[go: up one dir, main page]

JP2005201532A - Freezing-refrigerating unit and refrigerator - Google Patents

Freezing-refrigerating unit and refrigerator Download PDF

Info

Publication number
JP2005201532A
JP2005201532A JP2004007726A JP2004007726A JP2005201532A JP 2005201532 A JP2005201532 A JP 2005201532A JP 2004007726 A JP2004007726 A JP 2004007726A JP 2004007726 A JP2004007726 A JP 2004007726A JP 2005201532 A JP2005201532 A JP 2005201532A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
refrigerator
compressor
refrigeration unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004007726A
Other languages
Japanese (ja)
Inventor
Makoto Oyamada
真 小山田
Toshikazu Sakai
寿和 境
Tsuyoki Hirai
剛樹 平井
Hidenao Tanaka
秀尚 田中
Naritaka Kanatsu
成登 金津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004007726A priority Critical patent/JP2005201532A/en
Priority to CNB2004100618829A priority patent/CN100516710C/en
Publication of JP2005201532A publication Critical patent/JP2005201532A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing-refrigerating unit and a refrigerator using the freezing-refrigerating unit capable of ensuring high safety while using an inflammable refrigerant with a low global warming potential and avoiding to the utmost such a failure as to cause a sudden stop of cooling by detecting a leakage of the refrigerant to cope with the prevention of the leakage before air flows in to increase the load of a compressor even when piping is damaged on the low pressure side of a connection part or the like of an evaporator. <P>SOLUTION: The refrigerant whose pressure becomes negative in cooling is used, and a condensation temperature sensor 31 disposed in the condensation starting position of a condenser 20, and an evaporation temperature sensor, are provided. When the condensation temperature is not lower than a predetermined temperature in the evaporation temperature, the leakage of the refrigerant is determined, and control is performed to maintain a state of preventing the leakage of the refrigerant and the inflow of air by suppressing the rotating speed of the compressor 19. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、架台上部に冷却システムの圧縮機や凝縮器を設置し、架台下部に蒸発器を設置する冷凍冷蔵ユニットと、本体上部に前記冷凍冷蔵ユニットを設けた業務用の大型冷凍冷蔵庫に関するものである。   The present invention relates to a refrigeration unit in which a compressor and a condenser of a cooling system are installed at the upper part of the gantry and an evaporator is installed in the lower part of the gantry, and a large commercial refrigerator / freezer having the refrigeration unit at the upper part of the main body. It is.

従来、500Lを越える業務用の大型冷凍冷蔵庫では、300W以上の高能力の圧縮機を用いた冷凍冷蔵ユニットが用いられている。また、特に冷凍室を冷却するシステムでは、蒸発温度が低くても高い冷凍能力が出せるR22やR404A等の低沸点冷媒を用いている。   Conventionally, in a commercial large-sized refrigerator-freezer exceeding 500 L, a refrigerator-freezer unit using a high-capacity compressor of 300 W or more is used. In particular, in the system for cooling the freezer compartment, a low boiling point refrigerant such as R22 or R404A that can provide a high refrigerating capacity even when the evaporation temperature is low is used.

しかしながら、近年、地球温暖化防止の観点から温暖化係数の高いR22やR404A等のフロン系冷媒からR290やR600a等の自然冷媒への転換が望まれるとともに、二酸化炭素の排出量削減のために消費電力量の大きい業務用の大型冷凍冷蔵庫についても、早急に省エネルギー化を図ることが望まれている。   However, in recent years, from the viewpoint of preventing global warming, it has been desired to switch from chlorofluorocarbon refrigerants such as R22 and R404A, which have a high warming potential, to natural refrigerants such as R290 and R600a, and to reduce carbon dioxide emissions. For large-sized freezer refrigerators for business use with a large amount of electric power, it is desired to save energy as soon as possible.

ここで、業務用の大型冷凍冷蔵庫は、冷媒封入量が多く、かつ周辺の厨房環境に着火源となる火気が多いことから、可燃性の自然冷媒の適用について慎重に検討が進められている。また、家庭用冷蔵庫においては、冷媒配管が損傷して可燃性の自然冷媒が漏洩した場合に、漏洩を検知する手法が検討されている(例えば、特許文献1参照)。   Here, commercial large-sized refrigerator-freezers have a large amount of refrigerant enclosed, and because there is a lot of fire as an ignition source in the surrounding kitchen environment, careful consideration is being given to the application of flammable natural refrigerants. . In home refrigerators, a technique for detecting leakage when refrigerant piping is damaged and flammable natural refrigerant leaks has been studied (for example, see Patent Document 1).

以下、図面を参照しながら上記従来の冷蔵庫を説明する。   Hereinafter, the conventional refrigerator will be described with reference to the drawings.

図4は特許文献1に記載された従来の冷蔵庫の断面図である。   FIG. 4 is a cross-sectional view of a conventional refrigerator described in Patent Document 1.

図4に示すように、冷凍室1と、扉2と、キャビネット3とから構成されている。キャビネット3の上部には、冷凍冷蔵ユニット4を固定するユニットベース5と、冷凍室1を冷却する冷却室6が設置される。   As shown in FIG. 4, it is composed of a freezer compartment 1, a door 2, and a cabinet 3. In the upper part of the cabinet 3, a unit base 5 for fixing the freezing / refrigeration unit 4 and a cooling room 6 for cooling the freezing room 1 are installed.

冷凍冷蔵ユニット4は、レシプロ型の圧縮機構を有する圧縮機7、凝縮器8、減圧手段であるキャピラリ9、蒸発器10、圧縮機7の吸入管11、凝縮用ファン12、蒸発用ファン13からなる。また、キャビネット3の背面には冷却室6内の除霜水を排出するドレイン14が埋設されている。   The refrigeration unit 4 includes a compressor 7 having a reciprocating type compression mechanism, a condenser 8, a capillary 9 as a decompression means, an evaporator 10, a suction pipe 11 of the compressor 7, a condensing fan 12, and an evaporating fan 13. Become. A drain 14 for discharging the defrost water in the cooling chamber 6 is embedded in the back surface of the cabinet 3.

また、蒸発器10の下部に取り付けられたラジアントヒータ15と、蒸発器10の冷媒配管(図示せず)に取り付けられた蒸発温度センサ16と、蒸発器10の上部に取り付けられた出口温度センサ17と、冷凍室1の上部に取り付けられた室内温度センサ18とが設置されている。   Further, a radiant heater 15 attached to the lower part of the evaporator 10, an evaporation temperature sensor 16 attached to a refrigerant pipe (not shown) of the evaporator 10, and an outlet temperature sensor 17 attached to the upper part of the evaporator 10. And the indoor temperature sensor 18 attached to the upper part of the freezer compartment 1 is installed.

次に冷凍冷蔵ユニット4の動作を説明する。冷媒は低沸点冷媒であるR600aを用いる。冷媒R600aは圧縮機7で圧縮され、凝縮器8で凝縮された後、キャピラリ9で減圧されて、蒸発器10へ送られる。そして、蒸発器10で蒸発された後、吸入管11を通って圧縮機7へ還流する。このとき、キャピラリ9と吸入管11は熱交換されて、圧縮機7へ還流する冷媒の冷廃熱が回収される。   Next, the operation of the refrigeration unit 4 will be described. R600a which is a low boiling point refrigerant is used as the refrigerant. The refrigerant R <b> 600 a is compressed by the compressor 7, condensed by the condenser 8, depressurized by the capillary 9, and sent to the evaporator 10. Then, after being evaporated by the evaporator 10, it is refluxed to the compressor 7 through the suction pipe 11. At this time, the capillary 9 and the suction pipe 11 are subjected to heat exchange, and the cold and waste heat of the refrigerant returning to the compressor 7 is recovered.

このとき、周囲温度30℃、冷凍室1の室内温度センサ18の指示値(以下室内温度という)−20℃の通常運転中における、冷媒R600aの凝縮温度は約40℃(約5.3気圧)、蒸発温度は約−30℃(約0.5気圧)である。   At this time, the condensation temperature of the refrigerant R600a is about 40 ° C. (about 5.3 atm) during normal operation at an ambient temperature of 30 ° C. and an indicated value of the indoor temperature sensor 18 of the freezer compartment 1 (hereinafter referred to as the room temperature) −20 ° C. The evaporation temperature is about −30 ° C. (about 0.5 atm).

そして、起動あるいは除霜後の経過時間を積算して、積算時間が約10時間を越える毎に、圧縮機7を停止するとともにラジアントヒータ15に通電され蒸発器10が除霜される。このとき、出口温度センサ17が約5℃を検知すると、除霜完了と判断されラジアントヒータ15の通電が停止する。   Then, the elapsed time after activation or defrosting is integrated, and whenever the integrated time exceeds about 10 hours, the compressor 7 is stopped and the radiant heater 15 is energized to defrost the evaporator 10. At this time, when the outlet temperature sensor 17 detects about 5 ° C., it is determined that the defrosting is completed, and energization of the radiant heater 15 is stopped.

さらに、蒸発温度センサ16と出口温度センサ17の指示値の差が5℃より大きくなった場合、例えば、室内温度―20℃、蒸発温度センサ16の指示値−30℃において、出口温度センサ17の指示値が−25℃より高くなった時、冷媒の漏洩と判断され、圧縮機7を停止するとともに、冷媒の漏洩が発生したことを報知する。   Further, when the difference between the indication values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 becomes larger than 5 ° C., for example, at the indoor temperature −20 ° C. and the indication value −30 ° C. of the evaporation temperature sensor 16, When the indicated value is higher than −25 ° C., it is determined that the refrigerant has leaked, and the compressor 7 is stopped, and the fact that the refrigerant has leaked is notified.

冷媒が外部に漏洩した場合、冷却能力が低下して鈍冷傾向になるとともに、蒸発器10の出口では完全に気化して、過熱蒸気となり蒸発器10に流入する室内空気の温度近くまで温度上昇する。すなわち、蒸発温度センサ16と出口温度センサ17の指示値の差が所定値の5℃より大きくなったことを基準に冷媒の漏洩を検知すると、鈍冷傾向が発生する比較的初期の段階で冷媒の漏洩が発生したことを報知することができる。   When the refrigerant leaks to the outside, the cooling capacity is reduced and the cooling tendency tends to be slow. At the outlet of the evaporator 10, the refrigerant is completely vaporized, and the temperature rises to near the temperature of the indoor air flowing into the evaporator 10 as superheated steam. To do. That is, when refrigerant leakage is detected based on the difference between the indicated values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 being greater than a predetermined value of 5 ° C., the refrigerant is detected at a relatively early stage where a slow cooling tendency occurs. It is possible to notify that a leak has occurred.

この結果、使用者が冷媒の漏洩を確認して、火気の使用を停止したり、サービスコールをかけることで早期に対応することができ、安全性が向上できる。
特開平9−14811号公報
As a result, the user can confirm the leakage of the refrigerant, stop using the fire, or make a service call so that it can be dealt with early and safety can be improved.
JP-A-9-14811

しかしながら、上記従来の冷蔵庫は、冷却能力が低下して蒸発器10の出口で冷媒が過熱蒸気となることを前提として冷媒の漏洩を検知するものであるが、業務用の大型冷蔵庫では使用時の扉開閉の頻度が高いため、使用時に冷媒漏洩が発生すると着霜により蒸発器10の蒸発能力が低下して、蒸発器10の出口で冷媒が過熱蒸気になりにくいという問題が発生する。   However, the above conventional refrigerator detects refrigerant leakage on the premise that the cooling capacity is reduced and the refrigerant becomes superheated steam at the outlet of the evaporator 10, but in a commercial large refrigerator, Since the frequency of door opening and closing is high, if refrigerant leakage occurs during use, the evaporation capacity of the evaporator 10 is reduced due to frost formation, causing a problem that the refrigerant hardly becomes superheated steam at the outlet of the evaporator 10.

また、上記従来の冷蔵庫は、高沸点冷媒であるR600aを使用しているため、低圧圧力が大気圧よりも低く、蒸発器10の接続部で配管の損傷が生じると冷媒が漏洩する前に空気が流入して、高圧圧力が上昇して冷却能力が低下するとともに、最悪の場合、空気圧縮により過負荷が生じて圧縮機7が停止して再起動せず、不冷となる可能性がある。   Further, since the conventional refrigerator uses R600a which is a high boiling point refrigerant, the low pressure is lower than the atmospheric pressure, and if the pipe is damaged at the connection part of the evaporator 10, the air is not leaked before the refrigerant leaks. Flows in, the high pressure rises and the cooling capacity decreases, and in the worst case, an overload occurs due to air compression, and the compressor 7 stops and does not restart and may become uncooled. .

すなわち、高沸点冷媒であるR600aを使用した場合、蒸発器10の接続部などの低圧側で配管が損傷すると、空気圧縮により圧縮機7が停止したまま再起動できずに配管の損傷部から冷媒が漏洩し続ける可能性があり、蒸発温度センサ16と出口温度センサ17の指示値の差を基準にするだけでは、冷媒の漏洩を検知することができないという問題が発生する。そこで、高沸点冷媒であるR600aを使用した場合、圧縮機7の過負荷が継続した時や、過負荷で起動停止を繰り返した時にも冷媒が漏洩したと判断する施策が提案されている。   That is, when R600a, which is a high boiling point refrigerant, is used, if the pipe is damaged on the low pressure side such as the connection part of the evaporator 10, the compressor 7 is stopped due to air compression and cannot be restarted, and the refrigerant is discharged from the damaged part of the pipe However, the refrigerant leakage cannot be detected only by using the difference between the indication values of the evaporation temperature sensor 16 and the outlet temperature sensor 17 as a reference. Therefore, when R600a which is a high boiling point refrigerant is used, a measure for determining that the refrigerant has leaked when the overload of the compressor 7 continues or when the start and stop are repeated due to the overload has been proposed.

一方、業務用の大型冷蔵庫では、家庭用冷蔵庫に比べて負荷が大きくより高い冷却能力が求められるとともに、故障発生時にも最低限の冷却運転の継続が求められる。すなわち、空気圧縮により過負荷が生じて圧縮機7が停止して再起動せずに突然不冷となるような故障は極力避けなければならない。   On the other hand, a large commercial refrigerator is required to have a higher cooling capacity and a higher load than a household refrigerator, and to continue a minimum cooling operation even when a failure occurs. That is, it is necessary to avoid as much as possible a failure in which overload occurs due to air compression and the compressor 7 stops and does not restart and suddenly becomes uncooled.

ここで、業務用冷蔵庫の周囲温度30℃の一般的な運転状態である凝縮温度40℃、蒸発温度―30℃、過冷却0℃、吸入ガス温度32℃における圧縮比、高圧圧力、低圧圧力、および理論効率と体積能力の相対値を高沸点冷媒であるR600aと他の冷媒と比較した結果を(表1)に示す。   Here, a compression ratio, a high pressure pressure, a low pressure pressure at a condensing temperature of 40 ° C., an evaporating temperature of −30 ° C., a supercooling of 0 ° C., and an intake gas temperature of 32 ° C., which are general operating conditions of an ambient temperature of 30 ° C. Table 1 shows the results of comparing the relative values of theoretical efficiency and volume capacity with R600a, which is a high boiling point refrigerant, and other refrigerants.

Figure 2005201532
Figure 2005201532

(表1)に示したように、高沸点冷媒R134a、R600aに比べて低沸点冷媒であるR22、R290、R404Aは、理論効率が低い反面、圧縮比が低く体積能力が高く、かつ蒸発圧力が大気圧より高いことがわかる。すなわち、低沸点冷媒であるR22、R290、R404Aは、蒸発器10の接続部などの低圧側で配管が損傷した場合でも直ぐに空気が流入して空気圧縮が生じることはないが、運転中や蒸発器10の除霜中に冷媒が大量に漏洩した後に蒸発温度が低下して空気が流入する可能性がある。   As shown in Table 1, R22, R290, and R404A, which are low-boiling refrigerants compared to the high-boiling refrigerants R134a and R600a, have low theoretical efficiency, but have a low compression ratio and high volume capacity, and an evaporation pressure. It can be seen that it is higher than atmospheric pressure. That is, R22, R290, and R404A, which are low-boiling refrigerants, do not cause air compression immediately when the piping is damaged on the low-pressure side such as the connection portion of the evaporator 10, but air compression does not occur. There is a possibility that the evaporating temperature is lowered and air flows in after a large amount of refrigerant leaks during defrosting of the vessel 10.

そこで、業務用の大型冷蔵庫では、低沸点冷媒であるR22、R290、R404Aを使用するとともに、早期に冷媒の漏洩を検知して報知することや冷媒の漏洩を抑制することで、故障発生時にも最低限の冷却運転を継続することが期待されている。   Therefore, in large refrigerators for business use, R22, R290, and R404A, which are low boiling point refrigerants, are used, and early detection and notification of refrigerant leaks and suppression of refrigerant leaks can also be used. It is expected to continue the minimum cooling operation.

本発明は、上記従来の課題を解決するもので、蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気圧縮により過負荷が生じて圧縮機が停止して再起動せずに突然不冷となるような故障を極力回避する冷凍冷蔵ユニットおよび冷蔵庫を提供するものである。   The present invention solves the above-described conventional problems, and even when a pipe is damaged on the low pressure side such as a connection portion of an evaporator, an overload occurs due to air compression, and the compressor stops and does not restart. It is an object of the present invention to provide a freezer / refrigeration unit and a refrigerator that avoid a failure that suddenly becomes uncooled as much as possible.

上記従来の課題を解決するために、本発明の冷凍冷蔵ユニットおよび冷蔵庫は、冷却運転時の蒸発圧力が負圧となる冷媒と、回転数可変型の圧縮機と、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンとを備え、前記蒸発器もしくは低圧側の配管から冷媒が漏洩した場合に前記冷媒漏洩を検知する手段および前記回転数可変型の圧縮機の回転数を抑制する冷媒漏洩防止制御手段を備えたものである。   In order to solve the above conventional problems, the refrigeration unit and the refrigerator of the present invention include a refrigerant whose evaporating pressure during cooling operation is a negative pressure, a compressor with a variable rotation speed, a condenser, a throttling device, and an evaporation device. A compressor, an external fan, and an internal fan, and when the refrigerant leaks from the evaporator or the low-pressure side pipe, the refrigerant leakage detecting means and the rotational speed of the variable speed compressor are suppressed. A refrigerant leakage prevention control means is provided.

これによって、冷却運転中に蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気が流入して圧縮機の負荷が増大して圧縮機が停止する前に、圧縮機の回転数を制御して、冷媒が庫内側へ漏洩し難く、かつ空気が流入し難い状態となる蒸発温度が大気圧とバランスした状態で運転することができる。   As a result, even if the piping is damaged on the low pressure side such as the connection part of the evaporator during the cooling operation, before the compressor stops due to the flow of air and the compressor load increases, the rotation speed of the compressor It is possible to operate in a state where the evaporation temperature at which the refrigerant hardly leaks to the inside of the cabinet and the air hardly flows in is balanced with the atmospheric pressure.

本発明の冷凍冷蔵ユニットおよび冷蔵庫は、冷却中に蒸発器の接続部などの低圧側で配管が損傷した場合でも、空気が流入して圧縮機の負荷が増大する前に、冷媒の漏洩を検知して冷媒の漏洩および空気の流入が生じ難い状態を維持することができるので、空気圧縮により過負荷が生じて圧縮機が停止して再起動せずに突然不冷となるような故障を極力回避することができるとともに、地球温暖化係数の小さい可燃性冷媒を用いながら高い安全性が確保できる。   The refrigeration unit and refrigerator of the present invention detect refrigerant leakage before the flow of air increases and the compressor load increases even when the piping is damaged on the low pressure side such as the evaporator connection during cooling. As a result, it is possible to maintain a state in which refrigerant leakage and air inflow are unlikely to occur. Therefore, it is possible to prevent failures that cause sudden cooling without causing an overload due to air compression and stopping and restarting the compressor. While avoiding this, high safety can be secured while using a flammable refrigerant with a low global warming potential.

本発明の請求項1に記載の発明は、冷却運転時の蒸発圧力が負圧となる冷媒と、回転数可変型の圧縮機と、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンとを備え、前記蒸発器の接続部などの低圧側で配管が損傷した場合に冷媒漏洩を検知する手段および前記回転数可変型の圧縮機の回転数を抑制する冷媒漏洩防止制御手段を備えることで、冷却中に蒸発器の接続部などの低圧側で配管が損傷した場合でも、冷媒の漏洩および空気の流入が生じ難い状態で運転を維持することにより、配管内への空気流入による過負荷が生じて圧縮機が停止して再起動せず、冷媒が庫内側へ漏洩することを防止することができる。   The invention according to claim 1 of the present invention is a refrigerant in which the evaporating pressure during the cooling operation is negative, a compressor having a variable rotation speed, a condenser, a throttling device, an evaporator, an external fan, and an interior A fan, and means for detecting refrigerant leakage when piping is damaged on the low pressure side such as a connection part of the evaporator and refrigerant leakage prevention control means for suppressing the rotation speed of the variable speed compressor Therefore, even if the piping is damaged on the low-pressure side such as the evaporator connection during cooling, the operation is maintained in a state in which refrigerant leakage and air inflow are unlikely to occur. It is possible to prevent the refrigerant from leaking to the inner side without causing a load to be generated and the compressor to stop and restart.

請求項2に記載の発明は、請求項1の発明に、さらに、凝縮温度を検出する凝縮温度検出手段と、蒸発温度を検出する蒸発温度検出手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が前記蒸発温度検出手段で検出した蒸発温度により予め設定しておいた温度より高い場合、冷媒漏洩と判断して回転数可変型の圧縮機の回転数を抑制する冷媒漏洩防止制御を備えることにより、空気流入による圧縮機の過負荷状態を精度よく検知し、圧縮機の回転数抑制による対応することで、圧縮機の過負荷による急停止して再起動しない状態を回避することができる。   According to a second aspect of the present invention, in addition to the first aspect of the invention, the apparatus further comprises a condensing temperature detecting means for detecting the condensing temperature and an evaporating temperature detecting means for detecting the evaporating temperature, which is detected by the condensing temperature detecting means. When the condensation temperature is higher than the temperature set in advance by the evaporation temperature detected by the evaporation temperature detecting means, the refrigerant leakage prevention control is provided that determines that the refrigerant leaks and suppresses the rotation speed of the variable speed compressor. Thus, it is possible to accurately detect an overload state of the compressor due to air inflow and respond by suppressing the rotation speed of the compressor, thereby avoiding a state where the compressor is suddenly stopped due to an overload and is not restarted. .

請求項3に記載の発明は、請求項1の発明に、さらに、凝縮温度を検出する凝縮温度検出手段と、蒸発温度を検出する蒸発温度検出手段と、庫内温度を設定する庫内温度設定手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が前記蒸発温度検出手段で検出した蒸発温度により予め設定しておいた温度より高い場合、冷媒漏洩と判断して前記庫内温度設定手段で庫内の設定温度を予め設定しておいた温度に上げることにより、冷媒の漏洩および空気の流入が生じ難い、蒸発圧力と大気圧力がバランスする状態を維持することができる。   The invention described in claim 3 is the same as that of the invention described in claim 1, but further includes a condensation temperature detection means for detecting the condensation temperature, an evaporation temperature detection means for detecting the evaporation temperature, and an internal temperature setting for setting the internal temperature. Means for determining that the refrigerant has leaked when the condensation temperature detected by the condensation temperature detection means is higher than the temperature preset by the evaporation temperature detected by the evaporation temperature detection means. Thus, by raising the set temperature in the chamber to a preset temperature, it is possible to maintain a state where the evaporation pressure and the atmospheric pressure are balanced, in which the leakage of the refrigerant and the inflow of air hardly occur.

請求項4に記載の発明は、請求項1から請求項3のいずれかの発明にさらに、凝縮温度検出手段を凝縮器の凝縮開始位置に設けたことにより、蒸発器の接続部などの低圧側で配管が損傷によって空気流入して、凝縮圧力が増加する状態を精度良く検知することができる。   According to a fourth aspect of the present invention, in addition to any one of the first to third aspects of the present invention, a condensing temperature detecting means is provided at the condensing start position of the condenser, whereby a low pressure side such as a connection portion of the evaporator is provided. Therefore, it is possible to accurately detect a state in which the piping is damaged and the air flows in due to damage and the condensation pressure increases.

請求項5に記載の発明は、請求項1から請求項4のいずれかの発明にさらに、圧縮機を規定の回転数で連続運転する冷媒漏洩防止制御を行うことにより、回転数変更時の過負荷による圧縮機の急停止および除霜運転中における庫内側への冷媒漏洩を防止することができる。   According to a fifth aspect of the present invention, in addition to any one of the first to fourth aspects of the present invention, by performing refrigerant leakage prevention control that continuously operates the compressor at a specified rotational speed, an excess at the time of changing the rotational speed is achieved. It is possible to prevent the refrigerant from leaking to the inside of the warehouse during the sudden stop of the compressor due to the load and the defrosting operation.

請求項6に記載の発明は、請求項1から請求項5のいずれかの発明にさらに、通常制御よりも除霜運転周期を延長する冷媒漏洩防止制御を行うことにより、除霜運転中における庫内側への冷媒漏洩を極力抑え、また適宜に除霜運転を行うことで蒸発器の着霜による蒸発温度低下を抑制し、冷却運転中の空気流入を防止することができる。   The invention according to claim 6 is the warehouse during the defrosting operation by performing the refrigerant leakage prevention control that extends the defrosting operation cycle more than the normal control in addition to any of the inventions of the first to fifth aspects. By suppressing the refrigerant leakage to the inside as much as possible and appropriately performing the defrosting operation, it is possible to suppress a decrease in the evaporation temperature due to the frosting of the evaporator, and to prevent air inflow during the cooling operation.

請求項7に記載の発明は、請求項1から請求項6のいずれかの発明にさらに、冷媒漏洩防止制御の運転時間が規定時間以上続いた場合、使用者に警告する制御手段および警告する手段を設けることにより、使用者が冷媒の漏洩を確認して、火気の使用を停止したり、サービスコールをかけることで早期に対応することができ、突然不冷となるような故障を極力回避することができるとともに、高い安全性が確保できる。   The invention according to claim 7 is the control means for warning the user and the means for warning when the operation time of the refrigerant leakage prevention control continues for a specified time or more in addition to any of the inventions of claims 1 to 6. By installing the, the user can confirm the leakage of the refrigerant, stop using the fire, or take a service call to respond early, avoiding the failure that suddenly becomes cold as much as possible And high safety can be ensured.

請求項8に記載の発明は、請求項1から請求項7のいずれかの発明にさらに、凝縮温度が通常状態になった場合、冷媒漏洩防止制御から通常制御に自動復帰することにより、凝縮器の目詰まりによる凝縮温度上昇等の冷媒漏洩ではない状態で誤検知してしまった場合にも、使用者に対して必要以上の懸念をいだかせないことができる。   According to an eighth aspect of the present invention, in addition to any one of the first to seventh aspects of the present invention, when the condensation temperature is in a normal state, the condenser leak prevention control is automatically returned to the normal control to automatically return the condenser. Even if it is erroneously detected in a state where there is no refrigerant leakage such as an increase in the condensation temperature due to clogging, the user can be kept from worrying more than necessary.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本実施の形態による冷蔵庫の冷凍サイクル図である。図2Aは同実施の形態の冷蔵庫の庫内温度と時間との関係を示す図、図2Bは同実施の形態の冷蔵庫の圧縮機、凝縮器ファンおよび蒸発器ファンの回転数制御を示す図である。
(Embodiment 1)
FIG. 1 is a refrigeration cycle diagram of a refrigerator according to the present embodiment. FIG. 2A is a diagram illustrating the relationship between the internal temperature and time of the refrigerator according to the embodiment, and FIG. 2B is a diagram illustrating the rotational speed control of the compressor, condenser fan, and evaporator fan of the refrigerator according to the embodiment. is there.

図1に示すように、本発明の実施の形態の冷蔵庫の冷凍サイクルは、冷媒に用いられているR600aと(図示せず)、圧縮機19、凝縮器20、蒸発器21、キャピラリーチューブ22、凝縮器ファン23、蒸発器ファン24と、冷蔵庫のコントローラ25と、その内部制御である圧縮機制御手段26、凝縮器目詰まりおよび運転異常警報の発信手段27、デフロスト制御手段28、庫内ファン制御手段29、庫外ファン制御手段30、凝縮器の入口配管に取り付けられた凝縮温度検出手段である凝縮温度センサ31、蒸発器の入口配管に取り付けられた蒸発温度検出手段である蒸発温度センサ32、蒸発器ファン吸込み側に取り付けられた庫内温度検出手段である庫内温度センサ33、庫外温度検出手段である外気温センサ34、庫内温度を任意の温度に設定する庫内温度設定手段35から構成される。   As shown in FIG. 1, the refrigerating cycle of the refrigerator according to the embodiment of the present invention includes R600a (not shown) used as a refrigerant, a compressor 19, a condenser 20, an evaporator 21, a capillary tube 22, Condenser fan 23, evaporator fan 24, refrigerator controller 25, compressor control means 26 as internal control thereof, condenser clogging and operation abnormality alarm sending means 27, defrost control means 28, internal fan control Means 29, external fan control means 30, condensation temperature sensor 31 which is a condensation temperature detection means attached to the inlet pipe of the condenser, evaporation temperature sensor 32 which is an evaporation temperature detection means attached to the inlet pipe of the evaporator, The inside temperature sensor 33 which is the inside temperature detecting means attached to the evaporator fan suction side, the outside air temperature sensor 34 which is the outside temperature detecting means, and the inside temperature It is comprised from the internal temperature setting means 35 which sets to arbitrary temperature.

回転数可変型の圧縮機19には、凝縮器20、蒸発器21、キャピラリーチューブ22が冷媒管で閉ループ状に接続され、さらに凝縮器20には回転数可変型の凝縮器ファン23が付設され、蒸発器21には同じく回転数可変型の蒸発器ファン24が付設されている。蒸発器21は冷蔵庫等の庫内に設置され、当該庫内を冷却する。これらはコントローラ25により制御を行う。   A compressor 20, an evaporator 21, and a capillary tube 22 are connected in a closed loop shape with a refrigerant pipe to the variable speed compressor 19, and further a condenser fan 23 with a variable speed is attached to the condenser 20. The evaporator 21 is also provided with an evaporator fan 24 having a variable rotational speed. The evaporator 21 is installed in a refrigerator or the like, and cools the interior. These are controlled by the controller 25.

以上のように構成された圧縮機19、凝縮器ファン23および蒸発器ファン24の動作について、図2を用いて説明する。   Operations of the compressor 19, the condenser fan 23, and the evaporator fan 24 configured as described above will be described with reference to FIG.

図2Aにおいて、縦軸は冷蔵庫等の庫内温度を示し、横軸は時間経過を示している。図2AのOFF温度(t1)およびON温度(t2)は庫内温度設定手段35により設定された庫内設定温度により決定される。本冷凍装置では冷却運転開始後に庫内が冷却されてこの庫内温度がt1に到達すると、冷却運転停止状態に入り、この状態が継続し庫内温度が上昇してt2に到達すると、冷却運転が開始される。通常これが繰り返されて庫内温度が略一定幅の設定温度に維持される。   In FIG. 2A, the vertical axis indicates the temperature inside the refrigerator or the like, and the horizontal axis indicates the passage of time. The OFF temperature (t1) and the ON temperature (t2) in FIG. 2A are determined by the internal set temperature set by the internal temperature setting means 35. In this refrigeration apparatus, when the inside of the refrigerator is cooled after the cooling operation is started and the inside temperature reaches t1, the cooling operation is stopped. When this state continues and the inside temperature rises and reaches t2, the cooling operation is performed. Is started. Usually, this is repeated and the internal temperature is maintained at a set temperature having a substantially constant width.

本発明の実施の形態の冷凍装置の運転状態は、プルダウン初期後からt1までの区間T1、t1からt2までの区間T2、t2からt1までの区間T3とした3つの運転状態に区分される。   The operating state of the refrigeration apparatus according to the embodiment of the present invention is divided into three operating states: a section T1 from the initial pull-down to t1, a section T2 from t1 to t2, and a section T3 from t2 to t1.

図2Bは、圧縮機19、凝縮器ファン23および蒸発器ファン24の回転数制御を示している。圧縮機19は、庫内センサの温度がON温度以上で起動し、OFF温度以下で停止する。そのON温度からOFF温度までの区間T3における圧縮機19の回転数は、庫内温度設定手段35により設定された庫内設定温度と、外気温センサ34で検出された外気温度と、庫内温度センサにより検出された庫内温度により、以下のように制御している。
庫内温度センサがt2に対して規定温度以上高い場合には、圧縮機19の回転数を増速する。また逆に庫内温度センサがt2に対して規定温度以上低い場合には減速する。その場合に圧縮機19の回転数の上限値と下限値は、外気温度センサの温度により決定される。例えば、高外気温では回転数の上限値は大きな値が設定されており、過負荷時の冷却能力を十分に発揮でき、逆に低外気温では回転数の下限値が小さく設定されており、環境に合った冷却運転をすることができる。
FIG. 2B shows the rotational speed control of the compressor 19, the condenser fan 23 and the evaporator fan 24. The compressor 19 starts when the temperature of the internal sensor is higher than the ON temperature, and stops when the temperature is lower than the OFF temperature. The number of rotations of the compressor 19 in the section T3 from the ON temperature to the OFF temperature includes the internal set temperature set by the internal temperature setting means 35, the outside air temperature detected by the outside air temperature sensor 34, and the inside temperature. It is controlled as follows according to the internal temperature detected by the sensor.
When the internal temperature sensor is higher than the specified temperature with respect to t2, the rotational speed of the compressor 19 is increased. Conversely, if the internal temperature sensor is lower than the specified temperature with respect to t2, it decelerates. In this case, the upper limit value and the lower limit value of the rotation speed of the compressor 19 are determined by the temperature of the outside air temperature sensor. For example, the upper limit value of the rotational speed is set to a large value at high outside air temperature, and the cooling capacity at the time of overload can be fully demonstrated.On the contrary, the lower limit value of the rotational speed is set to be small at low outside air temperature, Cooling operation suitable for the environment can be performed.

また凝縮器ファン23および蒸発器ファン24の回転数切替は、庫外ファン制御手段34および庫内ファン制御手段33により行う。その切り替えるタイミングは、基本的に圧縮機19の回転数の上下に連動しており、例えば圧縮機19が増速した場合には、凝縮器ファン23および蒸発器ファン24の回転数はワンランク上へと切り替わり、圧縮機19が減速した場合には、凝縮器ファン23および蒸発器ファン24の回転数はワンランク下へと切り替わる。ただし圧縮機19が低速回転範囲内(例えば、圧縮機回転数:35rps以下)では、圧縮機19が増速しても、凝縮器ファン23および蒸発器ファン24の回転数はワンランク上に切り替えない。それは低速回転範囲内では冷凍能力をそれほど必要としないので、ファン回転数を上げずにファン入力を削減するためである。   The rotation speed of the condenser fan 23 and the evaporator fan 24 is switched by the outside fan control means 34 and the inside fan control means 33. The switching timing is basically linked to the upper and lower rotation speeds of the compressor 19. For example, when the compressor 19 speeds up, the rotation speeds of the condenser fan 23 and the evaporator fan 24 are increased by one rank. When the compressor 19 decelerates, the rotation speeds of the condenser fan 23 and the evaporator fan 24 are switched down one rank. However, when the compressor 19 is within the low speed rotation range (for example, the compressor rotation speed: 35 rps or less), the rotation speed of the condenser fan 23 and the evaporator fan 24 is not switched to a higher rank even if the compressor 19 speeds up. . This is because the refrigeration capacity is not so required in the low-speed rotation range, and the fan input is reduced without increasing the fan rotation speed.

また庫内の着霜を低減するために、圧縮機19の停止中であっても、蒸発器ファン24は低速回転で運転する。   Further, in order to reduce frost formation in the refrigerator, the evaporator fan 24 is operated at a low speed even when the compressor 19 is stopped.

図3に本発明の実施の形態の圧縮機19の使用基準を示す。図3の横軸には冷凍サイクルにおける蒸発温度、縦軸には冷凍サイクルにおける凝縮温度を示している。斜線が入っていない範囲が圧縮機19の使用範囲となる。蒸発温度は-40℃以上、-5℃以下であり、凝縮温度は0℃以上、60℃以下である。さらに凝縮温度には、所定の蒸発温度における使用上限があり、それは凝縮圧力を蒸発圧力で割った圧縮比で制限されている。本発明の実施の形態の圧縮機19においては圧縮比12.5以下である。   FIG. 3 shows the usage standards of the compressor 19 according to the embodiment of the present invention. The horizontal axis of FIG. 3 shows the evaporation temperature in the refrigeration cycle, and the vertical axis shows the condensation temperature in the refrigeration cycle. The range where there is no diagonal line is the range of use of the compressor 19. The evaporation temperature is −40 ° C. or more and −5 ° C. or less, and the condensation temperature is 0 ° C. or more and 60 ° C. or less. Furthermore, the condensation temperature has an upper use limit at a given evaporation temperature, which is limited by a compression ratio that is the condensation pressure divided by the evaporation pressure. In the compressor 19 according to the embodiment of the present invention, the compression ratio is 12.5 or less.

以上のように構成された冷蔵庫において、冷却運転中に蒸発器の接続部などの低圧側で配管が損傷した際に、冷媒漏洩防止制御を行わなかった場合の冷却システムの挙動について、以下に説明する。   In the refrigerator configured as described above, the behavior of the cooling system when the refrigerant leakage prevention control is not performed when the piping is damaged on the low pressure side such as the connection portion of the evaporator during the cooling operation will be described below. To do.

冷却運転中に蒸発器等の低圧側配管で損傷等が生じた場合には、冷凍サイクルに高沸点冷媒を用いているため、低圧側は負圧となり配管損傷部から空気を吸い込む。吸い込まれた空気は、圧縮機19にて空気圧縮を起こして凝縮器側へ流入する。凝縮器内部において冷媒は、凝縮して相変化を起こすが、空気は相変化を起こさないため、通常よりも凝縮圧力は大きくなる。さらに空気が低圧側から圧縮機を通して凝縮機内に送り込まれた場合には、本実施の形態では減圧装置にキャピラリチューブ32を用いているため、空気が蒸発器側へと循環せずに滞留して、凝縮器20内の圧力が異常に上昇する。   When damage or the like occurs in the low-pressure side pipe such as an evaporator during the cooling operation, the high-pressure refrigerant is used in the refrigeration cycle, so the low-pressure side becomes negative pressure and air is sucked from the damaged part of the pipe. The sucked air is compressed by the compressor 19 and flows into the condenser. In the condenser, the refrigerant condenses and causes a phase change, but air does not cause a phase change, so the condensation pressure becomes larger than usual. Furthermore, when air is sent from the low pressure side through the compressor into the condenser, the capillary tube 32 is used in the decompression device in the present embodiment, so the air stays without circulating to the evaporator side. The pressure in the condenser 20 rises abnormally.

その結果、冷凍サイクルの高低圧が大きくなりすぎるため、圧縮機19が過負荷状態となり急停止する。急停止後の起動においては、バランス圧力が高いため起動トルクが不足して圧縮機は起動しない。その圧縮機が起動しない状態では、蒸発器側が負圧とならないため、冷媒は庫内側へ徐々に漏洩していく。冷媒が徐々に漏洩した結果、バランス圧力が低下して圧縮機が起動可能となり、再起動する。しかし起動後、負圧となる低圧側から空気を吸い込み、前回同様に凝縮圧力が上昇し、過負荷状態となって急停止する。   As a result, the high / low pressure of the refrigeration cycle becomes too large, and the compressor 19 becomes overloaded and stops suddenly. In starting after a sudden stop, the balance pressure is high, so the starting torque is insufficient and the compressor does not start. In the state where the compressor does not start, the evaporator side does not become negative pressure, so the refrigerant gradually leaks to the inside of the warehouse. As a result of the gradual leakage of the refrigerant, the balance pressure decreases and the compressor can be started and restarted. However, after start-up, air is sucked in from the low pressure side, which is negative pressure, and the condensation pressure rises as in the previous case, resulting in an overload condition and a sudden stop.

以上のように、冷媒漏洩防止制御を行わない場合に、低圧側で配管が損傷を生じると、圧縮機の起動と急停止のサイクルを繰り返しながら、徐々に冷媒が漏洩していき、庫内側に冷媒が滞留する。   As described above, when the refrigerant leakage prevention control is not performed and the piping is damaged on the low pressure side, the refrigerant gradually leaks while repeating the cycle of starting and stopping the compressor, Refrigerant stays.

図4に本発明の実施の形態の冷媒漏洩防止制御のフロー図を示し、以下に前記制御について説明する。   FIG. 4 shows a flowchart of refrigerant leakage prevention control according to the embodiment of the present invention, and the control will be described below.

電源投入時からスタートして、凝縮温度センサ31および蒸発温度センサ32の温度を読み込み、凝縮温度が所定温度以上の場合にはフィルタ目詰まり制御へと移行する。ここで前記所定凝縮温度とは、図3に示す圧縮機使用基準範囲内の温度を指す。   Starting from when the power is turned on, the temperatures of the condensation temperature sensor 31 and the evaporation temperature sensor 32 are read. If the condensation temperature is equal to or higher than a predetermined temperature, the control shifts to filter clogging control. Here, the predetermined condensing temperature refers to a temperature within the compressor use reference range shown in FIG.

フィルタ目詰まり制御では、まず凝縮器フィルタ目詰まり警報により使用者に凝縮器フィルタの清掃を促す。さらに圧縮機19の回転数を現在よりもワンランクだけシフトダウンを行う。次に凝縮器目詰まり警報の警告時間を読み込み、規定時間以内の場合には上記フローに戻って再度凝縮温度および蒸発温度の読み込みを行う。凝縮器フィルタの目詰まり状態が解消されて凝縮温度が所定温度以下になった場合には、凝縮器フィルタ目詰まり警報を解除して、通常運転制御へと移行する。   In filter clogging control, the user is first prompted to clean the condenser filter by a condenser filter clogging alarm. Further, the rotation speed of the compressor 19 is shifted down by one rank from the current level. Next, the warning time of the condenser clogging alarm is read. If it is within the specified time, the flow returns to the above flow and the condensing temperature and evaporation temperature are read again. When the clogging state of the condenser filter is eliminated and the condensation temperature becomes equal to or lower than a predetermined temperature, the condenser filter clogging alarm is canceled and the routine proceeds to normal operation control.

また目詰まり警報の警告時間が規定時間以上経過した場合には、冷媒漏洩防止制御へと移行する。冷媒漏洩防止制御では、まず運転異常警報を警告し、圧縮機の回転数を規定回転数で連続運転を行い、さらに除霜運転の周期を延長する。またその後も凝縮温度の読み込みを続けて、凝縮温度が所定温度以下になった場合には、運転異常警報を解除して上記フローへもどる。   Further, when the warning time of the clogging alarm has exceeded a specified time, the control shifts to refrigerant leakage prevention control. In the refrigerant leakage prevention control, an operation abnormality alarm is first warned, the compressor is continuously operated at a specified speed, and the cycle of the defrosting operation is further extended. After that, the condensing temperature is continuously read, and when the condensing temperature falls below a predetermined temperature, the operation abnormality alarm is canceled and the flow returns to the above flow.

凝縮器20の吸込み部分に配置されているフィルタが目詰まり状態になった場合には、凝縮器の熱交換能力が低下して、冷却システム内に空気が流入した場合と同じく、凝縮器20の温度が異常に上昇する。そのため冷媒漏洩防止制御では、まず凝縮温度が所定温度以上になった場合に凝縮器フィルタ目詰まり警報により、使用者のフィルタ掃除を促しつつ、圧縮機を保護するために圧縮機の回転数を抑制している。   When the filter disposed in the suction portion of the condenser 20 is clogged, the heat exchange capacity of the condenser is reduced, and the air flow into the cooling system is the same as that of the condenser 20. The temperature rises abnormally. Therefore, in the refrigerant leakage prevention control, when the condensing temperature exceeds the predetermined temperature, the compressor filter clogging alarm is used to prompt the user to clean the filter while suppressing the compressor speed to protect the compressor. doing.

通常のフィルタ目詰まり状態であれば、フィルタ清掃に伴って凝縮温度が所定温度以下に復帰するが、蒸発器21の接続部などの低圧側で配管が損傷した場合には、凝縮温度は所定温度以下に戻らない。そのため凝縮器フィルタ目詰まり警報の警告時間が規定時間以上続いた場合には、冷媒漏洩と判断することができるので、冷媒漏洩防止制御へと移行している。   In the normal filter clogging state, the condensation temperature returns to a predetermined temperature or less as the filter is cleaned. However, if the piping is damaged on the low pressure side such as the connection portion of the evaporator 21, the condensation temperature is the predetermined temperature. It does not return to the following. Therefore, when the warning time of the condenser filter clogging alarm continues for a specified time or longer, it can be determined that the refrigerant is leaking, and therefore the control is shifted to the refrigerant leakage prevention control.

冷媒漏洩防止制御では、なるべく冷媒が漏洩せず、空気の流入も最小限に抑えることができる状態を維持するよう、冷媒圧力と大気圧力がバランスする蒸発圧力に調整している。さらに除霜運転時には多量に冷媒が漏洩してしまうため、除霜運転周期を延長している。ここで除霜運転を停止しない理由は、蒸発器の着霜による蒸発温度低下が想定され、その場合には空気を大量に吸い込む可能性があるため、適度に除霜運転をする必要があるためである。   In the refrigerant leakage prevention control, the evaporation pressure is adjusted so that the refrigerant pressure and the atmospheric pressure are balanced so as to maintain a state where the refrigerant does not leak as much as possible and the inflow of air can be minimized. Furthermore, since a large amount of refrigerant leaks during the defrosting operation, the defrosting operation cycle is extended. The reason why the defrosting operation is not stopped here is that a decrease in the evaporation temperature due to the frosting of the evaporator is assumed, and in that case, a large amount of air may be sucked, so it is necessary to perform the defrosting operation appropriately. It is.

また一方、冷媒漏洩していない状態でも、使用者にフィルタ清掃を長時間してもらえない場合には、冷媒漏洩防止制御になる可能性があるが、その場合には凝縮器フィルタを掃除した時点から通常制御に自動復帰することができる。また冷媒漏洩防止制御に入っても、冷媒漏洩警告表示ではなく、運転異常警告表示とすることにより、上記誤検知時にも使用者に対して必要以上の懸念をいだかせないことができる。   On the other hand, even if the refrigerant is not leaking, if the user does not clean the filter for a long time, there is a possibility that the refrigerant leakage prevention control may occur, but in that case, when the condenser filter is cleaned Can automatically return to normal control. Even if the refrigerant leakage prevention control is entered, the operation abnormality warning display is used instead of the refrigerant leakage warning display, so that the user can be kept from worrying more than necessary even during the erroneous detection.

以上のように、本発明にかかる冷凍冷蔵ユニットおよび冷蔵庫は、圧縮機の故障を極力回避することができるとともに、地球温暖化係数の小さい可燃性冷媒を用いながら高い安全性が確保でき、可燃性冷媒を用いた冷却機器に幅広くその技術を適用できる。   As described above, the refrigerator-freezer unit and the refrigerator according to the present invention can avoid the failure of the compressor as much as possible, and can ensure high safety while using a flammable refrigerant with a small global warming potential, and are flammable. The technology can be widely applied to cooling equipment using refrigerant.

本発明の実施の形態1による冷蔵庫の冷凍サイクル図Refrigeration cycle diagram of the refrigerator according to Embodiment 1 of the present invention 本発明の同実施の形態による圧縮機等の回転数制御図Rotational speed control diagram of a compressor or the like according to the embodiment of the present invention 本発明の同実施の形態による圧縮機の使用基準範囲を示す図The figure which shows the use reference | standard range of the compressor by the same embodiment of this invention 本発明の同実施の形態による冷媒漏洩防止制御のフロー図Flow chart of refrigerant leakage prevention control according to the embodiment of the present invention 従来の冷蔵庫の断面図Cross-sectional view of a conventional refrigerator

符号の説明Explanation of symbols

1 冷凍室
5 ユニットベース
19 能力可変型圧縮機
20 凝縮器
21 蒸発器
23 凝縮器ファン
24 蒸発器ファン
25 コントローラ
26 圧縮機制御手段
27 警報発信手段
31 凝縮温度センサ
32 蒸発温度センサ
33 庫内温度センサ
34 外気温センサ
DESCRIPTION OF SYMBOLS 1 Freezer compartment 5 Unit base 19 Capacitance variable type compressor 20 Condenser 21 Evaporator 23 Condenser fan 24 Evaporator fan 25 Controller 26 Compressor control means 27 Alarm transmission means 31 Condensing temperature sensor 32 Evaporation temperature sensor 33 Internal temperature sensor 33 34 Outside air temperature sensor

Claims (8)

冷却運転時の蒸発圧力が負圧となる冷媒と、回転数可変型の圧縮機と、凝縮器、絞り装置、蒸発器、庫外ファン、庫内ファンとを備え、前記蒸発器近傍の冷媒漏洩を検知する冷媒漏洩検知手段および前記回転数可変型の圧縮機の回転数を抑制する冷媒漏洩防止制御手段を備えたことを特徴とする冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 A refrigerant having a negative evaporating pressure during cooling operation, a compressor having a variable rotation speed, a condenser, a throttling device, an evaporator, an external fan, and an internal fan, and refrigerant leakage in the vicinity of the evaporator A refrigerating / refrigeration unit comprising: a refrigerant leakage detection means for detecting a refrigerant; and a refrigerant leakage prevention control means for suppressing the rotation speed of the variable speed compressor, and a refrigerator using the refrigerating / refrigeration unit. 凝縮温度を検出する凝縮温度検出手段と、蒸発温度を検出する蒸発温度検出手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が前記蒸発温度検出手段で検出した蒸発温度により予め設定しておいた温度より高い場合、冷媒漏洩と判断して回転数可変型の圧縮機の回転数を抑制する冷媒漏洩防止制御を備えたことを特徴とする請求項1に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 A condensing temperature detecting means for detecting the condensing temperature; and an evaporating temperature detecting means for detecting the evaporating temperature. The condensing temperature detected by the condensing temperature detecting means is preset by the evaporating temperature detected by the evaporating temperature detecting means. 2. The refrigeration unit and the refrigeration unit according to claim 1, further comprising a refrigerant leakage prevention control that determines that the refrigerant leaks when the temperature is higher than the set temperature and suppresses the rotation speed of the variable speed compressor. Refrigerator using refrigeration unit. 凝縮温度を検出する凝縮温度検出手段と、蒸発温度を検出する蒸発温度検出手段と、庫内温度を設定する庫内温度設定手段とを備え、前記凝縮温度検出手段で検出した凝縮温度が前記蒸発温度検出手段で検出した蒸発温度により予め設定しておいた温度より高い場合、冷媒漏洩と判断して前記庫内温度設定手段で庫内の設定温度を予め設定しておいた温度に上げることを特徴とする請求項1に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 A condensation temperature detecting means for detecting the condensation temperature; an evaporation temperature detecting means for detecting the evaporation temperature; and an internal temperature setting means for setting the internal temperature. The condensation temperature detected by the condensation temperature detecting means is the evaporation temperature. When the temperature is higher than the preset temperature by the evaporation temperature detected by the temperature detecting means, it is determined that the refrigerant has leaked, and the internal temperature setting means raises the preset temperature in the compartment to the preset temperature. The refrigerator using the refrigeration unit of Claim 1 characterized by the above-mentioned, and the said refrigeration unit. 凝縮温度検出手段を凝縮器の凝縮開始位置に設けたことを特徴とする請求項1から3のいずれか一項に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 The refrigerator using the freezing and refrigeration unit according to any one of claims 1 to 3, wherein the condensation temperature detecting means is provided at a condensation start position of the condenser. 圧縮機を規定の回転数で連続運転する冷媒漏洩防止制御を行うことを特徴とする請求項1から4のいずれか一項に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 The refrigerant leakage prevention control for continuously operating the compressor at a specified rotational speed is performed, and the refrigerator using the refrigerator-freezer unit and the refrigerator-freezer unit according to any one of claims 1 to 4. 通常制御よりも除霜運転周期を延長する冷媒漏洩防止制御を行うことを特徴とする請求項1から5のいずれか一項に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 6. The refrigerant refrigeration unit according to any one of claims 1 to 5 and a refrigerator using the refrigeration unit, wherein the refrigerant leakage prevention control is performed to extend the defrosting operation cycle more than the normal control. 冷媒漏洩防止制御の運転時間が規定時間以上続いた場合、使用者に警告する制御手段および警告する手段を設けたことを特徴とする請求項1から6のいずれか一項に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 7. The refrigeration unit according to claim 1, further comprising a control unit that warns a user and a unit that warns a user when the operation time of the refrigerant leakage prevention control continues for a predetermined time or more. And a refrigerator using the freezing and refrigeration unit. 冷媒漏洩防止制御中に凝縮温度が通常状態に戻った場合、冷媒漏洩防止制御から通常制御に自動復帰することを特徴とする請求項1から7のいずれか一項に記載の冷凍冷蔵ユニットおよび前記冷凍冷蔵ユニットを用いた冷蔵庫。 The refrigerating / refrigeration unit according to any one of claims 1 to 7, wherein when the condensing temperature returns to a normal state during the refrigerant leakage prevention control, the refrigerant leakage prevention control automatically returns to the normal control. Refrigerator using a refrigeration unit.
JP2004007726A 2003-06-27 2004-01-15 Freezing-refrigerating unit and refrigerator Pending JP2005201532A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004007726A JP2005201532A (en) 2004-01-15 2004-01-15 Freezing-refrigerating unit and refrigerator
CNB2004100618829A CN100516710C (en) 2003-06-27 2004-06-25 Refrigeration units and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004007726A JP2005201532A (en) 2004-01-15 2004-01-15 Freezing-refrigerating unit and refrigerator

Publications (1)

Publication Number Publication Date
JP2005201532A true JP2005201532A (en) 2005-07-28

Family

ID=34821284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004007726A Pending JP2005201532A (en) 2003-06-27 2004-01-15 Freezing-refrigerating unit and refrigerator

Country Status (1)

Country Link
JP (1) JP2005201532A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089278A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2010101619A (en) * 2008-10-24 2010-05-06 Thermo King Corp Control of chilled state of cargo
JP2011021851A (en) * 2009-07-17 2011-02-03 Toshiba Carrier Corp Refrigerating cycle
JP2015087078A (en) * 2013-11-01 2015-05-07 三浦工業株式会社 Food machine with vacuum cooling function
JP2015114091A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Refrigerator and control method for refrigerator
JP2016200349A (en) * 2015-04-13 2016-12-01 エイ・ジー・サービス株式会社 Refrigerant leakage detection system and refrigerant leakage detection method
WO2019058748A1 (en) * 2017-09-19 2019-03-28 ダイキン工業株式会社 Gas leak amount detection method and operating method of refrigerating apparatus
CN112378134A (en) * 2020-11-20 2021-02-19 珠海格力电器股份有限公司 Refrigerator and refrigerant leakage detection method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008089278A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
US9857114B2 (en) 2008-10-24 2018-01-02 Thermo King Corporation Controlling chilled state of a cargo
JP2010101619A (en) * 2008-10-24 2010-05-06 Thermo King Corp Control of chilled state of cargo
US8607582B2 (en) 2008-10-24 2013-12-17 Thermo King Corporation Controlling chilled state of a cargo
US8800307B2 (en) 2008-10-24 2014-08-12 Thermo King Corporation Controlling chilled state of a cargo
US10619902B2 (en) 2008-10-24 2020-04-14 Thermo King Corporation Controlling chilled state of a cargo
JP2011021851A (en) * 2009-07-17 2011-02-03 Toshiba Carrier Corp Refrigerating cycle
JP2015087078A (en) * 2013-11-01 2015-05-07 三浦工業株式会社 Food machine with vacuum cooling function
JP2015114091A (en) * 2013-12-16 2015-06-22 三菱電機株式会社 Refrigerator and control method for refrigerator
JP2016200349A (en) * 2015-04-13 2016-12-01 エイ・ジー・サービス株式会社 Refrigerant leakage detection system and refrigerant leakage detection method
WO2019058748A1 (en) * 2017-09-19 2019-03-28 ダイキン工業株式会社 Gas leak amount detection method and operating method of refrigerating apparatus
JP2019052819A (en) * 2017-09-19 2019-04-04 ダイキン工業株式会社 Gas leakage amount detection method and refrigeration apparatus operation method
CN112378134A (en) * 2020-11-20 2021-02-19 珠海格力电器股份有限公司 Refrigerator and refrigerant leakage detection method thereof
CN112378134B (en) * 2020-11-20 2021-09-14 珠海格力电器股份有限公司 Refrigerator and refrigerant leakage detection method thereof

Similar Documents

Publication Publication Date Title
CN101213410B (en) Refrigerating device
US7975497B2 (en) Refrigeration unit having variable performance compressor operated based on high-pressure side pressure
JP6192806B2 (en) Refrigeration equipment
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
JP5575191B2 (en) Dual refrigeration equipment
JP5249821B2 (en) Refrigeration apparatus and refrigerant leakage detection method for refrigeration apparatus
JP2014031982A (en) Binary refrigeration device
JP2004156858A (en) Refrigerating cycle device and control method thereof
TW574493B (en) Refrigerator
CN114353188A (en) Mobile air conditioner and control method thereof
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
KR20040103487A (en) Cooling apparatus
JP2004116794A (en) Refrigeration cycle
JP4315585B2 (en) Air conditioner
JP2004354019A (en) Cooling device
JP5558132B2 (en) Refrigerator and refrigeration apparatus to which the refrigerator is connected
JP2005201532A (en) Freezing-refrigerating unit and refrigerator
JP4096862B2 (en) Refrigeration unit and refrigerator
JP2006010126A (en) Freezing and refrigerating unit and refrigerator
JP4475660B2 (en) Refrigeration equipment
JP2018146142A (en) Air conditioner
CN100516710C (en) Refrigeration units and cold storage
JP2012149834A (en) Heat pump
JP5573526B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605