[go: up one dir, main page]

JP4096862B2 - Refrigeration unit and refrigerator - Google Patents

Refrigeration unit and refrigerator Download PDF

Info

Publication number
JP4096862B2
JP4096862B2 JP2003376906A JP2003376906A JP4096862B2 JP 4096862 B2 JP4096862 B2 JP 4096862B2 JP 2003376906 A JP2003376906 A JP 2003376906A JP 2003376906 A JP2003376906 A JP 2003376906A JP 4096862 B2 JP4096862 B2 JP 4096862B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
refrigerator
outside
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376906A
Other languages
Japanese (ja)
Other versions
JP2005140411A (en
Inventor
隆幸 高谷
寿和 境
吉孝 窪田
正治 亀井
晃一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003376906A priority Critical patent/JP4096862B2/en
Priority to CNB2004100618829A priority patent/CN100516710C/en
Publication of JP2005140411A publication Critical patent/JP2005140411A/en
Application granted granted Critical
Publication of JP4096862B2 publication Critical patent/JP4096862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

本発明は、架台上部に冷却システムの圧縮機や凝縮器を設置し、架台下部に蒸発器を設置する冷凍冷蔵ユニットと、本体上部に前記冷凍冷蔵ユニットを設けた業務用の冷凍冷蔵庫に関し、特に圧縮機の運転制御に関するものである。   The present invention relates to a refrigerator-freezer unit in which a compressor and a condenser of a cooling system are installed at the upper part of the gantry and an evaporator is installed in the lower part of the gantry, and a commercial refrigerator-freezer in which the refrigeration unit is provided in the upper part of the main body. The present invention relates to compressor operation control.

従来の業務用の冷凍冷蔵庫においては、特に冷凍室を冷却するシステムでは、蒸発温度が低くても高い冷凍能力が出せるR22やR404A等の低沸点冷媒を用いている。   In a conventional commercial refrigerator-freezer, particularly in a system for cooling a freezer compartment, a low boiling point refrigerant such as R22 or R404A that can provide a high refrigerating capacity even when the evaporation temperature is low is used.

しかしながら、近年、地球温暖化防止の観点から温暖化係数の高いR22やR404A等のフロン系冷媒からR290やR600a等の自然冷媒への転換が望まれるとともに、二酸化炭素の排出量削減のために消費電力量の大きい業務用の大型冷凍冷蔵庫についても、早急に省エネルギー化を図ることが望まれている。   However, in recent years, from the viewpoint of preventing global warming, it has been desired to switch from chlorofluorocarbon refrigerants such as R22 and R404A, which have a high global warming potential, to natural refrigerants such as R290 and R600a, and to reduce CO2 emissions. For large-sized freezer refrigerators for business use with a large amount of electric power, it is desired to save energy as soon as possible.

従来の業務用冷蔵庫としては、外気温によって圧縮機の回転数を制御する業務用冷蔵庫(特許文献1)がある。   As a conventional commercial refrigerator, there is a commercial refrigerator (Patent Document 1) that controls the rotation speed of a compressor according to the outside air temperature.

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図3は従来の冷蔵庫の回路図であり、図4Aは庫内温度と時間との関係を示す図、図4Bは圧縮機、コンデンサファン及びエバポレータファンの回転数制御を示す図である。図3において、回転数可変型の圧縮機1には、コンデンサ3、キャピラリーチューブ5、及びエバポレータ7が冷媒管で閉ループ状に接続され、更にコンデンサ3には回転数可変型のコンデンサファン13が付設され、エバポレータ7には同じく回転数可変型のエバポレータファン17が付設されている。エバポレータ7は冷蔵庫等の庫内に設置され、当該庫内を冷却する。コントローラ19により制御を行う。   FIG. 3 is a circuit diagram of a conventional refrigerator, FIG. 4A is a diagram showing the relationship between the internal temperature and time, and FIG. 4B is a diagram showing the rotational speed control of the compressor, condenser fan, and evaporator fan. In FIG. 3, a variable speed compressor 1 is connected to a condenser 3, a capillary tube 5, and an evaporator 7 in a closed loop with a refrigerant pipe, and the condenser 3 is provided with a variable speed condenser fan 13. The evaporator 7 is also provided with a variable speed evaporator fan 17. The evaporator 7 is installed in a refrigerator or the like and cools the interior. Control is performed by the controller 19.

以上のように構成された冷蔵庫について、以下その動作を図4を用いて説明する。   About the refrigerator comprised as mentioned above, the operation | movement is demonstrated using FIG. 4 below.

図4Aにおいて、縦軸は冷蔵庫等の庫内温度を示し、横軸は時間経過を示している。図4Aを参照して、本冷凍装置では運転開始後に庫内が冷却されてこの庫内温度が設定温度(サーモオフ温度)t1に到達すると、運転待機状態(サーモオフ)に入り、この状態が継続して庫内温度が反転、上昇して、設定温度(サーモオン温度)t2に到達すると、運転状態(サーモオン)に入り、通常これが繰り返されて庫内温度が略一定幅に維持される。   In FIG. 4A, the vertical axis indicates the temperature inside the refrigerator or the like, and the horizontal axis indicates the passage of time. Referring to FIG. 4A, in the present refrigeration apparatus, when the inside of the refrigerator is cooled after the operation is started and the inside temperature reaches the set temperature (thermo-off temperature) t1, the operation standby state (thermo-off) is entered, and this state continues. When the internal temperature reverses and rises and reaches the set temperature (thermo-on temperature) t2, the operation state (thermo-on) is entered, and this is normally repeated to maintain the internal temperature at a substantially constant range.

本冷凍装置の運転状態が、まずプルダウン初期(最大トルクのピーク(点P)を得る迄の区間)T1、プルダウン初期後からサーモオフ迄の区間T2、サーモオフからサーモオン迄の区間T3、サーモオンからサーモオフ迄の区間T4の4つの運転状態に区分される。   The operating state of the refrigeration apparatus is first in the initial pull-down period (interval until the maximum torque peak (point P) is obtained) T1, in the period T2 from the initial pull-down period to the thermo-off period, in the period T3 from the thermo-off period to the thermo-on period, from the thermo-on period to the thermo-off period. It is divided into four operation states of the section T4.

図2Bは、圧縮機1、コンデンサファン13及びエバポレータファン17の回転数制御を示している。   FIG. 2B shows the rotational speed control of the compressor 1, the condenser fan 13, and the evaporator fan 17.

サーモオンからサーモオフ迄の区間T4では外気温度との関係において以下のように制御する。例えば、高外気温(例えば25℃以上)のときには圧縮機1、コンデンサファン13及びエバポレータファン17の回転数を全て中速回転Mで一律に制御し、庫内温度の
維持に寄与する。
In the section T4 from the thermo-on to the thermo-off, the following control is performed in relation to the outside air temperature. For example, when the outside air temperature is high (for example, 25 ° C. or higher), the rotation speeds of the compressor 1, the condenser fan 13 and the evaporator fan 17 are all uniformly controlled by the medium speed rotation M, which contributes to maintaining the internal temperature.

これに対して、低外気温(例えば25℃未満)のときにはエバポレータファン17の回転数を中速回転Mに維持したまま、圧縮機1及びコンデンサファン13の回転数を減速させて、低速回転Lで制御する。低外気温(例えば25℃未満)のときには冷凍能力をそれ程必要としないからである。
特開平11−270914号公報
On the other hand, at a low outside air temperature (for example, less than 25 ° C.), the rotation speed of the compressor fan 1 and the condenser fan 13 is reduced while the rotation speed of the evaporator fan 17 is maintained at the medium speed rotation M, and the low speed rotation L To control. This is because the refrigerating capacity is not so required at low outside air temperature (for example, less than 25 ° C.).
JP 11-270914 A

しかしながら、上記従来の冷蔵庫は、圧縮比が低く圧縮機1の耐久性確保が容易であり、圧縮機1の気筒容積当りの冷凍能力(以下体積能力という)が高く高能力が出せる反面、冷媒の理論効率および圧縮機1の実効効率が低いという欠点があった。   However, the conventional refrigerator has a low compression ratio, and it is easy to ensure the durability of the compressor 1. The refrigeration capacity per cylinder volume of the compressor 1 (hereinafter referred to as volume capacity) is high and high capacity can be achieved. There was a drawback that the theoretical efficiency and the effective efficiency of the compressor 1 were low.

また、圧縮比が低く体積能力が高い反面、効率が低いという特徴は、フロン系冷媒R404A、R22および炭化水素冷媒R290など、蒸発温度−40℃以下の低沸点冷媒共通の欠点である。業務用冷蔵庫の周囲温度30℃の一般的な運転状態である凝縮温度40℃、蒸発温度−30℃、過冷却0℃、吸入ガス温度332℃における圧縮比、高圧圧力、低圧圧力、および理論効率と体積能力の相対値を高沸点冷媒であるR134a、R600aと比較した結果を(表1)に示す。   Further, while the compression ratio is low and the volume capacity is high, the characteristic that the efficiency is low is a common defect of low-boiling refrigerants having an evaporation temperature of −40 ° C. or lower, such as Freon refrigerants R404A and R22 and hydrocarbon refrigerant R290. Compression ratio, high pressure pressure, low pressure pressure, and theoretical efficiency at a condensing temperature of 40 ° C., an evaporation temperature of −30 ° C., a supercooling of 0 ° C., and an intake gas temperature of 332 ° C., which are general operating conditions of a commercial refrigerator at an ambient temperature of 30 ° C. (Table 1) shows the results of comparing the relative values of volume capacity with R134a and R600a, which are high-boiling refrigerants.

Figure 0004096862
Figure 0004096862

(表1)に示したように、高沸点冷媒R134a、R600aに比べて低沸点冷媒であるR22、R290、R404Aは、圧縮比が低く体積能力が高い反面、理論効率が低いことがわかる。また、低沸点冷媒であるR22、R290、R404Aは、比較的高圧圧力が高く圧縮機1の摺動損失が大きく、理論効率に比べて圧縮機1の実効効率がさらに悪くなるとともに、低圧圧力が大気圧以上であり冷凍室1内への冷媒リークの危険性が高いという欠点もある。   As shown in (Table 1), it can be seen that R22, R290, and R404A, which are low-boiling refrigerants compared to the high-boiling refrigerants R134a and R600a, have a low compression ratio and a high volume capacity, but have a low theoretical efficiency. Moreover, R22, R290, and R404A, which are low boiling point refrigerants, have a relatively high high pressure and a large sliding loss of the compressor 1. The effective efficiency of the compressor 1 is further deteriorated compared to the theoretical efficiency, and the low pressure is low. There is also a disadvantage that the pressure is higher than the atmospheric pressure and the risk of refrigerant leakage into the freezer compartment 1 is high.

本発明は、上記従来の課題を解決するもので、冷媒の理論効率および圧縮機の実効効率が高い高沸点冷媒であるR134a、R600aなどを用いながら、圧縮比の上昇を抑制し圧縮機使用範囲内の状態で圧縮機を運転させ、圧縮機の破損を防止することを目的とする。   The present invention solves the above-mentioned conventional problems, and suppresses an increase in the compression ratio while using R134a, R600a, etc., which are high-boiling refrigerants having high theoretical efficiency of the refrigerant and effective efficiency of the compressor. It aims at operating a compressor in the state of inside, and preventing breakage of a compressor.

本発明は、冷凍時の蒸発圧力が負圧となる冷媒を用いるとともに、回転数可変型の圧縮機、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンを備えた冷蔵庫において、前記回転数可変型の圧縮機の回転数を抑制する保護制御手段を備え、前記保護制御は前記凝縮器の凝縮温度を検出する凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記回転数可変型の圧縮機の上限回転数を、庫外温度ごとに設定された通常運転時の上限回転数から凝縮温度高温時の上限回転数に低下させる制御を行うものであり、圧縮機の回転数を低下させ、圧縮機使用範囲内の状態で圧縮機を運転することができ、圧縮機の破損を防止する。 The present invention uses a refrigerant whose evaporating pressure during refrigeration is a negative pressure, and in a refrigerator equipped with a variable speed compressor, condenser, throttle device, evaporator, external fan, and internal fan, Protection control means for suppressing the rotation speed of the compressor with variable rotation speed is provided , and the protection control is based on the temperature set in advance by the condensation temperature detected by the condensation temperature detection means for detecting the condensation temperature of the condenser. When it is high, control is performed to lower the upper limit number of rotations of the variable speed compressor from the upper limit number of rotations during normal operation set for each outside temperature to the upper limit number of rotations when the condensation temperature is high . It is possible to reduce the rotation speed of the compressor and to operate the compressor in a state where the compressor is used, thereby preventing the compressor from being damaged.

本発明は、回転数可変型の圧縮機、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンを備えた冷蔵庫において、凝縮温度を検出する凝縮温度検出手段を備え、前記凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記回転数可変型の圧縮機の上限回転数を下げるとともに高温警報を出し、冷凍時の蒸発圧力が負圧となる冷媒を充填したものであり、凝縮温度が所定温度より高い場合、圧縮機の上限回転数を下げることにより、圧縮機の回転数を低下させ、圧縮機使用範囲内の状態で圧縮機を運転することができ、圧縮機の破損を防止するとともに警告してサービス対応を迅速に行うことができる。   The present invention provides a condensing temperature detecting means for detecting a condensing temperature in a refrigerator provided with a variable speed compressor, a condenser, a throttling device, an evaporator, an external fan, and an internal fan, and the condensing temperature detection When the condensing temperature detected by the means is higher than a preset temperature, the upper limit rotational speed of the variable speed compressor is lowered, a high temperature alarm is issued, and a refrigerant whose evaporating pressure during refrigeration is negative is reduced. When the condensing temperature is higher than the predetermined temperature, the compressor can be operated in a state where the compressor is used by reducing the compressor rotational speed by lowering the upper rotational speed of the compressor. In addition, the compressor can be prevented from being damaged, and a warning can be issued to quickly respond to the service.

本発明の請求項1に記載の発明は、冷凍時の蒸発圧力が負圧となる冷媒を用いるとともに、回転数可変型の圧縮機、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンを備えた冷蔵庫において、前記回転数可変型の圧縮機の回転数を抑制する保護制御手段を備え、前記保護制御は前記凝縮器の凝縮温度を検出する凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記回転数可変型の圧縮機の上限回転数を、庫外温度ごとに設定された通常運転時の上限回転数から凝縮温度高温時の上限回転数に低下させる制御を行うものであり、圧縮機の上限回転数を下げることにより、圧縮機の回転数を低下させ、圧縮機使用範囲内の状態で圧縮機を運転することができ、圧縮機の破損を防止する。 The invention according to claim 1 of the present invention uses a refrigerant whose evaporation pressure during refrigeration is a negative pressure, and has a variable speed compressor, condenser, throttle device, evaporator, outside fan, and interior In the refrigerator including a fan, the refrigerator includes a protection control unit that suppresses the rotation speed of the variable speed compressor , and the protection control is performed by a condensation temperature detected by a condensation temperature detection unit that detects a condensation temperature of the condenser. When the temperature is higher than a preset temperature, the upper limit rotational speed of the variable speed compressor is changed from the upper limit rotational speed at normal operation set for each outside temperature to the upper limit rotational speed at the high condensation temperature. This is a control to lower the compressor, and by lowering the upper limit rotation speed of the compressor, the rotation speed of the compressor can be reduced, and the compressor can be operated within the compressor usage range, and the compressor is damaged. To prevent.

本発明の請求項に記載の発明は、請求項1に記載の発明にさらに、凝縮温度を検出する凝縮温度検出手段と、庫内温度を設定する庫内温度設定手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記庫内温度設定手段で庫内の設定温度を予め設定しておいた温度に上げるものであり、凝縮温度が所定温度より高い場合、高負荷条件で冷凍室温度のスペックを満足する温度まで設定温度を上昇させることにより、圧縮機の回転数を低下させ、圧縮機使用範囲内の状態で圧縮機を運転させ、圧縮機の破損を防止する。 The invention according to claim 2 of the present invention further comprises condensation temperature detection means for detecting the condensation temperature and interior temperature setting means for setting the interior temperature, in addition to the invention according to claim 1, When the condensation temperature detected by the temperature detection means is higher than the preset temperature, the internal temperature setting means raises the preset temperature in the compartment to the preset temperature, and the condensation temperature is predetermined. If it is higher than the temperature, by raising the set temperature to a temperature that satisfies the specifications of the freezer temperature under high load conditions, the rotational speed of the compressor is reduced, and the compressor is operated within the compressor usage range, Prevent damage to the compressor.

本発明の請求項に記載の冷蔵庫の発明は、請求項1または2に記載の発明に、さらに、庫外温度を検出する庫外温度検出手段を備え、前記凝縮温度検出手段で検出した凝縮温度と前記庫外温度検出手段で検出した庫外温度の差が予め設定しておいた温度差より大きい場合、警報あるいは警告表示を出すものであり、警報あるいは警告してフィルター等の清掃を促し、その結果、圧縮比を下げることで、サイクルの理論効率が高められ、結果として消費電力量を抑える。 The invention of the refrigerator according to claim 3 of the present invention further comprises outside temperature detection means for detecting the outside temperature in the invention according to claim 1 or 2 , and the condensation detected by the condensation temperature detection means. When the difference between the temperature and the outside temperature detected by the outside temperature detecting means is larger than the preset temperature difference, an alarm or warning is displayed, and an alarm or warning is given to prompt cleaning of the filter, etc. As a result, by reducing the compression ratio, the theoretical efficiency of the cycle is increased, and as a result, the power consumption is suppressed.

本発明の請求項に記載の冷蔵庫の発明は、請求項1からのいずれか一項に記載の発明に、さらに、回転数可変型の圧縮機の吸入温度を検出する吸入温度検出手段を備え、デフロスト終了後に前記吸入温度検出手段で検出された吸入温度が前記庫外温度検出手段で検出された外気温により予め決定しておいた温度より低い場合、デフロストを行うことにより、蒸発器への着霜量を間接的に把握し、最適な条件でデフロストを行うことができ、不要な時に庫内温度が昇温したり、消費電力量を抑える。 According to a fourth aspect of the present invention, there is provided a refrigerator according to any one of the first to third aspects, further comprising a suction temperature detecting means for detecting a suction temperature of the variable speed compressor. And when the suction temperature detected by the suction temperature detection means is lower than the temperature determined in advance by the outside air temperature detected by the outside temperature detection means, the defrost is performed to the evaporator. The amount of frost formation can be grasped indirectly, and defrosting can be performed under the optimum conditions, so that the temperature inside the chamber rises and the power consumption is reduced when not needed.

本発明の請求項に記載の冷蔵庫の発明は、請求項1からのいずれか一項に記載の発明に、さらに、デフロスト終了後、前記回転数可変型の圧縮機が予め決定しておいた時間経過しても停止せず、かつ前記庫外温度検出手段で検出された外気温と前記凝縮温度検出手段で検出した凝縮温度の差が予め決定しておいた温度差より小さい場合、前記回転数可変型の圧縮機を停止し、前記庫外ファン、前記庫内ファンは運転するとともに冷媒漏れ警報を出すことにより、警告してサービス対応を迅速に行うとともに、冷蔵庫内の食品を他の冷蔵庫へ移動させる等の対処が容易に行える。 The invention of the refrigerator according to claim 5 of the present invention is the same as that of any one of claims 1 to 4 , wherein the variable speed compressor is determined in advance after the defrosting. If the difference between the outside temperature detected by the outside temperature detection means and the condensation temperature detected by the condensation temperature detection means is smaller than a predetermined temperature difference, The compressor with variable rotation speed is stopped, the outside fan and the inside fan are operated and a refrigerant leak warning is issued to give a warning and promptly respond to the service. It can be easily handled such as moving to a refrigerator.

本発明の請求項に記載の冷蔵庫の発明は、請求項1からのいずれか一項に記載の冷凍冷蔵ユニットを冷蔵庫本体上部に備えたものであり、特に上部に冷却ユニットを配置するような業務用冷蔵庫で圧縮機の保護制御を備え信頼性を確保することができる。また本願の請求項7の発明は、請求項1から6のいずれか一項に記載の冷凍冷蔵ユニットまたは冷蔵庫に冷媒として可燃性冷媒を用いたものである。














The invention of the refrigerator according to claim 6 of the present invention is provided with the refrigerator-freezer unit according to any one of claims 1 to 5 at the upper part of the refrigerator body, and in particular, the cooling unit is arranged at the upper part. A reliable refrigerator can be provided with a protection control for compressors. The invention of claim 7 of the present application uses a flammable refrigerant as a refrigerant in the refrigeration unit or the refrigerator according to any one of claims 1 to 6.














以下、本発明による冷蔵庫の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。   Hereinafter, embodiments of a refrigerator according to the present invention will be described with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

(実施の形態1)
図1は、本発明の実施の形態1による冷蔵庫のブロック図である。図2は同実施の形態の制御フローチャートである。
(Embodiment 1)
FIG. 1 is a block diagram of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a control flowchart of the same embodiment.

図1に示すように、回転数可変型の圧縮機21、凝縮器22、絞り装置23、蒸発器24、庫外ファン25、庫内ファン26を備えた冷蔵庫において、コントローラー27は、凝縮温度検出手段28、庫外温度検出手段29、吸入温度検出手段30、庫内温度設定手段31、圧縮機制御手段32、警報発信手段33、デフロスト制御手段34、庫内ファン制御手段35、庫外ファン制御手段36から成る。   As shown in FIG. 1, in a refrigerator including a variable speed compressor 21, a condenser 22, an expansion device 23, an evaporator 24, an external fan 25, and an internal fan 26, the controller 27 detects the condensation temperature. Means 28, outside temperature detection means 29, suction temperature detection means 30, inside temperature setting means 31, compressor control means 32, alarm transmission means 33, defrost control means 34, inside fan control means 35, outside fan control Means 36;

以上のように構成された冷蔵庫について、以下その動作を図2のフローチャートを参照して説明する。   The operation of the refrigerator configured as described above will be described below with reference to the flowchart of FIG.

まず、ステップ21において、凝縮温度検出手段28で凝縮温度を検出し、検出した凝縮温度が予め設定しておいた所定温度(例えば、60℃)以上であると判断した場合、ステップ22で、回転数可変型の圧縮機21の上限回転数を(表2)に示す通常運転時の上限回転数から凝縮温度高温時の上限回転数に低下させるとともに庫内温度設定手段31により庫内設定温度を(例えば、−18℃)に設定温度を上昇させる。   First, in step 21, when the condensation temperature is detected by the condensation temperature detecting means 28 and it is determined that the detected condensation temperature is equal to or higher than a predetermined temperature (for example, 60 ° C.), rotation is performed in step 22. The upper limit number of revolutions of the variable number type compressor 21 is reduced from the upper limit number of revolutions during normal operation shown in (Table 2) to the upper limit number of revolutions when the condensation temperature is high, and the internal temperature setting means 31 is used to set the internal temperature setting The set temperature is increased to (for example, −18 ° C.).

次に、ステップ23において、庫外温度検出手段29で庫外温度を検出し、検出した庫外温度と凝縮温度の温度差を算出し、算出した温度差が予め設定しておいた所定の温度差(例えば、20K)以上であると判断した場合、ステップ24で、警報発信手段33でフィルター目詰まり警報を発信する。ステップ23で、予め設定しておいた所定の温度差(例えば、20K)未満であると判断した場合、ステップ25で、警報発信手段33で高温警報を発信する。   Next, in step 23, the outside temperature detection means 29 detects the outside temperature, calculates the temperature difference between the detected outside temperature and the condensation temperature, and the calculated temperature difference is a predetermined temperature set in advance. If it is determined that the difference is equal to or greater than 20K (eg, 20K), a filter clogging alarm is transmitted by the alarm transmission means 33 in step 24. If it is determined in step 23 that the temperature difference is less than a predetermined temperature difference (for example, 20 K) set in advance, a high temperature alarm is transmitted by the alarm transmission means 33 in step 25.

Figure 0004096862
Figure 0004096862

ステップ21において、検出した凝縮温度が予め設定しておいた所定温度(例えば、60℃)未満であると判断した場合、警報の発信なしに次に進む。   If it is determined in step 21 that the detected condensing temperature is lower than a predetermined temperature (for example, 60 ° C.) set in advance, the process proceeds to the next step without issuing an alarm.

以上のように本実施の形態の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫は、凝縮温度が高い場合に、回転数可変型の圧縮機21の上限回転数を下げ、かつ高負荷条件で冷凍室温度のスペックを満足する温度まで設定温度を上昇させることにより、回転数可変型の圧縮機21の回転数を低下させ、圧縮機使用範囲内の状態でかつ、効率の良い状態で圧縮機を運転することができ、圧縮機の破損を防止し、消費電力量を抑えるともに警告してサービス対応を迅速に行うことができる。   As described above, the refrigerator using the refrigerator-freezer unit and the refrigerator-freezer unit according to the present embodiment reduces the upper limit rotation speed of the variable-speed compressor 21 and increases the load when the condensation temperature is high. By increasing the set temperature to a temperature that satisfies the specifications of the freezer compartment temperature, the rotational speed of the variable speed compressor 21 is reduced, and the compressor is in a state where the compressor is in a usable range and in an efficient state. Can be operated, the compressor can be prevented from being damaged, the amount of power consumption can be reduced, and a warning can be issued to quickly respond to the service.

また、凝縮温度と庫外温度の差が予め設定しておいた温度差より大きい場合は、フィルターの目詰まりの可能性が高くフィルター目詰まり警報を出すものであり、警告してフィルターの清掃を促し、その結果、圧縮比を下げることで、サイクルの理論効率が高められ、結果として消費電力量を抑えることができる。   Also, if the difference between the condensation temperature and the outside temperature is larger than the preset temperature difference, the filter is likely to be clogged and a filter clogging alarm will be issued. As a result, by reducing the compression ratio, the theoretical efficiency of the cycle is increased, and as a result, the power consumption can be suppressed.

なお、ステップ22では、回転数可変型の圧縮機21の上限回転数を(表2)に示す通常運転時の上限回転数から凝縮温度高温時の上限回転数に低下させるとともに庫内温度設定手段31により庫内設定温度を(例えば、−18℃)に設定温度を上昇させたが、一方だけ行ってもよい。   In step 22, the upper limit number of rotations of the compressor 21 of variable speed type is reduced from the upper limit number of rotations during normal operation to the upper limit number of rotations when the condensation temperature is high, as shown in (Table 2). Although the set temperature is increased to 31 (e.g., -18 ° C) by 31, only one may be performed.

次に、ステップ26で、デフロスト終了後または、イニシャルプルダウンにおいて予め設定しておいた所定時間(例えば、6時間)経過した場合、ステップ27で、吸入温度検出手段30で吸入温度を検出し、検出した吸入温度が予め設定しておいた所定温度(例えば、10℃)以下であると判断した場合、ステップ28において、デフロスト制御手段34で蒸発器24のデフロストを行う。   Next, at step 26, after the defrost is completed or when a predetermined time (for example, 6 hours) preset in the initial pull-down has elapsed, at step 27, the intake temperature detecting means 30 detects the intake temperature and detects it. If it is determined that the sucked temperature is equal to or lower than a predetermined temperature (for example, 10 ° C.) set in advance, the defrost of the evaporator 24 is performed by the defrost control means 34 in step 28.

ステップ26で、デフロスト終了後または、イニシャルプルダウンにおいて予め設定しておいた所定時間(例えば、6時間)経過していない場合、または、ステップ27で、予め設定しておいた所定温度(例えば、10℃)より高い場合、デフロストを行わない。   In step 26, after defrosting, or when a predetermined time (for example, 6 hours) set in advance in the initial pull-down has not elapsed, or in step 27, a predetermined temperature (for example, 10) set in advance. If it is higher, the defrost is not performed.

以上のように本実施の形態の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫において、蒸発器に着霜していない場合は、蒸発器で十分に熱交換が行われ蒸発器出
口はガス状態となり吸入温度は高くなり、また、蒸発器に着霜してる場合は、蒸発器で十分に熱交換が行われず蒸発器出口は液とガスが混合した二相冷媒状態となり吸入温度は低くなり、吸入温度が変化することに着目し、蒸発器への着霜量を間接的に把握し、最適な条件でデフロストを行うことができ、不要な時に庫内温度が昇温したり、消費電力量を抑えることができる。
As described above, in the refrigerator using the refrigeration unit of the present embodiment and the refrigerator refrigeration unit, when the evaporator is not frosted, the evaporator performs sufficient heat exchange and the evaporator outlet is in a gas state. If the evaporator is frosted, sufficient heat exchange is not performed in the evaporator, and the outlet of the evaporator becomes a two-phase refrigerant mixture of liquid and gas, and the intake temperature is lowered. Focusing on the fact that the intake temperature changes, the amount of frost formation on the evaporator can be indirectly grasped, and defrosting can be performed under optimum conditions. Can be suppressed.

次に、ステップ29で、デフロスト終了後または、イニシャルプルダウンにおいて、回転数可変型の圧縮機21が予め設定しておいた所定時間(例えば、6時間)連続運転している場合、ステップ30で、庫外温度と凝縮温度の温度差が予め設定しておいた所定の温度差(例えば、5K)以下であると判断した場合、ステップ31で、圧縮機制御手段32で回転数可変型の圧縮機21の運転を停止し、庫内ファン制御手段35で庫内ファン26を運転し、庫外ファン制御手段36で庫外ファンを運転するとともに警報発信手段33でリーク警報を発信する。   Next, in step 29, after the defrost is completed or in the initial pull-down, when the variable speed compressor 21 is continuously operated for a predetermined time (for example, 6 hours) set in advance, in step 30, When it is determined that the temperature difference between the outside temperature and the condensing temperature is equal to or less than a predetermined temperature difference (for example, 5K) set in advance, in step 31, the compressor control means 32 uses the variable speed compressor. 21, the internal fan control means 35 operates the internal fan 26, the external fan control means 36 operates the external fan, and the alarm transmission means 33 transmits a leak alarm.

ステップ29で、デフロスト終了後または、イニシャルプルダウンにおいて、回転数可変型の圧縮機21が予め設定しておいた所定時間(例えば、6時間)連続運転していない場合、または、ステップ30で、庫外温度と凝縮温度の温度差が予め設定しておいた所定の温度差(例えば、5K)より高い場合、ステップ31の動作を行わず次に進む。   In step 29, after the defrost is completed or in the initial pull-down, the variable speed compressor 21 is not continuously operated for a predetermined time (for example, 6 hours) set in advance, or in step 30, If the temperature difference between the outside temperature and the condensation temperature is higher than a predetermined temperature difference (for example, 5K) set in advance, the operation proceeds to step 31 without performing the operation of step 31.

以上のように本実施の形態の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫は、回転数可変型の圧縮機が予め決定しておいた時間経過しても停止しせず、かつ庫外温度と凝縮温度の差が予め決定しておいた温度差より小さい場合、冷媒がリークしていると判断し、回転数可変型の圧縮機を停止し、庫外ファン、庫内ファンを運転するとともにリーク警報を出すことにより、サービス対応を迅速に行うとともに、冷蔵庫内の食品を他の冷蔵庫へ移動させる等の対処が容易に行うことができる。   As described above, the refrigeration unit of the present embodiment and the refrigerator using the refrigeration unit do not stop even after a predetermined time has elapsed by the variable speed compressor, and outside the refrigerator If the difference between the temperature and the condensation temperature is smaller than the predetermined temperature difference, it is determined that the refrigerant is leaking, the compressor with variable speed is stopped, and the external fan and internal fan are operated. At the same time, by issuing a leak alarm, it is possible to quickly deal with the service and to easily cope with moving the food in the refrigerator to another refrigerator.

以上のように本発明は、凝縮温度が所定温度より高い場合、圧縮機の上限回転数を下げることにより、圧縮機の破損を防止するとともに警告してサービス対応を迅速に行うことができ、冷凍サイクルを備えた冷却機器に幅広く適用できる。   As described above, according to the present invention, when the condensing temperature is higher than the predetermined temperature, the upper limit rotational speed of the compressor is decreased, so that the compressor can be prevented from being damaged and warned and service can be performed promptly. Widely applicable to cooling equipment with a cycle.

本発明による冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫の実施の形態1のブロック図Block diagram of Embodiment 1 of a refrigerator / freezer unit according to the present invention and a refrigerator using the refrigerator-freezer unit 同実施の形態の制御フローチャートControl flowchart of the embodiment 従来の冷蔵庫の回路図Circuit diagram of conventional refrigerator 従来の冷蔵庫の庫内温度特性を示す図The figure which shows the internal temperature characteristic of the refrigerator of the conventional refrigerator

符号の説明Explanation of symbols

21 回転数可変型の圧縮機
22 凝縮器
23 絞り装置
24 蒸発器
25 庫外ファン
26 庫内ファン
27 コントローラー
28 凝縮温度検出手段
29 庫外温度検出手段
30 吸入温度検出手段
31 庫内温度設定手段
32 圧縮機制御手段
33 警報発信手段
34 デフロスト制御手段
35 庫内ファン制御手段
36 庫外ファン制御手段
DESCRIPTION OF SYMBOLS 21 Rotational speed variable compressor 22 Condenser 23 Throttle device 24 Evaporator 25 Outside fan 26 Inside fan 27 Controller 28 Condensing temperature detection means 29 Outside temperature detection means 30 Inlet temperature detection means 31 Inside temperature setting means 32 Compressor control means 33 Alarm transmission means 34 Defrost control means 35 Internal fan control means 36 External fan control means

Claims (7)

冷凍時の蒸発圧力が負圧となる冷媒を用いるとともに、回転数可変型の圧縮機、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンを備えた冷蔵庫において、前記回転数可変型の圧縮機の回転数を抑制する保護制御手段を備え、前記保護制御は前記凝縮器の凝縮温度を検出する凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記回転数可変型の圧縮機の上限回転数を、庫外温度ごとに設定された通常運転時の上限回転数から凝縮温度高温時の上限回転数に低下させる制御を行うことを特徴とする冷凍冷蔵ユニット。 In a refrigerator that uses a refrigerant whose evaporating pressure during refrigeration is a negative pressure, and that includes a variable speed compressor, condenser, throttle device, evaporator, external fan, and internal fan, the variable rotational speed type Protection control means for suppressing the number of rotations of the compressor , the protection control is a case where the condensation temperature detected by the condensation temperature detection means for detecting the condensation temperature of the condenser is higher than a preset temperature, Refrigeration refrigeration characterized in that control is performed to reduce the upper limit rotational speed of a variable speed compressor from the upper limit rotational speed at normal operation set for each outside temperature to the upper limit rotational speed at a high condensation temperature. unit. 凝縮温度を検出する凝縮温度検出手段と、庫内温度を設定する庫内温度設定手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が予め設定しておいた温度より高い場合、前記庫内温度設定手段で庫内の設定温度を予め設定しておいた温度に上げることを特徴とする請求項1に記載の冷凍冷蔵ユニット。   When the condensing temperature detecting means for detecting the condensing temperature and an in-chamber temperature setting means for setting the inside temperature are provided, and the condensing temperature detected by the condensing temperature detecting means is higher than a preset temperature, 2. The refrigeration unit according to claim 1, wherein the internal temperature setting means raises the set temperature in the cabinet to a preset temperature. 庫外温度を検出する庫外温度検出手段を備え、前記凝縮温度検出手段で検出した凝縮温度と前記庫外温度検出手段で検出した庫外温度の差が予め設定しておいた温度差より大きい場合、警報あるいは警告表示を出すことを特徴とする請求項1または2に記載の冷凍冷蔵ユニット。 An outside temperature detecting means for detecting the outside temperature is provided, and the difference between the condensation temperature detected by the condensation temperature detecting means and the outside temperature detected by the outside temperature detecting means is larger than a preset temperature difference. In the case, the refrigeration unit according to claim 1 or 2 , wherein a warning or warning display is issued. 回転数可変型の圧縮機の吸入温度を検出する吸入温度検出手段を備え、デフロスト終了後に前記吸入温度検出手段で検出された吸入温度が前記庫外温度検出手段で検出された外気温により予め決定しておいた温度より低い場合、デフロストを行うことを特徴とする請求項1からのいずれか一項に記載の冷凍冷蔵ユニット。 A suction temperature detecting means for detecting the suction temperature of the compressor with a variable speed is provided, and the suction temperature detected by the suction temperature detecting means after the defrosting is determined in advance by the outside air temperature detected by the outside temperature detecting means. The refrigeration unit according to any one of claims 1 to 3 , wherein defrosting is performed when the temperature is lower than a predetermined temperature. デフロスト終了後、回転数可変型の圧縮機が予め決定しておいた時間経過しても停止せず、かつ庫外温度検出手段で検出された外気温と凝縮温度検出手段で検出した凝縮温度の差が予め決定しておいた温度差より小さい場合、前記回転数可変型の圧縮機を停止し、前記庫外ファン、前記庫内ファンは運転するとともに冷媒漏れ警報を出すことを特徴とする請求項1からのいずれか一項に記載の冷凍冷蔵ユニット。 After completion of defrosting, the variable speed compressor does not stop even after a predetermined time has elapsed, and the outside air temperature detected by the outside temperature detection means and the condensation temperature detected by the condensation temperature detection means When the difference is smaller than a predetermined temperature difference, the variable speed compressor is stopped, the outside fan and the inside fan are operated, and a refrigerant leak warning is issued. Item 5. The refrigeration unit according to any one of Items 1 to 4 . 請求項1からのいずれか一項に記載の冷凍冷蔵ユニットを冷蔵庫本体上部に備えたことを特徴とする冷蔵庫。 A refrigerator comprising the refrigerator main body provided with the refrigeration unit according to any one of claims 1 to 5 . 冷媒は可燃性冷媒としたことを特徴とする請求項1から6のいずれか一項に記載の冷凍冷蔵ユニットまたは冷蔵庫。The refrigeration unit or refrigerator according to any one of claims 1 to 6, wherein the refrigerant is a combustible refrigerant.
JP2003376906A 2003-06-27 2003-11-06 Refrigeration unit and refrigerator Expired - Fee Related JP4096862B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003376906A JP4096862B2 (en) 2003-11-06 2003-11-06 Refrigeration unit and refrigerator
CNB2004100618829A CN100516710C (en) 2003-06-27 2004-06-25 Refrigeration units and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376906A JP4096862B2 (en) 2003-11-06 2003-11-06 Refrigeration unit and refrigerator

Publications (2)

Publication Number Publication Date
JP2005140411A JP2005140411A (en) 2005-06-02
JP4096862B2 true JP4096862B2 (en) 2008-06-04

Family

ID=34687814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376906A Expired - Fee Related JP4096862B2 (en) 2003-06-27 2003-11-06 Refrigeration unit and refrigerator

Country Status (1)

Country Link
JP (1) JP4096862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085552A (en) * 2007-10-02 2009-04-23 Daiwa Industries Ltd refrigerator
JP2009127881A (en) * 2007-11-20 2009-06-11 Daiwa Industries Ltd refrigerator
JP5396809B2 (en) 2008-10-17 2014-01-22 ソニー株式会社 Solid-state imaging device, camera, and manufacturing method of solid-state imaging device
EP2180278B1 (en) * 2008-10-24 2021-01-27 Thermo King Corporation Control of pull-down in refrigeration systems
JP2013152040A (en) * 2012-01-25 2013-08-08 Diamond Electric Mfg Co Ltd Cooling compressor control device
JP6277005B2 (en) * 2014-01-31 2018-02-07 ダイキン工業株式会社 Refrigeration equipment
CN110906505B (en) * 2018-09-14 2021-05-18 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN113544443B (en) 2019-03-11 2023-02-21 三菱电机株式会社 Refrigeration cycle device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682130A (en) * 1992-08-31 1994-03-22 Sanyo Electric Co Ltd Abnormality detector for condenser of cooler
JPH06137725A (en) * 1992-10-28 1994-05-20 Hitachi Ltd Refrigerant leakage detection method for refrigeration device
JP3428207B2 (en) * 1995-02-09 2003-07-22 ダイキン工業株式会社 Air conditioner
JPH08247597A (en) * 1995-03-14 1996-09-27 Matsushita Refrig Co Ltd Operation controller of refrigerator
JPH08327195A (en) * 1995-05-29 1996-12-13 Sanyo Electric Co Ltd Freezing device
JP3658911B2 (en) * 1996-10-09 2005-06-15 富士電機リテイルシステムズ株式会社 Showcase cooling system
JP3593592B2 (en) * 1999-09-30 2004-11-24 株式会社日立製作所 Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940042A (en) * 2018-09-21 2020-03-31 奥克斯空调股份有限公司 Refrigerant leakage detection method and air conditioning device

Also Published As

Publication number Publication date
JP2005140411A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US10001310B2 (en) Binary refrigeration apparatus
CN105627496A (en) Low-temperature refrigerating control method of air conditioner and air conditioner
US20160146521A1 (en) Refrigeration cycle apparatus
CN101213410A (en) freezer
WO2015140882A1 (en) Refrigeration device
JP2013228130A (en) Freezer
JP4096862B2 (en) Refrigeration unit and refrigerator
KR20040103485A (en) Cooling apparatus
KR20040103487A (en) Cooling apparatus
JP2007218460A (en) Refrigerating cycle device and cool box
JP2005016874A (en) Freezing and refrigerating unit and refrigerator
KR20040103486A (en) Cooling apparatus
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
KR20070019815A (en) Operation control method of refrigerator
JP4476946B2 (en) Refrigeration equipment
JP2012251706A (en) Refrigerating cycle device
JP2005106454A (en) Refrigerator
JP2007309585A (en) Refrigeration equipment
JP4475655B2 (en) Air conditioner
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
CN100516710C (en) Refrigeration units and cold storage
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JP4183517B2 (en) Cooling system
JP2006010126A (en) Freezing and refrigerating unit and refrigerator
JP2007298218A (en) Refrigerating device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R151 Written notification of patent or utility model registration

Ref document number: 4096862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees