋼吐出流が形成されるため、溶鋼の顕熱が初期凝固部に供給されにくくなるため、鋳片表面性状の改善が達成されにくいという問題もある。   However, since the discharge port of the molten metal injection nozzle opens in the downward direction, interference with the flow of molten metal induced in the molten metal by electromagnetic force can be suppressed, but the speed of the downward molten steel flow is large Therefore, the molten steel flow in the mold tends to be non-uniform. In addition, there is a limit to the immersion depth of the nozzle, etc., and since the molten steel discharge flow is formed at a position away from the meniscus, it becomes difficult to supply the sensible heat of the molten steel to the initial solidification part, improving the slab surface properties There is also a problem that is difficult to achieve.

本発明は、溶融金属から鋳片を連続的に鋳造する方法に関し、鋳型内鋳造方向の磁束密度の分布により、溶融金属注入ノズルの浸漬深さを変化させることにより、溶融金属メニスカス挙動を安定化し、潤滑改善効果と鋳片表面性状改善効果を安定して得ることのできる鋳造方法を提供することを目的とする。   The present invention relates to a method for continuously casting a slab from molten metal, and stabilizes the molten metal meniscus behavior by changing the immersion depth of the molten metal injection nozzle according to the distribution of magnetic flux density in the casting direction in the mold. An object of the present invention is to provide a casting method capable of stably obtaining a lubrication improving effect and a slab surface property improving effect.

本発明の要旨は以下の通りである。
)鋳型を取り囲むように配置したソレノイド式電磁コイル、または、鋳型壁内に埋設したソレノイド式電磁コイルに交流を通電し、鋳型内の溶融金属に電磁力を印加し、メニスカス形状を変化させながら鋳造を行なう溶融金属の連続鋳造方法において、鋳型内鋳造方向の磁束密度が最大値となる位置が電磁コイルの中心位置よりも上方へずれている場合、溶融金属注入ノズルの吐出孔の位置、鋳型内鋳造方向の磁束密度が最大値となる位置より下方で、電磁コイルの中心位置までの範囲に調整することを特徴とする溶融金属の連続鋳造方法。
)溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度が60度以下である溶融金属注入ノズルを用いること特徴とする(1)に記載の溶融金属の連続鋳造方法。
)ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部を備える溶融金属注入ノズルを用いることを特徴とする(1)に記載の溶融金属の連続鋳造方法。
)溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度が60度以下であって、さらにノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部とを連続して備える溶融金属注入ノズルを用いることを特徴とする(1)に記載の溶融金属の連続鋳造方法。
)溶融金属のメニスカスへオイルを前記鋳型上部から供給することを特徴とする(1)〜(4)のいずれかに記載の溶融金属の連続鋳造方法。
(6)電磁コイルに通電する交流電流を周期的に変化させることを特徴とする(1)〜(5)のいずれかに記載の溶融金属の連続鋳造方法。
(7)鋳型を振動させずに、電磁コイルに通電する交流電流を周期的に変化させることを特徴とする(1)〜(6)のいずれかに記載の溶融金属の連続鋳造方法。
The gist of the present invention is as follows.
( 1 ) AC current is applied to the solenoid type electromagnetic coil arranged so as to surround the mold or the solenoid type electromagnetic coil embedded in the mold wall, and electromagnetic force is applied to the molten metal in the mold to change the meniscus shape. In the continuous casting method of molten metal that is cast while the position where the magnetic flux density in the casting direction in the mold is maximum is shifted upward from the center position of the electromagnetic coil, the position of the discharge hole of the molten metal injection nozzle is A method for continuously casting molten metal, characterized by adjusting the magnetic flux density in the casting direction in the mold to a range below the position where the maximum value is reached and to the center position of the electromagnetic coil .
( 2 ) Use of a molten metal injection nozzle having two holes for discharging molten metal from the opposite mold wall surface direction to the vertically downward direction, and an angle formed by the center line of each hole and the horizontal plane being 60 degrees or less. The continuous casting method of molten metal as described in (1) .
( 3 ) The molten metal continuous casting method according to (1), wherein a molten metal injection nozzle including a slit portion that is discharged from a vertically downward direction directly below the nozzle toward a facing mold wall surface is used.
( 4 ) Two holes are provided to discharge molten metal from the opposite mold wall surface direction to the vertically downward direction, and the angle between the center line of each hole and the horizontal plane is 60 degrees or less, and further vertically below the nozzle. (1) The molten metal continuous casting method according to (1), wherein a molten metal injection nozzle that continuously includes a slit portion that is discharged from a direction toward a facing mold wall surface is used.
( 5 ) The molten metal continuous casting method according to any one of (1) to (4) , wherein oil is supplied to the meniscus of molten metal from the upper part of the mold.
(6) The continuous casting method of molten metal according to any one of (1) to (5) , wherein an alternating current supplied to the electromagnetic coil is periodically changed.
(7) The molten metal continuous casting method according to any one of (1) to (6) , wherein the alternating current supplied to the electromagnetic coil is periodically changed without vibrating the mold.

本発明によれば、メニスカス部においてパウダーが溶鋼中に巻き込まれ、凝固シェルに捕捉され、鋳片欠陥となるのを防止することができるので、表面性状に優れ、かつ、鋳造欠陥のない連続鋳造鋳片を高速で生産することが可能である。   According to the present invention, it is possible to prevent the powder from being caught in the molten steel at the meniscus portion, captured by the solidified shell, and becoming a slab defect. Therefore, the continuous casting has excellent surface properties and no casting defects. It is possible to produce a slab at high speed.

本発明者らは、上記課題を解決するため、鋳型内鋳造方向の磁束密度の分布と、溶融金属注入ノズルの浸漬深さに着目し、鋳片の表面性状の良否との関連について、鋭意調査研究した。
その結果、鋳型内鋳造方向の磁束密度が最大値となる位置と電磁コイルの中心は一致しないことが判明し、この磁束密度が最大値となる位置と、溶融金属注入ノズルの吐出孔の位置には、潤滑改善効果と鋳片表面性状改善効果を安定して得ることのできる適正な関係があることが判明した。
In order to solve the above problems, the inventors focused on the distribution of the magnetic flux density in the casting direction in the mold and the immersion depth of the molten metal injection nozzle, and conducted an intensive investigation on the relationship between the quality of the surface properties of the slab. Studied.
As a result, it was found that the position where the magnetic flux density in the casting direction in the mold becomes the maximum value and the center of the electromagnetic coil do not coincide with each other, and the position where the magnetic flux density becomes the maximum value and the position of the discharge hole of the molten metal injection nozzle. Has been found to have an appropriate relationship that can stably obtain the lubrication improving effect and the slab surface property improving effect.

以下に本発明について、詳細に説明する。
本発明者らは、鋳型内鋳造方向の磁束密度の分布に着目し、この磁束密度の分布に応じて、溶融金属注入ノズルの吐出孔の位置を調整することを基本思想としている。すなわち、磁束密度が最大値となる位置で電磁力が働くため、この位置よりも溶融金属注入ノズルの吐出孔の位置を下方に調整することにより、溶融金属注入ノズルからの吐出流と、電磁力により溶融金属内に誘起される溶融金属の流動が干渉することはない。
従って、上記の通り、鋳型内鋳造方向の磁束密度が最大値となる位置と電磁コイルの中心は一致しないことから、磁束密度が最大値となる位置に基き、溶融金属注入ノズルの吐出孔の位置を設定することが重要である。
また、鋳型内鋳造方向の磁束密度の分布を調査したところ、磁束密度が最大値となる位置は、通常は電磁コイルの中心位置よりも上方または下方へずれていることが判明した。
The present invention is described in detail below.
The inventors pay attention to the distribution of the magnetic flux density in the casting direction in the mold, and the basic idea is to adjust the position of the discharge hole of the molten metal injection nozzle according to the distribution of the magnetic flux density. That is, since the electromagnetic force works at a position where the magnetic flux density becomes the maximum value, the discharge flow from the molten metal injection nozzle and the electromagnetic force are adjusted by adjusting the position of the discharge hole of the molten metal injection nozzle below this position. Therefore, the flow of the molten metal induced in the molten metal does not interfere.
Therefore, as described above, since the position where the magnetic flux density in the casting direction in the mold becomes the maximum value and the center of the electromagnetic coil do not coincide with each other, the position of the discharge hole of the molten metal injection nozzle is based on the position where the magnetic flux density becomes the maximum value. It is important to set
Further, when the distribution of the magnetic flux density in the casting direction in the mold was investigated, it was found that the position where the magnetic flux density reached the maximum value was usually shifted upward or downward from the center position of the electromagnetic coil.

本発明の具体的な例を、磁束密度が最大値となる位置が電磁コイルの中心位置よりも上方へずれている場合について、図1を用いて説明する。
図1に、鋳型3を取り囲むように配置したソレノイド式電磁コイル4に交流を通電し、タンディッシュ1から溶融金属注入ノズル2を介して、溶鋼吐出流8aとして鋳型内へ供給した溶鋼5に電磁力9を印加して、鋳型内の溶鋼メニスカス形状10aを変化させながら、パウダー7を供給しつつ、凝固シェル6を引き出し、鋳造を行う連続鋳造の態様を示す。また、電磁力9により、溶鋼内には、攪拌流11a、12が誘起される。
その際に、鋳型内の鋳造方向の磁束密度の分布に基き、磁束密度が最大値となる位置15よりも、溶融金属注入ノズルの吐出孔の上端14を下方に調整していることで、溶鋼吐出流8aと攪拌流11aが干渉しないで、鋳型内の溶鋼メニスカス形状10aが安定的に保たれ、潤滑改善効果と鋳片表面性状改善効果を鋳型周方向に安定して得ることができる。溶融金属注入ノズルの吐出孔の位置については、溶融金属注入ノズルの浸漬深さを調整することで実施できる。
A specific example of the present invention will be described with reference to FIG. 1 in the case where the position where the magnetic flux density is maximum is shifted upward from the center position of the electromagnetic coil.
In FIG. 1, an alternating current is applied to a solenoid type electromagnetic coil 4 arranged so as to surround the mold 3, and electromagnetic waves are supplied to the molten steel 5 supplied into the mold as a molten steel discharge flow 8 a from the tundish 1 through the molten metal injection nozzle 2. A mode of continuous casting is shown in which the force 9 is applied to change the molten steel meniscus shape 10a in the mold, and the solidified shell 6 is pulled out while casting while the powder 7 is supplied. Moreover, the stirring flows 11a and 12 are induced in the molten steel by the electromagnetic force 9.
At that time, based on the distribution of the magnetic flux density in the casting direction in the mold, the upper end 14 of the discharge hole of the molten metal injection nozzle is adjusted downward from the position 15 where the magnetic flux density becomes the maximum value. Since the discharge flow 8a and the stirring flow 11a do not interfere with each other, the molten steel meniscus shape 10a in the mold is stably maintained, and the lubrication improving effect and the slab surface property improving effect can be stably obtained in the mold circumferential direction. The position of the discharge hole of the molten metal injection nozzle can be implemented by adjusting the immersion depth of the molten metal injection nozzle.

一方、図2に示すように、鋳型内鋳造方向の磁束密度が最大値となる位置15より、溶融金属注入ノズルの吐出孔の上端14が上方にあると、溶鋼吐出流8bと攪拌流11bが干渉して、鋳型内の溶鋼メニスカス形状10bが不安定になり、潤滑改善効果と鋳片表面性状改善効果を鋳型周方向に安定して得ることのできない。   On the other hand, as shown in FIG. 2, when the upper end 14 of the discharge hole of the molten metal injection nozzle is above the position 15 at which the magnetic flux density in the casting direction in the mold becomes the maximum value, the molten steel discharge flow 8b and the stirring flow 11b are The molten steel meniscus shape 10b in the mold becomes unstable due to interference, and the lubrication improving effect and the slab surface property improving effect cannot be stably obtained in the mold circumferential direction.

また、磁束密度が最大値となる位置15は、電磁コイルの中心位置16よりも上方である。この状況で、溶融金属注入ノズルの吐出孔の位置は、磁束密度が最大値となる位置15よりも、下方であればどの位置に調整しても良い。従って、溶融金属注入ノズルの吐出口の位置や、このノズルの浸漬深さ等の制約条件が緩和され、比較的自由に設定できるため、パウダーによる溶融金属注入ノズルの溶損防止のために、このノズルを適宜上下させる際のノズル設定位置の選択の幅が広がる等の利点がある。
また、溶融金属注入ノズルの吐出孔の位置は、磁束密度が最大値となる位置15よりも下方で、電磁コイルの中心位置までの範囲に設定すると、溶鋼の顕熱が初期凝固部に供給され易くなるため、鋳片表面性状が改善される傾向を示すことがあるため好ましい。
Further, the position 15 at which the magnetic flux density becomes the maximum value is above the center position 16 of the electromagnetic coil. In this situation, the position of the discharge hole of the molten metal injection nozzle may be adjusted to any position as long as it is below the position 15 at which the magnetic flux density becomes the maximum value. Therefore, restrictions such as the position of the discharge port of the molten metal injection nozzle and the immersion depth of this nozzle are relaxed and can be set relatively freely. There is an advantage that the range of selection of the nozzle setting position when the nozzle is moved up and down appropriately is widened.
Further, when the position of the discharge hole of the molten metal injection nozzle is set to a range below the position 15 where the magnetic flux density is maximum and to the center position of the electromagnetic coil, the sensible heat of the molten steel is supplied to the initial solidification part. This is preferable because it tends to improve the slab surface properties.

一方、磁束密度が最大値となる位置が電磁コイルの中心位置よりも下方へずれている場合は、従来技術の様に磁束密度が最大値となる位置が電磁コイルの中心位置と見なして、電磁コイルの中心位置に配置すると、溶融金属注入ノズルからの吐出流と、電磁力により溶融金属内に誘起される溶融金属の流動との干渉による流動の乱れが発生することになる。しかし、本発明の様に、磁束密度が最大値となる位置に基いてノズル位置を設定することで、この様な干渉による流動の乱れを防止できる。   On the other hand, if the position where the magnetic flux density reaches the maximum value is shifted downward from the center position of the electromagnetic coil, the position where the magnetic flux density becomes the maximum value is regarded as the center position of the electromagnetic coil as in the prior art. If the coil is disposed at the center position of the coil, flow disturbance due to interference between the discharge flow from the molten metal injection nozzle and the flow of the molten metal induced in the molten metal by electromagnetic force occurs. However, as in the present invention, by setting the nozzle position based on the position where the magnetic flux density becomes the maximum value, the disturbance of the flow due to such interference can be prevented.

本発明においては、各種の溶融金属注入ノズルを用いることができる。
その1つの形態として、溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度θが60度以下である溶融金属注入ノズルが挙げられる。この様に相対する方向への2孔部としているのは、対称的な流れを形成できるため、安定した流動とすることができるためである。
また、施工上可能であれば、対称的な流れを形成できる方向に吐出させる様に、複数(3孔以上)の孔部を備えることでも良く、コストや手間等を考慮して、適宜設定するものである。
In the present invention, various molten metal injection nozzles can be used.
As one form thereof, a molten metal injection nozzle having two holes for discharging molten metal from the opposite mold wall surface direction to the vertically downward direction, and an angle θ between the center line of each hole and the horizontal plane being 60 degrees or less. Is mentioned. The reason why the two holes are in the opposite directions is that a symmetric flow can be formed and a stable flow can be achieved.
In addition, if possible in construction, it may be provided with a plurality of holes (three or more holes) so as to discharge in a direction in which a symmetric flow can be formed, and is set appropriately in consideration of cost and labor. Is.

また、各孔部の中心線が水平面となす角度を60度以下とすることで、鋳型鋳造方向への流れを抑制できるため、溶鋼の顕熱が初期凝固部に供給され、鋳片表面性状が改善される。この様な、各孔部の中心線が水平面に対して角度を有するノズルを用いる場合は、磁束密度が最大値となる位置に対して、ノズルの吐出孔の上端を下方とすることが重要である。   In addition, the flow in the mold casting direction can be suppressed by setting the angle formed by the center line of each hole portion to the horizontal plane to be 60 degrees or less, so that the sensible heat of the molten steel is supplied to the initial solidification portion, and the slab surface property is Improved. When using a nozzle in which the center line of each hole has an angle with respect to the horizontal plane, it is important that the upper end of the discharge hole of the nozzle is located below the position where the magnetic flux density is maximum. is there.

また、溶融金属注入ノズルの別の形態として、ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部を備える溶融金属注入ノズルが挙げられる。この様にスリット部とすることで、ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて広がる様な流れとすることができるため、溶鋼吐出流速を低減でき、その結果、均一な流れとすることができる。   As another form of the molten metal injection nozzle, there is a molten metal injection nozzle provided with a slit portion that discharges from a vertically lower direction directly below the nozzle to a facing mold wall surface direction. By making the slit portion in this way, it is possible to make the flow spread from the vertical downward direction directly below the nozzle to the opposite mold wall surface direction, so that the molten steel discharge flow rate can be reduced, and as a result, the flow should be uniform. Can do.

また、上記の2つの形態を併用して、溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度が60度以下であって、さらにノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部とを連続して備える溶融金属注入ノズルとして用いることも可能である。この孔部は上記と同様に、複数(3孔以上)の孔部を備えていても良い。
このノズルにより、メニスカス部に溶鋼の顕熱が初期凝固部に供給され、鋳片表面性状が改善されると共に、溶鋼吐出流速を低減でき、均一な流れとすることができる。
In addition, the two forms described above are used in combination to provide two holes for discharging the molten metal from the opposite mold wall surface direction to the vertically downward direction, and the angle between the center line of each hole part and the horizontal plane is 60 degrees or less. In addition, it is also possible to use as a molten metal injection nozzle that is continuously provided with a slit portion that is discharged from the vertically downward direction directly below the nozzle toward the opposite mold wall surface. This hole part may be provided with a plurality of (three or more holes) hole parts as described above.
With this nozzle, the sensible heat of the molten steel is supplied to the meniscus portion to the initial solidification portion, the slab surface properties are improved, the molten steel discharge flow rate can be reduced, and a uniform flow can be achieved.

また、溶融金属のメニスカスへオイルを鋳型上部から供給しても良い。このオイルの性質としては、メニスカスへ供給した後に、熱を受けてメニスカス上で潤滑性を有するものであれば良く、例えばレプシードオイル等を用いることができ、パウダーの代替として使用可能である。この様なオイルの供給により、鋳型壁面と凝固シェルの間の潤滑が改善され、パウダーを使用することなく鋳造が可能となるため、例えば小断面の鋳型に適用する等、必要に応じて適宜使用すれば良い。   Further, oil may be supplied to the molten metal meniscus from the upper part of the mold. Any oil may be used as long as it has heat and lubricity on the meniscus after being supplied to the meniscus. For example, Repseed oil can be used as a substitute for powder. Such oil supply improves the lubrication between the mold wall and the solidified shell and enables casting without the use of powder. For example, it can be used as needed, for example, for small-section molds. Just do it.

また、電磁コイルに通電する交流電流を周期的に変化させることで、電磁力も周期的に変化するため、これにより溶鋼の流動が安定化することで、鋳型壁面と凝固シェルの間の潤滑をより改善することができる。電磁コイルに通電する交流電流の周期的な変化幅については特に規定するものではないが、通常は2〜20Hz程度で実施することが好ましい。2Hz未満では周期の間隔が長くなり、また20Hz超では連続的に印加している状態に近づくため、いずれも溶鋼流動が安定しにくくなる。
また、誘導加熱により溶鋼を加熱することができるため、鋳型壁面と凝固シェルの間の潤滑をより改善することもできる。
In addition, by periodically changing the alternating current that flows through the electromagnetic coil, the electromagnetic force also changes periodically, which stabilizes the flow of the molten steel, thereby improving lubrication between the mold wall surface and the solidified shell. Can be improved. The periodical variation width of the alternating current that is passed through the electromagnetic coil is not particularly specified, but it is usually preferable to carry out at about 2 to 20 Hz. If it is less than 2 Hz, the interval of the cycle becomes long, and if it exceeds 20 Hz, it approaches the state where it is continuously applied, so that the flow of molten steel is difficult to stabilize in any case.
In addition, since the molten steel can be heated by induction heating, the lubrication between the mold wall surface and the solidified shell can be further improved.

さらに、鋳型を振動させずに、電磁コイルに通電する交流電流を周期的に変化させることにより、電磁力が周期的に変化するため、この電磁力による変化のみでも、鋳型壁を振動させることができる。この場合には、鋳型を振動させる装置を省略できるため、全体として簡略化した装置とすることができ、またコスト面でもメリットがある。
また、上記と同様に、誘導加熱により溶鋼を加熱でき、鋳型壁面と凝固シェルの間の潤滑をより改善することができる。
そして、本発明においては、上記に記載した様な、鋳型壁面と凝固シェルの間の潤滑をより改善する手段を、適宜、併用して用いることができる。
以下、本発明の実施例について説明するが、実施例で用いる条件は1条件例であり、本発明は該条件に限定されるものではない。
Furthermore, since the electromagnetic force periodically changes by periodically changing the alternating current supplied to the electromagnetic coil without vibrating the mold, the mold wall can be vibrated only by the change due to the electromagnetic force. it can. In this case, since the apparatus for vibrating the mold can be omitted, the apparatus can be simplified as a whole, and there is an advantage in terms of cost.
Further, similarly to the above, the molten steel can be heated by induction heating, and the lubrication between the mold wall surface and the solidified shell can be further improved.
In the present invention, means for improving the lubrication between the mold wall surface and the solidified shell as described above can be used in combination as appropriate.
Hereinafter, examples of the present invention will be described, but the conditions used in the examples are one condition example, and the present invention is not limited to these conditions.

1850mm(長辺側)×400mm(短辺側)、高さ200mmの電磁コイルを、鋳型内に埋設し、以下の条件で連続鋳造を行った。
鋳型内寸法:900mm(長辺)×220mm(短辺)、高さ800mm
鋳型振動ストローク:6mm、
鋳型振動数:120サイクル/min、
鋳造速度:1m/min、
湯面レベル:コイル上端(鋳型上端から100mm)、
磁場条件:単相交流200Hzの0.05秒印加と0.05秒無印加
また、潤滑材としてC−Ca−SiO−Al−Na系のパウダーを供給して、溶融金属注入ノズルの浸漬深さを変化させることにより、溶融金属注入ノズルの吐出孔の位置を調整して、低炭素鋼の溶鋼を連続鋳造した。尚、溶融金属注入ノズルは図1に示す様な、2孔部を備え、各孔部の中心線が水平面となす角度が30度のものを用いた。
An electromagnetic coil having a length of 1850 mm (long side) × 400 mm (short side) and a height of 200 mm was embedded in the mold, and continuous casting was performed under the following conditions.
In-mold dimensions: 900mm (long side) x 220mm (short side), height 800mm
Mold vibration stroke: 6mm,
Mold frequency: 120 cycles / min,
Casting speed: 1 m / min,
Hot water level: Upper end of coil (100 mm from upper end of mold),
Magnetic field condition: Single phase alternating current 200 Hz applied for 0.05 seconds and no applied for 0.05 seconds Also, a C—Ca—SiO 2 —Al 2 O 3 —Na based powder was supplied as a lubricant, and a molten metal injection nozzle By changing the immersion depth, the position of the discharge hole of the molten metal injection nozzle was adjusted, and the molten steel of low carbon steel was continuously cast. As shown in FIG. 1, the molten metal injection nozzle was provided with two holes, and the angle between the center line of each hole and the horizontal plane was 30 degrees.

用いた溶融金属注入ノズルの吐出孔上端の位置(Ln)、コイル中心位置、鋳型内鋳造方向の電磁力が最大値となる位置(Lpe)、鋳型内鋳造方向の電磁力が最大値となる位置、および溶融金属注入ノズルの吐出孔の上端の位置と、鋳型内鋳造方向の電磁力が最大値となる位置の差(Ln−Lpe)を表1に記す。但し、各位置の測定の起点は溶鋼メニスカスとしている。   The position (Ln) of the upper end of the discharge hole of the molten metal injection nozzle used, the coil center position, the position where the electromagnetic force in the casting direction in the mold becomes the maximum value (Lpe), the position where the electromagnetic force in the casting direction in the mold becomes the maximum value Table 1 shows the difference (Ln−Lpe) between the position of the upper end of the discharge hole of the molten metal injection nozzle and the position where the electromagnetic force in the casting direction in the mold becomes the maximum value. However, the starting point of measurement at each position is a molten steel meniscus.

Figure 0004102316
Figure 0004102316

得られた鋳片表面のオシレーションマーク深さの測定結果を図3に示す。
図3から、鋳型内鋳造方向の電磁力が最大値となる位置Lpeよりも、溶融金属注入ノズルの吐出孔上端の位置Lnの方が上方にある[1]および[2]の場合、すなわち(Ln−Lpe)が負の値の場合は、鋳片表面のオシレーションマーク深さが大きいという問題があった。
これに対し、鋳型内鋳造方向の電磁力が最大値となる位置Lpeよりも、溶融金属注入ノズルの吐出孔上端の位置Lnの方が下方にある[3]および[4]の場合、すなわち(Ln−Lpe)が正の値の場合は、鋳片表面のオシレーションマーク深さを小さくすることができ、良好な品質のものが得られた。
The measurement result of the oscillation mark depth of the obtained slab surface is shown in FIG.
From FIG. 3, in the case of [1] and [2] where the position Ln of the upper end of the discharge hole of the molten metal injection nozzle is higher than the position Lpe where the electromagnetic force in the casting direction in the mold becomes the maximum value, When Ln−Lpe) is a negative value, there is a problem that the oscillation mark depth on the surface of the slab is large.
On the other hand, in the case of [3] and [4] where the position Ln of the upper end of the discharge hole of the molten metal injection nozzle is lower than the position Lpe where the electromagnetic force in the casting direction in the mold becomes the maximum value, that is, ( When Ln-Lpe) is a positive value, the depth of the oscillation mark on the surface of the slab can be reduced, and a good quality product is obtained.

連続鋳造の態様を示す図である。It is a figure which shows the aspect of continuous casting. 連続鋳造の態様を示す図である。It is a figure which shows the aspect of continuous casting. 鋳片の表面粗度を示す図である。It is a figure which shows the surface roughness of slab.

符号の説明Explanation of symbols

1…タンディシュ
2…浸漬ノズル
3…鋳型
4…ソレノイド式電磁コイル
5…溶鋼
6…凝固シェル
7…パウダー
8…溶鋼吐出流
9…電磁力
10…溶鋼のメニスカス
11…攪拌流
12…攪拌流
13…鋳造方向の磁束密度
14…浸漬ノズルの吐出孔の上端の位置
15…鋳造方向の磁束密度が最大となる位置
16…ソレノイド式電磁コイルの中心の位置
17…浸漬ノズルの2孔部の中心線
DESCRIPTION OF SYMBOLS 1 ... Tundish 2 ... Immersion nozzle 3 ... Mold 4 ... Solenoid electromagnetic coil 5 ... Molten steel 6 ... Solidified shell 7 ... Powder 8 ... Molten steel discharge flow 9 ... Electromagnetic force 10 ... Molten steel meniscus 11 ... Stir flow 12 ... Stir flow 13 ... Magnetic flux density 14 in the casting direction: Position 15 at the upper end of the discharge hole of the immersion nozzle 15 Position where the magnetic flux density in the casting direction is maximum 16 Position at the center of the solenoid type electromagnetic coil 17 Center line of the two holes of the immersion nozzle

Claims (7)

鋳型を取り囲むように配置したソレノイド式電磁コイル、または、鋳型壁内に埋設したソレノイド式電磁コイルに交流を通電し、鋳型内の溶融金属に電磁力を印加し、メニスカス形状を変化させながら鋳造を行なう溶融金属の連続鋳造方法において、鋳型内鋳造方向の磁束密度が最大値となる位置が電磁コイルの中心位置よりも上方へずれている場合、溶融金属注入ノズルの吐出孔の位置、鋳型内鋳造方向の磁束密度が最大値となる位置より下方で、電磁コイルの中心位置までの範囲に調整することを特徴とする溶融金属の連続鋳造方法。 Casting while changing the meniscus shape by applying alternating current to the solenoid type electromagnetic coil arranged so as to surround the mold or the solenoid type electromagnetic coil embedded in the mold wall and applying electromagnetic force to the molten metal in the mold. In the molten metal continuous casting method to be performed, when the position where the magnetic flux density in the casting direction in the mold is maximum is shifted upward from the center position of the electromagnetic coil, the position of the discharge hole of the molten metal injection nozzle is set in the mold. A method for continuously casting a molten metal, characterized by adjusting the magnetic flux density in the casting direction to a range below a position where the magnetic flux density in the casting direction reaches a maximum value and to a center position of the electromagnetic coil . 溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度が60度以下である溶融金属注入ノズルを用いること特徴とする請求項1に記載の溶融金属の連続鋳造方法。 A molten metal injection nozzle having two holes for discharging molten metal from a facing mold wall surface direction to a vertically downward direction and having an angle formed by a center line of each hole and a horizontal plane being 60 degrees or less is used. Item 8. A molten metal continuous casting method according to Item 1 . ノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部を備える溶融金属注入ノズルを用いることを特徴とする請求項1に記載の溶融金属の連続鋳造方法。 2. The molten metal continuous casting method according to claim 1, wherein a molten metal injection nozzle having a slit portion that is discharged from a vertically downward direction directly below the nozzle to a facing mold wall surface direction is used. 溶融金属を相対する鋳型壁面方向から鉛直下方方向にかけて吐出させる2孔部を備えるとともに、各孔部の中心線が水平面となす角度が60度以下であって、さらにノズル直下の鉛直下方方向から相対する鋳型壁面方向にかけて吐出させるスリット部とを連続して備える溶融金属注入ノズルを用いることを特徴とする請求項1に記載の溶融金属の連続鋳造方法。 It has two holes for discharging molten metal from the opposite mold wall direction to the vertically downward direction, and the angle between the center line of each hole and the horizontal plane is 60 degrees or less, and is further relative to the vertical downward direction directly below the nozzle. 2. The molten metal continuous casting method according to claim 1, wherein a molten metal injection nozzle that is continuously provided with a slit portion that is discharged toward the mold wall surface is used. 溶融金属のメニスカスへオイルを前記鋳型上部から供給することを特徴とする請求項1〜のいずれか1項に記載の溶融金属の連続鋳造方法。 The continuous casting method for molten metal according to any one of claims 1 to 4 , wherein oil is supplied to the meniscus of molten metal from the upper part of the mold. 電磁コイルに通電する交流電流を周期的に変化させることを特徴とする請求項1〜のいずれか1項に記載の溶融金属の連続鋳造方法。 The method for continuously casting molten metal according to any one of claims 1 to 5 , wherein an alternating current supplied to the electromagnetic coil is periodically changed. 鋳型を振動させずに、電磁コイルに通電する交流電流を周期的に変化させることを特徴とする請求項1〜のいずれか1項に記載の溶融金属の連続鋳造方法。 The molten metal continuous casting method according to any one of claims 1 to 6 , wherein an alternating current supplied to the electromagnetic coil is periodically changed without vibrating the mold.
JP2004041858A 2004-02-18 2004-02-18 Method for continuous casting of molten metal Expired - Fee Related JP4102316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041858A JP4102316B2 (en) 2004-02-18 2004-02-18 Method for continuous casting of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041858A JP4102316B2 (en) 2004-02-18 2004-02-18 Method for continuous casting of molten metal

Publications (2)

Publication Number Publication Date
JP2005230847A JP2005230847A (en) 2005-09-02
JP4102316B2 true JP4102316B2 (en) 2008-06-18

Family

ID=35014324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041858A Expired - Fee Related JP4102316B2 (en) 2004-02-18 2004-02-18 Method for continuous casting of molten metal

Country Status (1)

Country Link
JP (1) JP4102316B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332773C (en) * 2005-12-16 2007-08-22 钢铁研究总院 Improved method of vibration exciting metal liquid shape crystal nucleus and its device
JP4724606B2 (en) * 2006-06-05 2011-07-13 新日本製鐵株式会社 Continuous casting method for molten steel
JP5047742B2 (en) * 2007-09-13 2012-10-10 新日本製鐵株式会社 Steel continuous casting method and continuous casting apparatus
JP5035115B2 (en) * 2008-05-28 2012-09-26 住友金属工業株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2005230847A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4102316B2 (en) Method for continuous casting of molten metal
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP3887200B2 (en) Steel continuous casting method and apparatus
JP4210050B2 (en) Method for continuous casting of molten metal
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JP3595529B2 (en) Continuous casting machine for molten metal
JP2005230848A (en) Method and apparatus for continuous casting of molten metal
JP3718481B2 (en) Method for continuous casting of molten metal
JP3257546B2 (en) Steel continuous casting method
US6453985B2 (en) Method of continuous casting of molten metal
JPH05329594A (en) Method for controlling molten steel flow in continuous casting mold
JP3525717B2 (en) Continuous casting method of molten metal using electromagnetic force
JPH0515949A (en) Continuous metal casting apparatus and casting method
JP2005305536A (en) Method for continuous casting of molten metal
JP2008246534A (en) Continuous casting method for steel
CN101410204B (en) Device for continuous or semi-continuous casting metal
JP2009172638A (en) Continuous casting method utilizing electromagnetic force
JPH08187563A (en) Continuous casting method applying electromagnetic force
JP3033318B2 (en) Method of supplying lubricant in continuous casting apparatus
JP4910357B2 (en) Steel continuous casting method
JP3796130B2 (en) Method for continuous casting of molten metal
JPH08197211A (en) Method for continuously casting molten metal and mold for continuous casting
JPH0780608A (en) Metal continuous casting equipment
JPH0890165A (en) Mold for continuous casting
JPH07227656A (en) Continuous casting method using alternating magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4102316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees