[go: up one dir, main page]

JP4093885B2 - Radar device with anomaly detection function - Google Patents

Radar device with anomaly detection function Download PDF

Info

Publication number
JP4093885B2
JP4093885B2 JP2003057534A JP2003057534A JP4093885B2 JP 4093885 B2 JP4093885 B2 JP 4093885B2 JP 2003057534 A JP2003057534 A JP 2003057534A JP 2003057534 A JP2003057534 A JP 2003057534A JP 4093885 B2 JP4093885 B2 JP 4093885B2
Authority
JP
Japan
Prior art keywords
peak
noise
noise peak
radar apparatus
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057534A
Other languages
Japanese (ja)
Other versions
JP2004264259A5 (en
JP2004264259A (en
Inventor
修 伊佐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2003057534A priority Critical patent/JP4093885B2/en
Priority to US10/792,618 priority patent/US7034745B2/en
Publication of JP2004264259A publication Critical patent/JP2004264259A/en
Publication of JP2004264259A5 publication Critical patent/JP2004264259A5/ja
Application granted granted Critical
Publication of JP4093885B2 publication Critical patent/JP4093885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、異常検出機能を備えたレーダ装置、特に、雑音ピークの検出機能を備えたFM−CWレーダ装置に関する。
【0002】
【従来の技術】
FM−CWレーダでは、上り傾斜の区間と下り傾斜の区間からなる三角波が繰り返す変調信号で周波数変調された送信波を前方へ放射し、ターゲットからの反射波と送信波の一部とでビート信号を生成する。下り傾斜区間におけるビート信号の周波数をfb (下)、上り傾斜区間におけるビート信号の周波数をfb (上)とすると、ターゲットとの距離に起因するビート周波数fr とターゲットの相対速度に起因するビート周波数fd
r =(fb (下)+fb (上))/2 (1)
d =(fb (下)−fb (上))/2 (2)
により算出される。これらからさらに、ターゲットの距離Rとターゲットの相対速度Vは、
R=c・fr ・T/4ΔF (3)
V=c・fd /2fo (4)
(ただし、c:光速;T:三角波の周期;ΔF:周波数変調幅(周波数偏移幅);fo :中心周波数)
で計算することができる。したがって、ビート信号をフーリエ変換することによる周波数ドメイン上のビート信号のスペクトルに現われるピークから各ターゲットに対応するfb (下)およびfb (上)の値を決定し、(1)〜(4)式により、ターゲットとの距離および相対速度が決定される。
【0003】
FM−CWレーダでは、発振器、ミキサなどの素子の出力もしくは入出力特性に周波数特性(周波数依存性)があると、送信波のFM変調により送信波やローカル信号はAM変調されることになり、FM−AM変換雑音が発生する。このFM−AM変換雑音がビート信号に含まれると、そのフーリエ変換結果に前述のfb (下)、fb (上)に相当するピークと共に雑音ピークとして現われ、信号検出精度を低下させたり、誤認識の原因となったりする。したがって、何らかの手段によりこのFM−AM変換雑音による雑音ピークをはじめとする雑音ピークを検出する必要がある。
【0004】
【発明が解決しようとする課題】
したがって本発明の目的は、雑音ピークの検出機能を備えたレーダ装置を安価に提供することにある。
【0005】
【課題を解決するための手段】
本発明の第1のレーダ装置は、周波数変調された送信波とその反射波のビート信号のフーリエ変換結果に現われるピークを解析することによって物標との距離および相対速度を計測する計測手段と、電気的もしくは機械的にビーム方向を走査する手段と、ビーム方向が走査される間のフーリエ変換結果の変化に基づき、雑音ピークを識別する手段とを具備する。
【0006】
本発明の第2のレーダ装置は、周波数変調された送信波とその反射波のビート信号のフーリエ変換結果に現われるピークを解析することによって物標との距離および相対速度を計測する計測手段と、送信波の周波数変調を実質的に停止する手段と、周波数変調が実質的に停止されている間に所定の閾値よりも高い周波数の位置に出現するピークを雑音ピークと識別する手段とを具備する。
【0007】
【発明の実施の形態】
図1は本発明の一実施形態に係る異常検出機能を備えたFM−CWレーダ装置の構成を示す。
【0008】
図1において、変調信号発生器10はCPU12からの指令により、上り傾斜の区間と下り傾斜の区間からなる三角波が繰り返す変調信号を発生する。電圧制御発振器14はこの三角波で周波数変調された連続信号からなる送信波を生成する。電圧制御発振器14の出力の一部は分岐手段16において分岐されて受信側へ供給され、大部分はアンテナ18から前方へ放射される。前方に存在するターゲットで反射された反射波がアンテナ20で受信され、ミキサ22において送信波の一部と混合されてビート信号が生成される。ミキサ22において生成されたビート信号はアンプ24で増幅され、フィルタ26で不要成分が除去され、A/D変換器28でディジタル信号に変換された後、CPU12へ供給される。CPU12ではディジタル化されたビート信号に高速フーリエ変換(FFT)の演算を施して周波数ドメインに変換した後、例えば前述の式(1)〜(4)に従って、各ターゲットとの距離Rおよび相対速度Vを算出する。
【0009】
車載用のFM−CWレーダでは、図2に示すようにスイッチ30と32で送信アンテナ18と受信アンテナ20の方向を電子的に走査するかまたはモータを使って機械的に走査することによってターゲットの横位置X(=Rsinθ)を決定できるものがある。
【0010】
この場合に、図3に示すように、ターゲットからの反射による正常なピークでは、角度θを走査するとともにターゲットの方向で最大となり、その前後で減少する、特有のパターンを呈する。一方、FM−AM変換雑音などを原因とする雑音ピークでは、図4に示すように、ピークのレベルは角度θによらずほぼ一定値となる。そこで、閾値を図に示すように定め、角度θを走査したときに常に閾値以上のレベルを有するピークあるいは一定の割合以上で閾値を超えるピークを雑音ピークと判定する。
【0011】
この判定処理は、CPU12(図1)に実行させるソフトウェアプログラムとして実現することができる。
【0012】
なお、FFT処理の結果は実部(Re)と虚部(Im)からなる複素数として出力され、√(Re2+Im2)によりレベルの値が、tan-1(Im/Re)により位相の値が計算される。前述のように、角度θを走査したときにレベルが実質的に変化しないことをもって雑音ピークと判定する代わりとして、そのピークの周波数における位相が角度θを走査しても実質的に変化しないものを雑音ピークと判定するようにしても良い。
【0013】
特にFM−AM変換雑音の検出を主眼とする場合、FM−AM変換雑音は低周波数の特定の領域に現われるので、そのような特定の領域に現われるピークのみを判定の対象としても良い。また、通常の使用時にはそのような特定の領域のアンプのゲインが低く設定されている場合にはその領域または全体のゲインを通常時よりも高くすれば精度の良い判定ができる。このゲインの変更は、使用するアンプを切り換えることにより、またはAGCアンプの設定を変更することにより、実現できる。或いはまた、スペクトル内のピークの検出の閾値を、異常判定時に通常時よりも低く設定することにより、異常ピークの検出精度が向上する。スペクトル上で検出されるピークのレベルが高い場合に、レベルが飽和してしまって、ターゲットに基づくピークにも変化がなくなる場合があるが、そのときは逆にアンプのゲインを下げる。
【0014】
上記の判定処理により雑音ピークが検出されるとき、その後数回(数スキャン分)の検出処理を行ない、任意の回数分連続して雑音ピークが検出された場合に、そのピークを雑音と判定することが望ましい。
【0015】
判定処理により雑音ピークが検出された場合、その後数回(数スキャン分)の検出処理を行ない、その検出頻度が任意の値より大きかった場合に、そのピーク雑音と判定するようにしても良い。
【0016】
通常処理において、雑音判定処理で雑音と判定されたピークと同等の周波数帯にピークが存在した場合にそのピークを雑音と判定するようにしても良い。
【0017】
CPU12から変調信号発生器10(図1、図4)の指令によりFM変調を停止するかまたは変調幅を限りなく小さくすると、フーリエ変換結果のスペクトル上には相対速度に基づくドップラー周波数のピークのみが現われる。この相対速度の上限を400km/hと見積ってもその周波数は40kHz 以下となる。したがって、このときに例えば50kHz 以上の領域に存在するピークは雑音ピークとみなすことができる。この様にして、FM−AM変換ノイズ以外の雑音ピークを検出することができる。
【0018】
【発明の効果】
以上述べたように本発明によれば、雑音ピークの検出機能を備えたレーダ装置が提供される。
【図面の簡単な説明】
【図1】本発明が適用されるFM−CWレーダの構成を示す図である。
【図2】放射方向の電子的走査の機能を備えたFM−CWレーダを示す図である。
【図3】放射方向を走査したときの正常ピークを表わす図である。
【図4】放射方向を走査したときの異常ピークを表わす図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radar apparatus having an abnormality detection function, and more particularly to an FM-CW radar apparatus having a noise peak detection function.
[0002]
[Prior art]
In the FM-CW radar, a transmission wave that is frequency-modulated with a modulation signal in which a triangular wave consisting of an up-slope section and a down-slope section repeats is radiated forward, and a beat signal is generated between the reflected wave from the target and a part of the transmission wave. Is generated. When the frequency of the beat signal in the downward slope section is f b (lower) and the frequency of the beat signal in the upward slope section is f b (up), the beat frequency fr and the target relative speed are caused by the distance to the target. The beat frequency f d to be played is f r = (f b (lower) + f b (upper)) / 2 (1)
f d = (f b (bottom) −f b (top)) / 2 (2)
Is calculated by In addition, the target distance R and the target relative velocity V are
R = c · f r · T / 4ΔF (3)
V = c · f d / 2f o (4)
(Where c: speed of light; T: period of triangular wave; ΔF: frequency modulation width (frequency shift width); f o : center frequency)
Can be calculated with Therefore, the values of f b (lower) and f b (upper) corresponding to each target are determined from the peaks appearing in the spectrum of the beat signal on the frequency domain by Fourier transforming the beat signal, and (1) to (4) ), The distance to the target and the relative speed are determined.
[0003]
In FM-CW radar, if the output or input / output characteristics of elements such as an oscillator and a mixer have frequency characteristics (frequency dependence), the transmission wave and local signal are AM-modulated by FM modulation of the transmission wave. FM-AM conversion noise occurs. When this FM-AM conversion noise is included in the beat signal, it appears as a noise peak together with the peaks corresponding to the above-mentioned f b (lower) and f b (upper) in the Fourier transform result, reducing the signal detection accuracy, It may cause misrecognition. Therefore, it is necessary to detect a noise peak including a noise peak due to the FM-AM conversion noise by some means.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a radar apparatus having a noise peak detection function at low cost.
[0005]
[Means for Solving the Problems]
The first radar apparatus of the present invention comprises a measuring means for measuring a distance and a relative velocity with respect to a target by analyzing a peak appearing in a Fourier transform result of a frequency-modulated transmission wave and a beat signal of the reflected wave, Means for electrically or mechanically scanning the beam direction and means for identifying a noise peak based on a change in a Fourier transform result while the beam direction is scanned.
[0006]
The second radar apparatus of the present invention comprises a measuring means for measuring a distance and a relative velocity with respect to a target by analyzing a peak appearing in a Fourier transform result of a frequency-modulated transmission wave and a beat signal of the reflected wave, Means for substantially stopping frequency modulation of the transmitted wave, and means for discriminating a peak appearing at a frequency higher than a predetermined threshold as a noise peak while the frequency modulation is substantially stopped. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration of an FM-CW radar apparatus having an abnormality detection function according to an embodiment of the present invention.
[0008]
In FIG. 1, a modulation signal generator 10 generates a modulation signal in which a triangular wave consisting of an up-slope section and a down-slope section repeats in response to a command from the CPU 12. The voltage controlled oscillator 14 generates a transmission wave composed of a continuous signal frequency-modulated with this triangular wave. Part of the output of the voltage controlled oscillator 14 is branched by the branching means 16 and supplied to the receiving side, and most of the output is radiated forward from the antenna 18. The reflected wave reflected by the target existing ahead is received by the antenna 20 and mixed with a part of the transmission wave in the mixer 22 to generate a beat signal. The beat signal generated in the mixer 22 is amplified by the amplifier 24, unnecessary components are removed by the filter 26, converted into a digital signal by the A / D converter 28, and then supplied to the CPU 12. The CPU 12 performs a Fast Fourier Transform (FFT) operation on the digitized beat signal and converts it into the frequency domain, and then, for example, according to the above-described formulas (1) to (4), the distance R to each target and the relative velocity V Is calculated.
[0009]
In the FM-CW radar for in-vehicle use, as shown in FIG. 2, the direction of the transmitting antenna 18 and the receiving antenna 20 is electronically scanned by switches 30 and 32 or mechanically scanned by using a motor. Some can determine the lateral position X (= Rsin θ).
[0010]
In this case, as shown in FIG. 3, the normal peak due to reflection from the target exhibits a unique pattern that scans the angle θ, becomes maximum in the direction of the target, and decreases before and after that. On the other hand, at a noise peak caused by FM-AM conversion noise or the like, as shown in FIG. 4, the level of the peak becomes a substantially constant value regardless of the angle θ. Therefore, the threshold value is determined as shown in the figure, and a peak always having a level equal to or higher than the threshold value when the angle θ is scanned or a peak exceeding the threshold value at a certain rate or more is determined as a noise peak.
[0011]
This determination process can be realized as a software program to be executed by the CPU 12 (FIG. 1).
[0012]
The result of the FFT processing is output as a complex number composed of a real part (Re) and an imaginary part (Im), the level value is represented by √ (Re 2 + Im 2 ), and the phase value is represented by tan −1 (Im / Re). Is calculated. As described above, instead of determining the noise peak as the level does not substantially change when the angle θ is scanned, the phase at the frequency of the peak does not substantially change even when the angle θ is scanned. You may make it determine with a noise peak.
[0013]
In particular, when the focus is on the detection of FM-AM conversion noise, the FM-AM conversion noise appears in a specific region at a low frequency, and therefore only the peak appearing in such a specific region may be determined. In addition, when the gain of the amplifier in such a specific area is set to be low during normal use, it is possible to make a highly accurate determination by increasing the gain in that area or the entire area as compared with the normal gain. This gain change can be realized by switching the amplifier to be used or by changing the setting of the AGC amplifier. Alternatively, the detection accuracy of the abnormal peak is improved by setting the threshold value for detecting the peak in the spectrum to be lower than the normal time at the time of abnormality determination. When the level of the peak detected on the spectrum is high, the level may be saturated and the peak based on the target may not change, but in that case, the gain of the amplifier is lowered.
[0014]
When a noise peak is detected by the above determination processing, detection processing is performed several times thereafter (several scans), and when a noise peak is detected for an arbitrary number of times, the peak is determined as noise. It is desirable.
[0015]
When a noise peak is detected by the determination processing, detection processing is performed several times (for several scans), and when the detection frequency is larger than an arbitrary value, the peak noise may be determined.
[0016]
In normal processing, when a peak exists in a frequency band equivalent to the peak determined as noise in the noise determination processing, the peak may be determined as noise.
[0017]
When the FM modulation is stopped by the instruction of the modulation signal generator 10 (FIGS. 1 and 4) from the CPU 12 or the modulation width is made extremely small, only the peak of the Doppler frequency based on the relative speed appears on the spectrum of the Fourier transform result. Appear. Even if the upper limit of the relative speed is estimated to be 400 km / h, the frequency is 40 kHz or less. Therefore, at this time, for example, a peak existing in a region of 50 kHz or higher can be regarded as a noise peak. In this way, noise peaks other than FM-AM conversion noise can be detected.
[0018]
【The invention's effect】
As described above, according to the present invention, a radar apparatus having a noise peak detection function is provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an FM-CW radar to which the present invention is applied.
FIG. 2 is a diagram showing an FM-CW radar having a function of electronic scanning in a radial direction.
FIG. 3 is a diagram showing a normal peak when scanning in the radiation direction.
FIG. 4 is a diagram showing an abnormal peak when scanning in the radiation direction.

Claims (11)

周波数変調された送信波とその反射波のビート信号のフーリエ変換結果に現れるピークを解析することによって物標との距離および相対速度を計測する計測手段と、
電気的もしくは機械的にビーム方向を走査する手段と、
ビーム方向が走査される間のフーリエ変換結果において、レベルが常に閾値以上であるかあるいは一定の割合以上で閾値を超えるピークまたは位相が変化しないピークを雑音ピークと判定することによって、FM−AM変換雑音によってフーリエ変換結果にピークとして現れる雑音ピークを識別する手段とを具備する、異常検出機能を備えたレーダ装置。
A measuring means for measuring a distance and a relative velocity with respect to a target by analyzing a peak appearing in a Fourier transform result of a beat signal of the frequency-modulated transmission wave and its reflected wave;
Means for electrically or mechanically scanning the beam direction;
In the Fourier transform results between the beam direction is scanned by determining the peak peak or the phase does not change more than a threshold level is always or a percentage above a threshold or more as noise peaks, FM-AM A radar apparatus having an abnormality detection function, comprising: means for identifying a noise peak that appears as a peak in a Fourier transform result by conversion noise.
前記雑音ピーク識別手段は、所定の周波数領域を雑音ピーク判定の対象とする請求項1記載のレーダ装置。  The radar apparatus according to claim 1, wherein the noise peak identification unit sets a predetermined frequency region as a noise peak determination target. 前記雑音ピーク識別手段は、所定の周波数領域のアンプ特性を変更して雑音ピークの判定を行なう請求項1または2のいずれか1項記載のレーダ装置。  3. The radar device according to claim 1, wherein the noise peak identification unit determines a noise peak by changing an amplifier characteristic in a predetermined frequency region. 4. 前記雑音ピーク識別手段は、アンプ利得が異なるようにアンプ特性を変更して雑音ピークの判定を行う請求項3記載のレーダ装置。  The radar apparatus according to claim 3, wherein the noise peak identification unit determines a noise peak by changing an amplifier characteristic so that an amplifier gain is different. 前記雑音ピーク識別手段は、ピーク検出の閾値を変更して雑音ピークの判定を行なう請求項1〜4のいずれか1項記載のレーダ装置。  The radar apparatus according to any one of claims 1 to 4, wherein the noise peak identification means determines a noise peak by changing a threshold value for peak detection. 前記雑音ピーク識別手段は、使用するアンプを切り換えることにより、アンプ特性を変更する請求項3または4記載のレーダ装置。  The radar apparatus according to claim 3, wherein the noise peak identification unit changes an amplifier characteristic by switching an amplifier to be used. 前記複雑ピーク識別手段は、AGCアンプの設定を変更することにより、アンプ特性を変更する請求項3または4記載のレーダ装置。  The radar apparatus according to claim 3 or 4, wherein the complex peak identifying means changes an amplifier characteristic by changing an AGC amplifier setting. 前記雑音ピーク識別手段は、検出されたピークのレベルが所定値よりも高いとき、アンプの利得を下げて雑音ピークの判定を行なう請求項1〜7のいずれか1項記載のレーダ装置。  The radar apparatus according to claim 1, wherein the noise peak identification unit determines a noise peak by lowering a gain of an amplifier when a level of a detected peak is higher than a predetermined value. 前記雑音ピーク識別手段は、複数回連続して雑音ピークと判定されるピークを最終的に雑音ピークと判定する請求項1〜8のいずれか1項記載のレーダ装置。  The radar apparatus according to any one of claims 1 to 8, wherein the noise peak identifying means finally determines a peak determined to be a noise peak continuously a plurality of times as a noise peak. 前記雑音ピーク識別手段は、所定の頻度以上で雑音ピークと判定されるピークを最終的に雑音ピークと判定する請求項1〜8のいずれか1項記載のレーダ装置。  The radar apparatus according to any one of claims 1 to 8, wherein the noise peak identifying means finally determines a peak determined to be a noise peak at a predetermined frequency or more as a noise peak. 前記雑音ピーク識別手段は、雑音ピークと判定されたピークと同等の周波数帯に存在するピークを雑音ピークと判定する請求項1〜10のいずれか1項記載のレーダ装置。  The radar device according to any one of claims 1 to 10, wherein the noise peak identifying unit determines that a peak existing in a frequency band equivalent to a peak determined to be a noise peak is a noise peak.
JP2003057534A 2003-03-04 2003-03-04 Radar device with anomaly detection function Expired - Fee Related JP4093885B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003057534A JP4093885B2 (en) 2003-03-04 2003-03-04 Radar device with anomaly detection function
US10/792,618 US7034745B2 (en) 2003-03-04 2004-03-03 Radar apparatus equipped with abnormality detection function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057534A JP4093885B2 (en) 2003-03-04 2003-03-04 Radar device with anomaly detection function

Publications (3)

Publication Number Publication Date
JP2004264259A JP2004264259A (en) 2004-09-24
JP2004264259A5 JP2004264259A5 (en) 2005-09-08
JP4093885B2 true JP4093885B2 (en) 2008-06-04

Family

ID=33120932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057534A Expired - Fee Related JP4093885B2 (en) 2003-03-04 2003-03-04 Radar device with anomaly detection function

Country Status (2)

Country Link
US (1) US7034745B2 (en)
JP (1) JP4093885B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4093885B2 (en) * 2003-03-04 2008-06-04 富士通テン株式会社 Radar device with anomaly detection function
US7312745B2 (en) * 2004-01-07 2007-12-25 Murata Manufacturing Co., Ltd Radar
JP4828144B2 (en) * 2005-03-29 2011-11-30 三菱電機株式会社 Millimeter wave radar module
WO2006120823A1 (en) 2005-05-13 2006-11-16 Murata Manufacturing Co., Ltd. Radar
EP1881344A4 (en) * 2005-05-13 2011-03-09 Murata Manufacturing Co Radar
JP2007178183A (en) * 2005-12-27 2007-07-12 Mazda Motor Corp Obstacle detection device for vehicle
WO2008094172A2 (en) * 2006-06-01 2008-08-07 University Of Florida Research Foundation, Inc. Radar microsensor for detection, tracking, and classification
US7538718B2 (en) * 2007-01-30 2009-05-26 Tdk Corporation Radar system
JP2009222472A (en) * 2008-03-14 2009-10-01 Fujitsu Ten Ltd Object recognition device and radar device
DE102009027368B4 (en) * 2009-07-01 2024-07-25 Robert Bosch Gmbh Mixer monitoring
KR101199169B1 (en) * 2011-01-12 2012-11-07 주식회사 만도 Method and radar apparatus for detecting target object
JP7128000B2 (en) * 2018-03-16 2022-08-30 株式会社デンソーテン radar equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1351107A (en) * 1953-10-23 1974-04-24 Emi Ltd Range sensitive devices
US5164784A (en) * 1992-01-17 1992-11-17 The Boeing Company CW doppler lidar
JP3639056B2 (en) * 1996-08-16 2005-04-13 富士通株式会社 Radar device failure determination device
JP3480486B2 (en) * 1998-08-18 2003-12-22 トヨタ自動車株式会社 FM-CW radar device
JP3788322B2 (en) * 2001-05-30 2006-06-21 株式会社村田製作所 Radar
JP4408638B2 (en) * 2003-03-04 2010-02-03 富士通テン株式会社 Radar device with anomaly detection function
JP4093885B2 (en) * 2003-03-04 2008-06-04 富士通テン株式会社 Radar device with anomaly detection function

Also Published As

Publication number Publication date
US7034745B2 (en) 2006-04-25
JP2004264259A (en) 2004-09-24
US20040222919A1 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4120679B2 (en) Radar
US7221309B2 (en) FM-CW radar system
JP4678945B2 (en) Scanning radar stationary object detection method
JP3938686B2 (en) Radar apparatus, signal processing method and program
JP4093885B2 (en) Radar device with anomaly detection function
US9372261B2 (en) Radar device and method of processing signal
JP4408638B2 (en) Radar device with anomaly detection function
JP3045977B2 (en) FM-CW radar device
JP2008232833A (en) Noise floor intensity calculation method and fmcw radar
US7427946B2 (en) Object sensing apparatus
JP2000241538A (en) Radar equipment
JP5697904B2 (en) Radar apparatus and detection method
JP2010112937A (en) Signal processing device and radar device
US7230565B2 (en) Radar
JP3675756B2 (en) Radar unnecessary peak detector
JP2004264259A5 (en)
JP2885528B2 (en) Warning distance control device
JP2009058335A (en) Radar device and relative distance detection method
JP3304792B2 (en) In-vehicle radar device
WO2023008471A1 (en) Vehicle radar device
JP3496606B2 (en) Radar equipment
JP2004069467A (en) Vehicle object detection device
JP4225804B2 (en) Radar equipment
JP3600074B2 (en) FM-CW radar device
JP2005106473A (en) Object detection device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4093885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees