[go: up one dir, main page]

JP4077997B2 - Manufacturing method of aluminum alloy hard plate for can lid - Google Patents

Manufacturing method of aluminum alloy hard plate for can lid Download PDF

Info

Publication number
JP4077997B2
JP4077997B2 JP24959299A JP24959299A JP4077997B2 JP 4077997 B2 JP4077997 B2 JP 4077997B2 JP 24959299 A JP24959299 A JP 24959299A JP 24959299 A JP24959299 A JP 24959299A JP 4077997 B2 JP4077997 B2 JP 4077997B2
Authority
JP
Japan
Prior art keywords
rolling
pass
final
aluminum alloy
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24959299A
Other languages
Japanese (ja)
Other versions
JP2001073106A (en
Inventor
尚幸 佐久間
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP24959299A priority Critical patent/JP4077997B2/en
Publication of JP2001073106A publication Critical patent/JP2001073106A/en
Application granted granted Critical
Publication of JP4077997B2 publication Critical patent/JP4077997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
この発明はアルミニウム缶蓋材の製造方法に関するものであり、特に果汁やコーヒー、紅茶の如く炭酸を含まない負圧缶用のステイオンタブ方式の缶蓋に適したアルミニウム缶蓋材として、強度の異方性が小さくかつ耳率が低く、またリサイクル性にも優れたアルミニウム缶蓋材の製造方法に関するものである。
【0002】
【従来の技術】
一般にステイオンタブ方式のアルミニウム缶蓋材には、高強度と良好な成形性を有し、かつ開缶性(スコア部の引き裂き性)も良好でまたリベット加工性も優れ、さらに表面品質も優れていることなどが要求される。従来この種のアルミニウム缶蓋材としては、5052合金や5182合金などの5000系合金(Al−Mg系合金、Al−Mg−Mn系合金)が多用されている。特に果汁やコーヒー、紅茶の如く炭酸を含まない飲料缶、すなわち負圧缶用の缶蓋材としては、Al−Mg系である5052合金が使用されることが多い。
【0003】
【発明が解決しようとする課題】
ところで缶蓋を缶胴に取付けるにあたっては、缶胴の縁部に缶蓋を巻き締め加工する必要があるが、缶蓋材の深絞り耳率が高い場合、この巻き締め加工において巻き締め不良が生じるおそれがある。また缶蓋は、一般に開缶のためにスコア加工が施されており、特にステイオンタブ方式の缶蓋ではスコアの加工率が大きいため、圧延方向に対する各方向の最大耐力差が大きい場合、すなわち強度の異方性が大きい場合には、缶を落下させた際の衝撃によってスコア部分の強度の低い箇所から割れが生じて、内容物が漏れ出してしまう危険がある。
【0004】
しかしながら従来のアルミニウム缶蓋材においては、このような耳率および強度の異方性について充分な検討がなされておらず、そのため巻き締め不良の発生を確実に防止し、また缶の落下衝撃時の割れ発生を確実かつ安定して防止することが未だ困難であった。
【0005】
特に最近では、消費量の多い5182合金缶蓋材や3004合金缶胴材のスクラップを利用して負圧缶用の缶蓋を製造することが望まれており、これらの5182合金や3004合金はMnを含有するところから、これらのスクラップ材を負圧缶用の缶蓋として利用するためには、負圧缶用の缶蓋材としてもMnを含有する合金を使用することが望まれており、その開発のための実験も種々行なわれているが、前述のような耳率および強度の異方性に関しては充分な配慮がなされていなかったのが実情である。
【0006】
この発明は以上の事情を背景としてなされたもので、特にステイオンタブ方式の負圧缶用の缶蓋に適したアルミニウム缶蓋材として、耳率が安定して低く、かつ強度の異方性も少なく、さらにリサイクル性にも優れた缶蓋材を製造する方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
前述のような課題を解決するため、本発明者等が鋭意実験検討を重ねた結果、缶蓋材のアルミニウム合金の成分系を、基本的にはAl−Mg−Mn系とし、かつMg量、Mn量およびFe量、Si量を適切に設定するとともに、Fe量、Si量、Mn量の相互の関係を適切に規制し、しかも製造プロセス条件、特に熱間圧延条件を厳密に規制し、併せて熱間圧延後の中間焼鈍条件および最終冷間圧延条件を適切に規制することをによって、耳率が安定して低く、かつその他の缶蓋材に要求される性能をも満たし得る缶蓋材が得られることを見出し、さらには缶蓋材製造プロセスにおける最終焼鈍条件を適切に規制することによって、強度の異方性を安定して少なくし得ることを見出し、この発明をなすに至った。
【0008】
具体的には、請求項1の発明の缶蓋用アルミニウム合金硬質板の製造方法は、Mg0.8〜3.0%、Mn0.01〜1.2%、Fe0.10〜0.50%、Si0.05〜0.40%を含有し、かつ{Fe量(%)+Mn量(%)}/Si量(%)が20以下であり、残部がAlおよび不可避的不純物よりなる合金を素材とし、その鋳塊を熱間圧延するにあたり、熱間圧延開始温度を400〜580℃の範囲内とし、かつ最終パスから2パス前のパスにおける圧延速度を50m/分以上、最終パスから1パス前のパスにおける圧延速度を100m/分以上、最終パスにおける圧延速度を150m/分以上とし、さらに最終パスにおける圧下率を20〜70%の範囲内として、220〜370℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、320〜550℃の範囲内の温度に加熱して保持なしもしくは10分以下の保持を行なう連続焼鈍による中間焼鈍を施し、さらに40%以上の圧延率で最終冷間圧延を行なうことを特徴とするものである。
【0009】
また請求項2の発明の缶蓋用アルミニウム合金硬質板の製造方法は、Mg0.8〜3.0%、Mn0.01〜1.2%、Fe0.10〜0.50%、Si0.05〜0.40%を含有し、かつ{Fe量(%)+Mn量(%)}/Si量(%)が20以下であり、残部がAlおよび不可避的不純物よりなる合金を素材とし、その鋳塊を熱間圧延するにあたり、熱間圧延開始温度を400〜580℃の範囲内とし、かつ最終パスから2パス前のパスにおける圧延速度を50m/分以上、最終パスから1パス前のパスにおける圧延速度を100m/分以上、最終パスにおける圧延速度を150m/分以上とし、さらに最終パスにおける圧下率を20〜70%の範囲内として、220〜370℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、平均昇温速度10〜50℃/時間で220〜500℃の範囲内の温度に加熱して0.5〜24時間保持し、10〜50℃/時間の平均冷却速度で冷却するバッチ焼鈍による中間焼鈍を施し、さらに40%以上の圧延率で最終冷間圧延を行なうことを特徴とするものである。
【0010】
さらに請求項3の発明の缶蓋用アルミニウム合金硬質板の製造方法は、請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、前記熱間圧延と中間焼鈍との間に、圧延率5〜40%の1次冷間圧延を施すことを特徴とするものである。
【0011】
そしてまた請求項4の発明の缶蓋用アルミニウム合金硬質板の製造方法は、請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、前記最終冷間圧延の後、さらに100〜240℃の範囲内の温度で10時間以下加熱保持する最終焼鈍を施すことを特徴とするものである。
【0012】
さらに請求項5の発明の缶蓋用アルミニウム合金硬質板の製造方法は、請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、素材の合金として、前記各成分元素のほか、さらにCu0.01〜0.50%、Cr0.05〜0.50%のうちから選ばれた1種以上を含有する合金を用いることを特徴とするものである。
【0013】
【発明の実施の形態】
先ずこの発明で使用するアルミニウム合金の成分限定理由を説明する。
【0014】
Mg:
Mgの添加は、それ自体の固溶による強度向上に効果があり、また転位との相互作用が大きいため、加工硬化による強度向上が期待でき、したがって缶蓋材として必要な強度を得るためにMgは不可欠な元素である。但し、Mg量が0.8%未満では缶蓋材として充分な強度を得ることができず、一方3.0%を越えれば生産コストが高くなる。そこでMg量は0.8〜3.0%の範囲内とした。
【0015】
Mn:
Mnの添加は、スコア部分の引き裂き性を向上させて開缶性を向上させるAl−Mn−(Si)、Al−Fe−Mn−(Si)系晶出物の生成および強度向上に大きな効果をもたらす。Mn量が0.01%未満では、これらの効果が小さく、一方1.2%を越えれば、Al−Mn−(Si)やAl−Fe−Mn−(Si)系晶出物が粗大化して加工性の低下を招く。そこでMn量は、0.01〜1.2%の範囲内とした。またこのようにMnを添加した合金系とすることにより、5182合金缶蓋材や3004合金缶胴材などのMnを含有する系の合金のスクラップ材を使用可能とし、リサイクル性を向上させることができる。
【0016】
Fe:
Feの添加は、スコア部分の引き裂き性を向上させて開缶性を向上させるAl−Fe−Mn−(Si)系晶出物の生成に効果を及ぼす。またFeは、缶蓋材として必要な成形性を向上させる結晶粒微細化に大きな効果を示し、Feの添加量が多いほど結晶粒は微細化される。但し、Fe量が0.10%未満ではその効果は現れず、一方0.50%を越えれば晶出物が粗大化してしまい、成形性を低下させる。そこでFe量は0.10〜0.50%の範囲内とした。
【0017】
Si:
Siによって形成されるMg2 Si晶出物も、スコア部分の引き裂き性を向上させて開缶性を向上させる効果がある。但しSi量が0.05%未満ではその効果が現れず、一方0.40%を越えれば巨大晶出物が生成されるとともに晶出物生成数が多くなり過ぎ、成形性の低下を引き起こす。そこでSi量は0.05〜0.40%の範囲内とした。なおSiは通常のアルミニウム合金において不可避的不純物として含有される元素であり、この発明の方法で用いる合金においても0.05%未満のSiを不純物として含有することは許容される。
【0018】
{Fe量(%)+Mn量(%)}/Si量(%)≦20:
Fe量およびSi量がこの条件を満たすことによって、Al−Fe−Mn−Si晶出物の生成を促進し、晶出物サイズを小径化することができる。晶出物サイズが小さくなれば、晶出物の周辺から成長するランダム方位粒の密度が低下し、そのため0°−90°耳の生成に寄与する立方体方位粒を優先的に成長させ、その結果として製品板の耳率を低く抑えることができる。そこで{Fe量(%)+Mn量(%)}/Si量(%)の値を20以下と規定した。
【0019】
さらにこの発明で用いる合金では、強度のより一層の向上のためにCuおよびCrの一方または双方を添加しても良い。これらの限定理由を次に示す。
【0020】
Cu:
Cuの添加は強度向上に有効であり、そこで缶蓋材のより一層の強度向上を図る場合にはCuを添加しても良い。但し、Cuを過剰に添加すれば、缶蓋材として重要な特性である耐食性の低下を招くおそれがあり、またCuを添加した場合、加工硬化特性が大きくなるため、成形性の低下を招くことがある。したがってCu添加量は、0.01〜0.50%の範囲内とした。
【0021】
Cr:
Crの添加も強度向上に有効であり、より一層の強度向上を図る場合にはCrを添加しても良い。但しCr量が0.05%未満ではその効果が現れず、一方0.50%を越えれば巨大晶出物が生成されるとともに晶出物の生成数が多くなり過ぎ、成形性の低下を招く。そこでCr添加量は0.05〜0.50%の範囲内とした。
【0022】
以上の各元素のほかはAlおよび不可避的不純物とすれば良いが、通常のアルミニウム合金では鋳塊組織の微細化のために微量のTiを添加することがあり、この発明の方法で用いる合金についても、微量のTiを添加することは許容される。但し、Tiの添加量が多ければ鋳塊組織が羽毛状晶になりにくく、粒状晶が生成されやすくなる。そして粒状晶の場合には、羽毛状晶の場合よりも粒界に晶出する晶出物を粗大にさせてしまうおそれがあり、またTi量が多くなれば巨大晶出物を生成して成形性を低下させるおそれがある。そこでTi量は0.03%以下とすることが望ましい。
【0023】
次にこの発明の方法における製造工程について説明する。
【0024】
先ず、前述の成分組成のアルミニウム合金を常法に従って溶製し、DC鋳造法などの常法に従って鋳造する。鋳塊に対しては、均質化処理を行なってから熱間圧延のための加熱を行なうか、または均質化処理を兼ねて熱間圧延のための加熱を行なう。これらの加熱の条件は特に限定されるものではなく、常法に従えば良いが、熱間圧延直前の加熱は、熱間圧延開始温度以上でかつ溶融が生じない温度で行なうことはもちろんである。
【0025】
熱間圧延の条件は最終板の性能、特に耳率に大きな影響を及ぼし、したがって次の(1)〜(4)の条件に従って厳密に規制する必要がある。
(1)熱間圧延開始温度:400〜580℃
(2)各パス前の圧延速度:
最終パスから数えて2パス前のパスにおける圧延速度;50m/分以上
最終パスから数えて1パス前のパスにおける圧延速度;100m/分以上
最終パスの圧延速度;150m/分以上
(3)最終パスの圧下率:20〜70%
(4)熱間圧延終了温度:220〜370℃
【0026】
これらの(1)〜(4)の熱間圧延条件を定めた理由は次の通りである。
【0027】
熱間圧延の開始温度が400℃未満では、熱間圧延中の回復、再結晶が抑制されるため、板のエッジ割れを生じてしまうおそれがあり、一方580℃を越える高温で熱間圧延を開始すれば、板の表面品質が低下してしまう。したがって熱間圧延開始温度は400〜580℃の範囲内の温度とする必要がある。
【0028】
熱間圧延の各パスにおける最終パスやその前の数パスの圧延速度は、熱間圧延による蓄積歪みに影響を及ぼし、その後の中間焼鈍において、0°−90°耳の発達を通じて最終板の低耳率化に寄与する立方体方位粒(キューブ方位粒)の生成に大きな影響を与える。そして最終パスやその前の数パスの圧延速度が大きいほど、熱間圧延による蓄積歪みが大きくなり、その後の中間焼鈍において生成される立方体方位粒の密度が大きくなり、その結果最終板の低耳率化に有効となる。最終パスから数えて2パス前の圧延速度が50m/分以上、最終パスから数えて1パス前の圧延速度が100m/分以上、最終パスの圧延速度が150m/分以上の各パス圧延速度条件を満たさない場合には、熱間圧延中の蓄積歪みが小さいため、その後の中間焼鈍において、0°−90°耳の生成に寄与する立方体方位粒が充分に生成されず、その結果中間焼鈍後の冷間圧延で発達する45°耳とのバランスが保たれなくなって、最終板の低耳率化を達成できなくなってしまう。そのため熱間圧延の最終パスから数えて2パス前、1パス前、および最終パスの圧延速度を前述のように定めた。
【0029】
また熱間圧延の最終パスの圧下率が20%未満では、充分な歪みを蓄積することが困難となり、その後の中間焼鈍において、最終板の低耳率化に寄与する立方体方位粒の成長を促進することが困難となる。一方最終パスの圧下率が70%を越える場合は、板の表面品質が低下してしまうおそれがある。そこで最終パスの圧下率は20〜70%の範囲内とした。
【0030】
さらに、熱間圧延の終了温度が220℃未満の低温の場合には、材料の変形帯や晶出物周辺などからのランダムな方位の核生成、成長が刺激されるため、中間焼鈍において立方体方位粒の密度を高めることが困難となり、また熱間圧延における回復、再結晶が抑制されて板のエッジ割れを引き起こしやすくなる。一方熱間圧延終了温度が370℃を越えれば、熱間圧延中における回復、再結晶により充分な歪みを蓄積できなくなり、その結果、後の中間焼鈍において、最終板の低耳率化に寄与する0°−90°耳の発達を促す立方体方位粒の密度を高めることができなくなる。そこで熱間圧延終了温度は220〜370℃の範囲内とする必要がある。
【0031】
以上のように(1)〜(4)の条件に従って熱間圧延を行なって得られた熱延板に対しては、そのまま中間焼鈍を施すか、または請求項3において規定しているように1次冷間圧延を施してから中間焼鈍を施す。
【0032】
この中間焼鈍は、材料を再結晶させて、立方体方位粒組織を生成させるために不可欠な工程であり、請求項1で規定するように連続焼鈍を適用しても、また請求項2で規定するようにバッチ焼鈍を適用しても良い。
【0033】
連続焼鈍を適用する場合、320〜550℃の範囲内の温度に加熱して保持なしもしくは10分以下の保持とする。ここで、連続焼鈍の加熱温度が320℃未満では再結晶が進行せず、そのため立方体方位粒組織を生成することができず、結果的に低耳率を達成することができない。一方連続焼鈍の加熱温度が550℃を越えれば再結晶粒が粗大化して、最終板の成形性を低下させてしまう。また連続焼鈍の加熱保持時間が10分を越えれば生産性の低下を招く。
【0034】
一方バッチ焼鈍を適用する場合、10〜50℃/時間の平均昇温速度で220〜500℃の範囲内の温度に加熱し、0.5時間〜24時間保持し、10〜50℃/時間の平均冷却速度で冷却する。このようなバッチ焼鈍による中間焼鈍において、加熱温度が220℃未満では、再結晶が進行せず、そのため立方体方位粒組織を生成することができず、結果的に最終板の低耳率を達成することができない。一方バッチ焼鈍の加熱温度が550℃を越えれば再結晶粒が粗大化して、最終板の成形性を低下させてしまう。またバッチ焼鈍の加熱保持時間が0.5時間未満では均一に再結晶させることが困難となり、一方24時間を越えれば再結晶粒の粗大化を招くおそれがあり、また生産性も低下してしまう。さらにバッチ焼鈍では、生産性の観点から、平均昇温速度、平均冷却速度は10〜50℃/時間とする。
【0035】
上述のような中間焼鈍の前には、既に述べたように1次冷間圧延を行なっても良い。この1次冷間圧延は、その後の中間焼鈍において生成される立方体方位粒の成長を促進させる効果があり、圧延率5〜40%の範囲内で圧延する必要がある。1次冷間圧延の圧延率が5%未満では上述の効果が得られず、一方40%を越える高い圧延率では、0°−90°耳を低下させる核生成サイトを増加させてしまい、その結果その後の中間焼鈍において立方体方位粒の密度を高めることができず、最終板の耳率が低下してしまう。
【0036】
前述のように熱間圧延後、直ちに中間焼鈍を施すか、または1次冷間圧延を行なってから中間焼鈍を施した後には、40%以上の圧延率で最終冷間圧延を施す。最終冷間圧延の圧延率が40%未満では、缶蓋材として望まれる高強度を得ることが困難となる。またこのように40%以上の最終冷間圧延においては、各パスの圧下率、圧延速度を適切に制御することによって、加工発熱により板温度を100℃以上に到達させることができ、この場合、冷間圧延終了直後にコイルに巻取った状態で自己焼鈍の効果を得ることができる。そしてこの自己焼鈍により、最終冷間圧延中に導入された転位を消滅させて、強度を各方向に均一化させ、強度の異方性を少なくすることができる。なお最終冷間圧延における圧延率の上限は特に規定しないが、鋳塊厚みや製品厚みとの関係などから、通常は95%以下とする。
【0037】
最終冷間圧延後の板は、これをそのまま缶蓋材として用いても良いが、強度の異方性をより一層少なくするため、100〜240℃の範囲内の温度で10時間以下加熱する最終焼鈍を施すことが望ましい。この最終焼鈍は、最終冷間圧延によって導入された転位を消滅させて、各方向の強度を均一化し、強度異方性をより少なくするために効果的である。したがって最終冷間圧延までのプロセスをこの発明で規定する範囲内の条件で行なっても未だ強度の異方性がある程度大きい場合には、最終焼鈍を行なうことが望ましい。ここで、最終焼鈍の温度が100℃未満の低温では上述の効果が得られず、一方240℃を越える高温では回復の進行が大き過ぎ、強度不足を招いてしまう。また最終焼鈍の加熱時間が10時間を越えれば生産性の低下を招く。したがって最終焼鈍は100〜240℃の範囲内の温度で10時間以下の加熱を行なう必要がある。
【0038】
以上のようにして、低耳率でかつ強度の異方性も少なく、しかも缶蓋材として必要な強度や成形性、引き裂き性(開缶性)等の性能をも兼ね備えた缶蓋材を確実かつ安定して得ることができる。
【0039】
【実施例】
表1の合金No.1〜6に示す種々のアルミニウム合金を常法に従ってDC鋳造法により鋳造し、得られた鋳塊について、表2中の製造符号A〜Hに示すような工程、条件によって缶蓋材とした。すなわち鋳塊加熱処理を行なってから熱間圧延を表2中に示す条件で行ない、得られた熱延板に対しそのまま中間焼鈍を施す(製造符号A,B,D〜H)か、または1次冷間圧延を行なってから中間焼鈍を施し(製造符号C)、さらに最終冷間圧延を行なって板厚0.26mmとし、さらに一部のもの(製造符号A〜D,F,G)については最終焼鈍を行なった。
【0040】
以上のようにして得られた各缶蓋材について、塗装焼付け処理に相当する250℃×24秒の加熱処理を行なってから、耳率と強度異方性を調べたので、その結果を表3に示す。なお耳率は、ブランク径62mm、絞り比1.9の条件でカップ絞り試験を行なって調べた。ここで、耳率が6%を越えれば不合格と判定した。一方強度異方性については、圧延方向に対し0°,45°,90°の各方向の耐力を調べ、各方向の耐力差の最大値(最大耐力差)を求めた。この最大耐力差が25MPaを越える場合には強度異方性不合格と判定した。
【0041】
【表1】

Figure 0004077997
【0042】
【表2】
Figure 0004077997
【0043】
【表3】
Figure 0004077997
【0044】
表1〜表3において、この発明で規定する成分組成範囲内の合金を用いてこの発明の製造プロセス条件に従って製造した製造符号A〜Cによる缶蓋材は、いずれも低耳率でかつ強度の異方性(最大耐力差)も小さいことが確認された。
【0045】
一方製造符号D〜Fは、いずれも成分組成がこの発明の範囲内の合金を用いたが、製造プロセス条件がこの発明で規定する範囲を満たさなかった比較例である。具体的には、製造符号Dは、熱間圧延の最終パスの圧延速度が遅かった例であるが、この場合は耳率が高くなってしまった。また製造符号Eは、熱間圧延終了温度が低過ぎた例であるが、この場合は耳率が高くなってしまい、また最終焼鈍を行なわないために強度の異方性も大きくなってしまった。そしてまた製造符号Fは熱間圧延の最終パスの圧下率が小さ過ぎた例であるが、この場合は耳率が高くなってしまった。
【0046】
さらに製造符号G,Hは成分組成がこの発明で規定する範囲を外れた比較合金を用いた例である。これらのうち、製造符号Gは{Fe量(%)+Mn量(%)}/Si量(%)の値が23.3と高過ぎる合金No.5を用いた例であり、この場合は耳率が高くなってしまった。また製造符号Hは、Mg量が多過ぎる合金No.6を用いた例であるが、この場合は耳率が高くなってしまい、また最終焼鈍を行なわないために強度の異方性も大きくなってしまった。
【0047】
【発明の効果】
この発明の缶蓋用アルミニウム合金硬質板の製造方法によれば、耳率が安定して低くかつ強度の異方性も少なく、さらには強度や成形性、引き裂き性(開缶性)等の缶蓋材に要求される一般的性能も優れた缶蓋材を確実に得ることができ、そのためこの発明の方法により得られた板を缶蓋に使用すれば、缶胴材との巻き締め加工の際において巻き締め不良が生じるおそれが少なく、また強度の異方性が少ないため缶を落下させた衝撃によりスコア部分から割れるおそれも少ないなど、優れた効果を発揮することができる。またこの発明の方法による缶蓋用アルミニウム合金硬質板は、Mnを含有する系の合金を用いているため、消費量の多い5182合金缶蓋材や3004合金缶胴材等のスクラップを利用することができ、したがってリサイクル性にも優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an aluminum can lid material, and particularly as an aluminum can lid material suitable for a steion tub type can lid for a negative pressure can that does not contain carbonic acid such as fruit juice, coffee, and tea. The present invention relates to a method for producing an aluminum can lid material having small anisotropy, low ear rate, and excellent recyclability.
[0002]
[Prior art]
In general, steion tab type aluminum can lids have high strength and good formability, good can openability (score tearability), excellent rivet workability, and excellent surface quality. Is required. Conventionally, as this kind of aluminum can lid material, 5000 series alloys (Al-Mg series alloys, Al-Mg-Mn series alloys) such as 5052 alloy and 5182 alloy are frequently used. In particular, as beverage cans that do not contain carbonic acid such as fruit juice, coffee, and tea, that is, can lid materials for negative pressure cans, Al-Mg-based 5052 alloy is often used.
[0003]
[Problems to be solved by the invention]
By the way, when attaching the can lid to the can body, it is necessary to wind the can lid around the edge of the can body. May occur. In addition, the can lid is generally score processed for opening the can, especially the steion tab type can lid, since the score processing rate is large, when the maximum proof stress difference in each direction with respect to the rolling direction is large, that is, When the strength anisotropy is large, there is a risk that the contents may leak due to a crack occurring from a low strength portion of the score portion due to an impact when the can is dropped.
[0004]
However, in the conventional aluminum can lid material, such an ear ratio and anisotropy of strength have not been sufficiently studied, so that it is possible to reliably prevent the occurrence of poor tightening, and at the time of a drop impact of the can It was still difficult to reliably and stably prevent the occurrence of cracks.
[0005]
In particular, recently, it has been desired to produce can lids for negative pressure cans using scraps of 5182 alloy can lid materials and 3004 alloy can body materials, which are highly consumed, and these 5182 alloys and 3004 alloys are In order to use these scrap materials as can lids for negative pressure cans, it is desirable to use alloys containing Mn as can lid materials for negative pressure cans. Various experiments for its development have been conducted, but the fact is that sufficient consideration has not been given to the anisotropy of the ear rate and strength as described above.
[0006]
This invention was made against the background of the above circumstances, and particularly as an aluminum can lid material suitable for a can lid for a negative pressure can of the steion tab method, the ear rate is stable and low, and the strength anisotropy The object of the present invention is to provide a method for producing a can lid material that is less in number and more excellent in recyclability.
[0007]
[Means for Solving the Problems]
In order to solve the problems as described above, the present inventors have conducted extensive experimental studies, and as a result, the component system of the aluminum alloy of the can lid material is basically an Al-Mg-Mn system, and the amount of Mg, Properly set the Mn amount, Fe amount, and Si amount, and properly regulate the mutual relationship between the Fe amount, Si amount, and Mn amount, and strictly regulate the manufacturing process conditions, particularly hot rolling conditions. By properly regulating the intermediate annealing conditions and the final cold rolling conditions after hot rolling, the can lid material can stably meet and meet the performance requirements of other can lid materials. Furthermore, it was found that the anisotropy of the strength can be stably reduced by appropriately regulating the final annealing conditions in the can lid manufacturing process, and the present invention has been made.
[0008]
Specifically, the manufacturing method of the aluminum alloy hard plate for can lids of the invention of claim 1 is Mg 0.8 to 3.0%, Mn 0.01 to 1.2%, Fe 0.10 to 0.50%, An alloy containing 0.05 to 0.40% Si, {Fe amount (%) + Mn amount (%)} / Si amount (%) is 20 or less, and the balance is Al and inevitable impurities is used as a raw material. In the hot rolling of the ingot, the hot rolling start temperature is set within the range of 400 to 580 ° C., the rolling speed in the pass 2 passes before the final pass is 50 m / min or more, and the pass before the final pass 1 pass. The rolling speed in the second pass is 100 m / min or more, the rolling speed in the final pass is 150 m / min or more, and the rolling reduction in the final pass is in the range of 20 to 70%. Finished and rolled The hot-rolled sheet is heated to a temperature in the range of 320 to 550 ° C. and subjected to intermediate annealing by continuous annealing without holding or holding for 10 minutes or less, and finally cold-rolled at a rolling rate of 40% or more. It is characterized by performing.
[0009]
Moreover, the manufacturing method of the aluminum alloy hard plate for can lids of invention of Claim 2 is Mg0.8-3.0%, Mn0.01-1.2%, Fe0.10-0.50%, Si0.05- An ingot containing 0.40% and having {Fe amount (%) + Mn amount (%)} / Si amount (%) of 20 or less and the balance being Al and inevitable impurities When hot rolling is performed, the hot rolling start temperature is set within the range of 400 to 580 ° C., the rolling speed in the pass 2 passes before the final pass is 50 m / min or more, and the rolling in the pass 1 pass before the final pass Finishing hot rolling at a temperature in the range of 220 to 370 ° C. with a speed of 100 m / min or more, a rolling speed in the final pass of 150 m / min or more, and a reduction rate in the final pass of 20 to 70%. And obtained hot pressure The plate is heated to a temperature in the range of 220 to 500 ° C. at an average temperature increase rate of 10 to 50 ° C./hour, held for 0.5 to 24 hours, and cooled at an average cooling rate of 10 to 50 ° C./hour. It is characterized by performing intermediate annealing by batch annealing and further performing final cold rolling at a rolling rate of 40% or more.
[0010]
Furthermore, the manufacturing method of the aluminum alloy hard plate for can lids of invention of Claim 3 is the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2, WHEREIN: Between the said hot rolling and intermediate annealing. In the meantime, primary cold rolling with a rolling rate of 5 to 40% is performed.
[0011]
And the manufacturing method of the aluminum alloy hard plate for can lids of invention of Claim 4 is the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2, After the said last cold rolling, Furthermore, the final annealing is performed by heating and holding at a temperature in the range of 100 to 240 ° C. for 10 hours or less.
[0012]
Furthermore, the manufacturing method of the aluminum alloy hard plate for can lids of invention of Claim 5 is the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2, Said each element as an alloy of a raw material In addition, an alloy containing at least one selected from Cu 0.01 to 0.50% and Cr 0.05 to 0.50% is used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the components of the aluminum alloy used in the present invention will be described.
[0014]
Mg:
The addition of Mg is effective in improving the strength due to its own solid solution, and since the interaction with dislocations is large, an improvement in strength due to work hardening can be expected. Therefore, in order to obtain the strength required as a can lid material, Mg Is an indispensable element. However, if the Mg content is less than 0.8%, sufficient strength as a can lid material cannot be obtained, while if it exceeds 3.0%, the production cost increases. Therefore, the Mg content is set in the range of 0.8 to 3.0%.
[0015]
Mn:
The addition of Mn has a great effect on the generation and strength improvement of Al-Mn- (Si) and Al-Fe-Mn- (Si) -based crystals that improve the tearability of the score part and improve the can openability. Bring. When the amount of Mn is less than 0.01%, these effects are small. On the other hand, when the amount exceeds 1.2%, Al—Mn— (Si) and Al—Fe—Mn— (Si) based crystals are coarsened. It causes a decrease in workability. Therefore, the amount of Mn is set within a range of 0.01 to 1.2%. Further, by using Mn-added alloy system as described above, it is possible to use scrap materials of Mn-containing alloys such as 5182 alloy can lid materials and 3004 alloy can body materials, and improve recyclability. it can.
[0016]
Fe:
The addition of Fe has an effect on the formation of an Al-Fe-Mn- (Si) -based crystallized product that improves the tearability of the score portion and improves the openability. Fe has a great effect on crystal grain refinement that improves the moldability required as a can lid material. The larger the amount of Fe added, the finer the crystal grain. However, if the amount of Fe is less than 0.10%, the effect does not appear. On the other hand, if it exceeds 0.50%, the crystallized material becomes coarse and the formability is lowered. Therefore, the amount of Fe is set in the range of 0.10 to 0.50%.
[0017]
Si:
The Mg 2 Si crystallized product formed of Si also has an effect of improving tearability of the score portion and improving can openability. However, when the amount of Si is less than 0.05%, the effect does not appear. On the other hand, when it exceeds 0.40%, a large crystallized product is generated and the number of crystallized products generated is excessively increased, causing a decrease in moldability. Therefore, the Si amount is set in the range of 0.05 to 0.40%. Si is an element contained as an unavoidable impurity in a normal aluminum alloy, and even in an alloy used in the method of the present invention, it is allowed to contain less than 0.05% of Si as an impurity.
[0018]
{Fe amount (%) + Mn amount (%)} / Si amount (%) ≦ 20:
When the amount of Fe and the amount of Si satisfy this condition, the formation of Al-Fe-Mn-Si crystallized product can be promoted, and the crystallized product size can be reduced. If the crystallized size is reduced, the density of randomly oriented grains growing from the periphery of the crystallized substance is reduced, and therefore cubic oriented grains that contribute to the formation of 0 ° -90 ° ears are preferentially grown, and as a result As a result, the ear rate of the product plate can be kept low. Therefore, the value of {Fe amount (%) + Mn amount (%)} / Si amount (%) is defined as 20 or less.
[0019]
Furthermore, in the alloy used in the present invention, one or both of Cu and Cr may be added in order to further improve the strength. The reasons for these limitations are as follows.
[0020]
Cu:
The addition of Cu is effective for improving the strength. Therefore, when further improving the strength of the can lid material, Cu may be added. However, if Cu is added excessively, the corrosion resistance, which is an important characteristic as a can lid material, may be reduced, and if Cu is added, work hardening characteristics increase, leading to a decrease in moldability. There is. Therefore, the amount of Cu added is within the range of 0.01 to 0.50%.
[0021]
Cr:
Addition of Cr is also effective for improving the strength, and Cr may be added to further improve the strength. However, when the Cr content is less than 0.05%, the effect does not appear. On the other hand, when the Cr content exceeds 0.50%, a giant crystallized product is generated and the number of crystallized products generated is too large, resulting in a decrease in formability. . Therefore, the Cr addition amount is set in the range of 0.05 to 0.50%.
[0022]
In addition to the above elements, Al and inevitable impurities may be used. However, in a normal aluminum alloy, a small amount of Ti may be added to refine the ingot structure. About the alloy used in the method of the present invention However, it is permissible to add a small amount of Ti. However, if the amount of Ti added is large, the ingot structure is unlikely to become feathery crystals, and granular crystals are likely to be generated. In the case of granular crystals, there is a risk that the crystallized material that crystallizes at the grain boundary will be coarser than in the case of feathery crystals, and if the amount of Ti increases, a large crystallized product is generated and molded. There is a risk of reducing the performance. Therefore, the Ti content is desirably 0.03% or less.
[0023]
Next, the manufacturing process in the method of the present invention will be described.
[0024]
First, an aluminum alloy having the above-described composition is melted according to a conventional method, and cast according to a conventional method such as a DC casting method. The ingot is subjected to a homogenization treatment and then heated for hot rolling, or is also heated for hot rolling in combination with the homogenization treatment. These heating conditions are not particularly limited and may follow a conventional method, but the heating immediately before the hot rolling is of course performed at a temperature that is higher than the hot rolling start temperature and does not cause melting. .
[0025]
The hot rolling conditions have a great influence on the performance of the final plate, particularly the ear rate, and therefore must be strictly regulated according to the following conditions (1) to (4).
(1) Hot rolling start temperature: 400-580 ° C
(2) Rolling speed before each pass:
Rolling speed in the pass two passes before the final pass; 50 m / min or more Rolling speed in the pass one pass before the final pass; 100 m / min or more Rolling speed in the final pass; 150 m / min or more (3) Final Pass reduction: 20-70%
(4) Hot rolling finish temperature: 220-370 ° C
[0026]
The reason why the hot rolling conditions (1) to (4) are determined is as follows.
[0027]
If the starting temperature of hot rolling is less than 400 ° C, recovery and recrystallization during hot rolling are suppressed, and there is a risk of edge cracking of the plate, while hot rolling at a high temperature exceeding 580 ° C. If started, the surface quality of the plate will be degraded. Therefore, the hot rolling start temperature needs to be a temperature within the range of 400 to 580 ° C.
[0028]
The rolling speed of the final pass and several previous passes in each pass of hot rolling affects the accumulated strain due to hot rolling, and in the subsequent intermediate annealing, the final plate has a low speed through the development of 0 ° -90 ° ears. It has a great influence on the generation of cube-oriented grains (cube-oriented grains) that contribute to increasing the ear ratio. And the higher the rolling speed of the final pass and several previous passes, the greater the accumulated strain due to hot rolling, and the higher the density of cubic oriented grains produced in the subsequent intermediate annealing, resulting in the lower edge of the final plate. It becomes effective for rate. Rolling speed conditions at a rolling speed of 50 m / min or more before the second pass from the final pass, rolling speeds of 100 m / min or more before the first pass from the final pass, and rolling speeds of 150 m / min or more at the final pass. Is not satisfied, the accumulated strain during hot rolling is small, so in the subsequent intermediate annealing, cubic orientation grains that contribute to the formation of 0 ° -90 ° ears are not sufficiently formed, and as a result, after the intermediate annealing As a result, the balance with the 45 ° ears developed in the cold rolling of the steel sheet cannot be maintained, so that it becomes impossible to achieve the low ear rate of the final plate. Therefore, the rolling speeds of 2 passes before, 1 pass before and after the final pass of the hot rolling were determined as described above.
[0029]
In addition, if the rolling reduction of the final pass of hot rolling is less than 20%, it becomes difficult to accumulate sufficient strain, and in the subsequent intermediate annealing, the growth of cubic orientation grains that contribute to lowering the audibility of the final plate is promoted. Difficult to do. On the other hand, when the rolling reduction of the final pass exceeds 70%, the surface quality of the plate may be deteriorated. Therefore, the rolling reduction of the final pass is set in the range of 20 to 70%.
[0030]
Furthermore, when the end temperature of hot rolling is a low temperature of less than 220 ° C., the nucleation and growth of random orientation from the deformation zone of the material, the periphery of the crystallized material, and the like are stimulated. It becomes difficult to increase the density of the grains, and recovery and recrystallization in hot rolling are suppressed, so that edge cracking of the plate is likely to occur. On the other hand, if the hot rolling finish temperature exceeds 370 ° C., sufficient strain cannot be accumulated due to recovery and recrystallization during hot rolling, and as a result, it contributes to lowering the ear ratio of the final plate in the subsequent intermediate annealing. It becomes impossible to increase the density of cubic orientation grains that promote the development of 0 ° -90 ° ears. Therefore, the hot rolling end temperature needs to be in the range of 220 to 370 ° C.
[0031]
As described above, the hot-rolled sheet obtained by hot rolling according to the conditions (1) to (4) is subjected to intermediate annealing as it is, or 1 as defined in claim 3. After the next cold rolling, intermediate annealing is performed.
[0032]
This intermediate annealing is an indispensable process for recrystallizing the material to form a cubic grain structure. Even if continuous annealing is applied as defined in claim 1, it is also defined in claim 2. Thus, batch annealing may be applied.
[0033]
When applying the continuous annealing, it is heated to a temperature within the range of 320 to 550 ° C. to keep it for 10 minutes or less. Here, when the heating temperature of continuous annealing is less than 320 ° C., recrystallization does not proceed, and therefore a cubic orientation grain structure cannot be generated, and as a result, a low ear ratio cannot be achieved. On the other hand, if the heating temperature for continuous annealing exceeds 550 ° C., the recrystallized grains become coarse and the formability of the final plate is lowered. Moreover, if the heating and holding time of continuous annealing exceeds 10 minutes, productivity will be reduced.
[0034]
On the other hand, when batch annealing is applied, it is heated to a temperature in the range of 220 to 500 ° C. at an average temperature increase rate of 10 to 50 ° C./hour, held for 0.5 to 24 hours, and 10 to 50 ° C./hour. Cool at average cooling rate. In such intermediate annealing by batch annealing, when the heating temperature is less than 220 ° C., recrystallization does not proceed, so that a cubic grain structure cannot be generated, and as a result, a low ear ratio of the final plate is achieved. I can't. On the other hand, if the heating temperature for batch annealing exceeds 550 ° C., the recrystallized grains become coarse and the formability of the final plate is lowered. In addition, if the heating and holding time of batch annealing is less than 0.5 hours, it is difficult to recrystallize uniformly. On the other hand, if it exceeds 24 hours, the recrystallized grains may be coarsened, and the productivity will be reduced. . Furthermore, in batch annealing, from the viewpoint of productivity, the average heating rate and the average cooling rate are 10 to 50 ° C./hour.
[0035]
Prior to the intermediate annealing as described above, primary cold rolling may be performed as described above. This primary cold rolling has an effect of promoting the growth of cubic oriented grains generated in the subsequent intermediate annealing, and it is necessary to perform rolling within a range of a rolling rate of 5 to 40%. When the rolling ratio of the primary cold rolling is less than 5%, the above-mentioned effect cannot be obtained. On the other hand, when the rolling ratio exceeds 40%, the number of nucleation sites that decrease the 0 ° -90 ° ear is increased. As a result, the density of the cubic orientation grains cannot be increased in the subsequent intermediate annealing, and the ear ratio of the final plate is lowered.
[0036]
As described above, after the hot rolling, intermediate annealing is performed immediately, or after the first cold rolling is performed and then the intermediate annealing is performed, the final cold rolling is performed at a rolling rate of 40% or more. If the rolling rate of the final cold rolling is less than 40%, it is difficult to obtain high strength desired as a can lid material. In addition, in the final cold rolling of 40% or more in this way, by appropriately controlling the rolling reduction rate and rolling speed of each pass, the plate temperature can be reached to 100 ° C. or more by processing heat generation. The effect of self-annealing can be obtained in the state of being wound on a coil immediately after the end of cold rolling. And by this self-annealing, dislocations introduced during the final cold rolling can be eliminated, the strength can be made uniform in each direction, and the strength anisotropy can be reduced. In addition, although the upper limit of the rolling rate in final cold rolling is not prescribed | regulated in particular, from the relationship with ingot thickness or product thickness etc., it is usually 95% or less.
[0037]
The plate after the final cold rolling may be used as it is as a can lid material, but in order to further reduce the strength anisotropy, the final heating is performed for 10 hours or less at a temperature in the range of 100 to 240 ° C. It is desirable to perform annealing. This final annealing is effective for eliminating the dislocations introduced by the final cold rolling, making the strength in each direction uniform, and reducing the strength anisotropy. Therefore, even if the process up to the final cold rolling is performed under the conditions specified in the present invention and the strength anisotropy is still large to some extent, it is desirable to perform the final annealing. Here, when the final annealing temperature is lower than 100 ° C., the above-described effect cannot be obtained. On the other hand, when the final annealing temperature is higher than 240 ° C., the progress of recovery is too large and the strength is insufficient. Further, if the heating time of the final annealing exceeds 10 hours, the productivity is lowered. Accordingly, the final annealing needs to be performed at a temperature within the range of 100 to 240 ° C. for 10 hours or less.
[0038]
As described above, a can lid material that has low ear ratio, low strength anisotropy, and has the strength, formability, tearability (can openability), etc. necessary for a can lid material. And can be obtained stably.
[0039]
【Example】
Alloy No. 1 in Table 1 Various aluminum alloys shown in 1 to 6 were cast by a DC casting method according to a conventional method, and the obtained ingot was used as a can lid material according to the processes and conditions shown in production codes A to H in Table 2. That is, after performing the ingot heat treatment, hot rolling is performed under the conditions shown in Table 2, and the obtained hot-rolled sheet is subjected to intermediate annealing as it is (manufacturing codes A, B, D to H), or 1 After the next cold rolling, intermediate annealing is performed (manufacturing code C), and the final cold rolling is performed to obtain a sheet thickness of 0.26 mm, and some of them (manufacturing codes A to D, F, G) Performed the final annealing.
[0040]
Each of the can lid materials obtained as described above was subjected to a heat treatment at 250 ° C. for 24 seconds corresponding to the coating baking process, and then the ear rate and the strength anisotropy were examined. Shown in The ear rate was examined by conducting a cup drawing test under the conditions of a blank diameter of 62 mm and a drawing ratio of 1.9. Here, if the ear rate exceeded 6%, it was determined to be unacceptable. On the other hand, regarding the strength anisotropy, the proof stress in each direction of 0 °, 45 ° and 90 ° with respect to the rolling direction was examined, and the maximum value of the proof stress difference in each direction (maximum proof stress difference) was obtained. When this maximum proof stress difference exceeded 25 MPa, it was determined that the strength anisotropy was rejected.
[0041]
[Table 1]
Figure 0004077997
[0042]
[Table 2]
Figure 0004077997
[0043]
[Table 3]
Figure 0004077997
[0044]
In Tables 1 to 3, the can lid materials according to production codes A to C produced according to the production process conditions of the present invention using alloys within the component composition range defined in the present invention have low ear ratio and strength. It was confirmed that anisotropy (maximum yield strength difference) was also small.
[0045]
On the other hand, production codes D to F are comparative examples in which the composition of the components used the alloy within the range of the present invention, but the production process conditions did not satisfy the range defined by the present invention. Specifically, production code D is an example in which the rolling speed in the final pass of hot rolling was slow, but in this case, the ear rate was high. Production code E is an example in which the hot rolling end temperature is too low, but in this case, the ear rate is high, and the final annealing is not performed, so that the strength anisotropy is also increased. . Further, production code F is an example in which the rolling reduction of the final pass of hot rolling is too small, but in this case, the ear rate is high.
[0046]
Further, production codes G and H are examples using a comparative alloy whose component composition is out of the range specified in the present invention. Among these, the production code G has a value of {Fe amount (%) + Mn amount (%)} / Si amount (%) of 23.3 which is too high. In this case, the ear rate was high. The production code H is alloy No. with an excessive amount of Mg. However, in this case, the ear rate was increased, and the strength anisotropy was increased because the final annealing was not performed.
[0047]
【The invention's effect】
According to the method for producing an aluminum alloy hard plate for a can lid according to the present invention, the ear rate is stable and low, the strength anisotropy is small, and the strength, formability, tearability (can openability), etc. The can lid material excellent in general performance required for the lid material can be surely obtained. Therefore, if the plate obtained by the method of the present invention is used for the can lid, it can be wound with the can body material. At the time, there is little possibility that a winding failure will occur, and since there is little anisotropy in strength, it is possible to exert excellent effects such as being less likely to break from the score portion due to the impact of dropping the can. In addition, since the aluminum alloy hard plate for can lids according to the method of the present invention uses an alloy of a system containing Mn, use scraps such as 5182 alloy can lid materials and 3004 alloy can body materials that consume a large amount. Therefore, it is excellent in recyclability.

Claims (5)

Mg0.8〜3.0%(重量%、以下同じ)、Mn0.01〜1.2%、Fe0.10〜0.50%、Si0.05〜0.40%を含有し、かつ{Fe量(%)+Mn量(%)}/Si量(%)が20以下であり、残部がAlおよび不可避的不純物よりなる合金を素材とし、その鋳塊を熱間圧延するにあたり、熱間圧延開始温度を400〜580℃の範囲内とし、かつ最終パスから2パス前のパスにおける圧延速度を50m/分以上、最終パスから1パス前のパスにおける圧延速度を100m/分以上、最終パスにおける圧延速度を150m/分以上とし、さらに最終パスにおける圧下率を20〜70%の範囲内として、220〜370℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、320〜550℃の範囲内の温度に加熱して保持なしもしくは10分以下の保持を行なう連続焼鈍による中間焼鈍を施し、さらに40%以上の圧延率で最終冷間圧延を行なうことを特徴とする、缶蓋用アルミニウム合金硬質板の製造方法。Mg 0.8-3.0% (% by weight, the same shall apply hereinafter), Mn 0.01-1.2%, Fe 0.10-0.50%, Si 0.05-0.40%, and {Fe amount (%) + Mn amount (%)} / Si amount (%) is 20 or less, and the remainder is made of an alloy composed of Al and inevitable impurities, and when the ingot is hot-rolled, hot rolling start temperature Is within the range of 400 to 580 ° C., the rolling speed in the pass 2 passes before the final pass is 50 m / min or more, the rolling speed in the pass 1 pass before the final pass is 100 m / min or more, and the rolling speed in the final pass 150 m / min or more, and the rolling reduction in the final pass is in the range of 20 to 70%, the hot rolling is terminated at a temperature in the range of 220 to 370 ° C., and the obtained hot rolled sheet, Temperature in the range of 320-550 ° C Production of aluminum alloy hard plate for can lid, characterized by subjecting to intermediate annealing by continuous annealing without heating or holding for 10 minutes or less, and further performing final cold rolling at a rolling rate of 40% or more Method. Mg0.8〜3.0%、Mn0.01〜1.2%、Fe0.10〜0.50%、Si0.05〜0.40%を含有し、かつ{Fe量(%)+Mn量(%)}/Si量(%)が20以下であり、残部がAlおよび不可避的不純物よりなる合金を素材とし、その鋳塊を熱間圧延するにあたり、熱間圧延開始温度を400〜580℃の範囲内とし、かつ最終パスから2パス前のパスにおける圧延速度を50m/分以上、最終パスから1パス前のパスにおける圧延速度を100m/分以上、最終パスにおける圧延速度を150m/分以上とし、さらに最終パスにおける圧下率を20〜70%の範囲内として、220〜370℃の範囲内の温度で熱間圧延を終了させ、得られた熱間圧延板に対し、平均昇温速度10〜50℃/時間で220〜500℃の範囲内の温度に加熱して0.5〜24時間保持し、10〜50℃/時間の平均冷却速度で冷却するバッチ焼鈍による中間焼鈍を施し、さらに40%以上の圧延率で最終冷間圧延を行なうことを特徴とする、缶蓋用アルミニウム合金硬質板の製造方法。Mg 0.8-3.0%, Mn 0.01-1.2%, Fe 0.10-0.50%, Si 0.05-0.40%, and {Fe amount (%) + Mn amount (% )} / Si amount (%) is 20 or less, and the remainder is made of an alloy composed of Al and unavoidable impurities. When hot rolling the ingot, the hot rolling start temperature is in the range of 400 to 580 ° C. And the rolling speed in the pass two passes before the final pass is 50 m / min or more, the rolling speed in the pass one pass before the final pass is 100 m / min or more, and the rolling speed in the final pass is 150 m / min or more, Furthermore, the rolling reduction in the final pass is set within the range of 20 to 70%, the hot rolling is terminated at a temperature within the range of 220 to 370 ° C., and the average rate of temperature increase is 10 to 50 with respect to the obtained hot rolled sheet. ℃ / hour 220 ~ 500 ℃ Heat to ambient temperature, hold for 0.5 to 24 hours, perform intermediate annealing by batch annealing to cool at an average cooling rate of 10 to 50 ° C./hour, and further carry out final cold rolling at a rolling rate of 40% or more The manufacturing method of the aluminum alloy hard plate for can lids characterized by performing. 請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、
前記熱間圧延と中間焼鈍との間に、圧延率5〜40%の1次冷間圧延を施すことを特徴とする、缶蓋用アルミニウム合金硬質板の製造方法。
In the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2,
A method for producing an aluminum alloy hard plate for a can lid, wherein primary cold rolling at a rolling rate of 5 to 40% is performed between the hot rolling and the intermediate annealing.
請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、
前記最終冷間圧延の後、さらに100〜240℃の範囲内の温度で10時間以下加熱保持する最終焼鈍を施すことを特徴とする、缶蓋用アルミニウム合金硬質板の製造方法。
In the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2,
A method for producing an aluminum alloy hard plate for a can lid, wherein after the final cold rolling, final annealing is further performed by heating and holding at a temperature within a range of 100 to 240 ° C for 10 hours or less.
請求項1もしくは請求項2に記載の缶蓋用アルミニウム合金硬質板の製造方法において、
素材の合金として、前記各成分元素のほか、さらにCu0.01〜0.50%、Cr0.05〜0.50%のうちから選ばれた1種以上を含有する合金を用いることを特徴とする、缶蓋用アルミニウム合金硬質板の製造方法。
In the manufacturing method of the aluminum alloy hard plate for can lids of Claim 1 or Claim 2,
In addition to the above component elements, an alloy containing one or more selected from Cu 0.01 to 0.50% and Cr 0.05 to 0.50% is used as a material alloy. The manufacturing method of the aluminum alloy hard board for can lids.
JP24959299A 1999-09-03 1999-09-03 Manufacturing method of aluminum alloy hard plate for can lid Expired - Fee Related JP4077997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24959299A JP4077997B2 (en) 1999-09-03 1999-09-03 Manufacturing method of aluminum alloy hard plate for can lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24959299A JP4077997B2 (en) 1999-09-03 1999-09-03 Manufacturing method of aluminum alloy hard plate for can lid

Publications (2)

Publication Number Publication Date
JP2001073106A JP2001073106A (en) 2001-03-21
JP4077997B2 true JP4077997B2 (en) 2008-04-23

Family

ID=17195320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24959299A Expired - Fee Related JP4077997B2 (en) 1999-09-03 1999-09-03 Manufacturing method of aluminum alloy hard plate for can lid

Country Status (1)

Country Link
JP (1) JP4077997B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421739B (en) * 2003-10-29 2008-02-06 Corus Aluminium Walzprod Gmbh Method for producing a high damage tolerant aluminium alloy
JP6058050B2 (en) * 2015-03-04 2017-01-11 株式会社神戸製鋼所 Aluminum alloy plate for negative pressure can lid
JP7652730B2 (en) 2022-03-09 2025-03-27 株式会社Uacj Aluminum alloy plate for can lids
JP7420995B1 (en) 2023-04-17 2024-01-23 株式会社Uacj Aluminum alloy plate for can lids
JP7420996B1 (en) 2023-04-17 2024-01-23 株式会社Uacj Aluminum alloy plate for can lids
JP7473707B1 (en) 2023-04-17 2024-04-23 株式会社Uacj Aluminum alloy plate for can lids

Also Published As

Publication number Publication date
JP2001073106A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JPH06101005A (en) Production of thin plate of aluminum alloy
JP4950495B2 (en) Manufacturing method of aluminum alloy plate for PP cap
JP3998387B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JP4077997B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
EP1058743B1 (en) Process of manufacturing high strength aluminum foil
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3981505B2 (en) Manufacturing method of aluminum alloy soft plate for deep drawing
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JPH0122345B2 (en)
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP2002105574A (en) Aluminum alloy hard sheet for can peever and its production method
JPS60428B2 (en) Manufacturing method of Al alloy plate for packaging
JP2004183045A (en) Aluminum alloy sheet for coated tab, and its production method
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JPH04235248A (en) Cover material for stay-on-tab type aluminum can and its production
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH1112676A (en) Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees