[go: up one dir, main page]

JP4068616B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4068616B2
JP4068616B2 JP2004373097A JP2004373097A JP4068616B2 JP 4068616 B2 JP4068616 B2 JP 4068616B2 JP 2004373097 A JP2004373097 A JP 2004373097A JP 2004373097 A JP2004373097 A JP 2004373097A JP 4068616 B2 JP4068616 B2 JP 4068616B2
Authority
JP
Japan
Prior art keywords
electrode
chip
signal
semiconductor device
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373097A
Other languages
Japanese (ja)
Other versions
JP2005210106A (en
Inventor
行敏 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2004373097A priority Critical patent/JP4068616B2/en
Publication of JP2005210106A publication Critical patent/JP2005210106A/en
Application granted granted Critical
Publication of JP4068616B2 publication Critical patent/JP4068616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of reducing generated electromagnetic noise. <P>SOLUTION: A semiconductor device 100 has a plurality of laminated semiconductor chips 110. In the semiconductor device 100, by a through electrode penetrating the semiconductor chip 110, chips are connected electrically. Power is supplied to each semiconductor chip 110 by a plurality of power supply through electrodes 121 and ground through electrodes 122. Signal through electrodes 123, the power supply through electrodes 121 and the ground through electrodes 122 are adjacently arranged, and a loop area of a current path in which a current flows when the signal through electrode 123 changes its output is reduced. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

本発明は、半導体装置に関し、更に詳しくは、積層された複数のチップを有する半導体装置に関する。   The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a plurality of stacked chips.

近年デジタル情報家電などの小型軽量化、高機能・高性能化などにより、半導体パッケージの小型化、薄型化、高密度化が進んでおり、また、積層された複数の半導体チップを1つのパッケージに搭載する技術が注目されている。積層された複数の半導体チップを搭載する半導体装置は、例えば、高機能・高性能が要求されると共に小型軽量化が要求される、携帯電話や、デジタルカメラ、PDAなどの機器に使用される。   In recent years, with the reduction in size and weight of digital information home appliances, higher functionality, and higher performance, semiconductor packages have become smaller, thinner, and higher in density. In addition, a plurality of stacked semiconductor chips are integrated into one package. The technology to be installed is drawing attention. A semiconductor device on which a plurality of stacked semiconductor chips are mounted is used, for example, in devices such as a mobile phone, a digital camera, and a PDA, which are required to have high functionality and high performance, and to be reduced in size and weight.

図8(a)は、積層された複数のチップを有する従来の半導体装置を平面図で示し、同図(b)は、同図(a)のA−A断面を示している。この半導体装置200は、チップサイズが相互に異なる3つの半導体チップ202を有する。同図(b)に示すように、3つの半導体チップ202は、チップサイズが大きい半導体チップ202の上にチップサイズが小さい半導体チップ202が順次に搭載されて、ベース基板201上に積層される。   FIG. 8A shows a plan view of a conventional semiconductor device having a plurality of stacked chips, and FIG. 8B shows a cross section taken along the line AA of FIG. The semiconductor device 200 includes three semiconductor chips 202 having different chip sizes. As shown in FIG. 2B, the three semiconductor chips 202 are stacked on the base substrate 201 by sequentially mounting the semiconductor chips 202 having a small chip size on the semiconductor chip 202 having a large chip size.

図8(a)に示すように、各半導体チップ202は、その周縁領域に電極パッド203が形成され、半導体チップ202の電極パッド203相互間が、また、ベース基板201の電極パッド203と半導体チップ202の電極パッド203との間が、ボンディングワイヤ204により接続されている。この半導体装置200では、電極パッド203にボンディングワイヤ204を接続する空間が必要であるため、ある半導体チップ202の上層には、その半導体チップよりもチップサイズが小さい半導体チップ202しか積層することができない。   As shown in FIG. 8A, each semiconductor chip 202 has an electrode pad 203 formed in the peripheral region thereof, between the electrode pads 203 of the semiconductor chip 202, and between the electrode pad 203 of the base substrate 201 and the semiconductor chip. The electrode pads 203 of 202 are connected by bonding wires 204. In this semiconductor device 200, since a space for connecting the bonding wire 204 to the electrode pad 203 is necessary, only a semiconductor chip 202 having a smaller chip size than that semiconductor chip can be stacked on an upper layer of the semiconductor chip 202. .

同じチップサイズを有する複数の半導体チップ202を積層できる技術としては、例えば特許文献1に記載された技術がある。図9は、特許文献1に記載された半導体装置300を示している。この技術では、同じチップサイズの半導体チップ301を複数積層し、電極パッド302の形成位置に、複数の半導体チップ301を貫く貫通孔を形成し、その貫通孔に導電性の樹脂を注入して貫通電極303を形成し、貫通電極303によって半導体チップ301の電極パッド302間を接続している。この技術によれば、ボンディングワイヤのための空間を必要とせず、半導体チップ301をすべて同じサイズで形成することができる。
特開平10−163411号公報
As a technique capable of stacking a plurality of semiconductor chips 202 having the same chip size, there is a technique described in Patent Document 1, for example. FIG. 9 shows a semiconductor device 300 described in Patent Document 1. In this technique, a plurality of semiconductor chips 301 of the same chip size are stacked, a through hole is formed through the plurality of semiconductor chips 301 at a position where the electrode pad 302 is formed, and a conductive resin is injected into the through hole. Electrodes 303 are formed, and the electrode pads 302 of the semiconductor chip 301 are connected by the through electrodes 303. According to this technique, a space for bonding wires is not required, and the semiconductor chips 301 can be formed with the same size.
JP-A-10-163411

ところで、図8に示す従来の半導体装置200では、ボンディングワイヤ204と電極パッド203との接続の信頼性を確保するために、電極パッド203のパッドサイズは100μm程度の大きさが必要である。また、隣接する2つのボンディングワイヤ204が接近しすぎるとクロストークやショートが発生するおそれがあるため、隣接する2つの電極パッド203間の距離をあまり短くすることはできない。このため、半導体チップ202上に作ることができる電極パッド203の数は制限されている。   In the conventional semiconductor device 200 shown in FIG. 8, the pad size of the electrode pad 203 needs to be about 100 μm in order to ensure the reliability of the connection between the bonding wire 204 and the electrode pad 203. In addition, if the two adjacent bonding wires 204 are too close, there is a possibility that a crosstalk or a short circuit may occur. Therefore, the distance between the two adjacent electrode pads 203 cannot be made too short. For this reason, the number of electrode pads 203 that can be formed on the semiconductor chip 202 is limited.

例えば、半導体チップ202がDRAMチップとして構成されるとき、電極パッド203には、電源端子やグランド端子に加えて、アドレス信号や、コマンド信号、コントロール信号、データ信号等の多数の信号端子が割り当てられる。上記のように、半導体チップ202では、形成できる電極パッド203の数が制限されている上に、電極パッド203には多数の信号端子を割り当てる必要があるため、半導体チップ202では、電源端子やグランド端子を割り当てることができる電極パッド203の数は更に制限されていた。   For example, when the semiconductor chip 202 is configured as a DRAM chip, a number of signal terminals such as an address signal, a command signal, a control signal, and a data signal are assigned to the electrode pad 203 in addition to a power supply terminal and a ground terminal. . As described above, in the semiconductor chip 202, the number of electrode pads 203 that can be formed is limited, and a large number of signal terminals need to be assigned to the electrode pads 203. The number of electrode pads 203 to which terminals can be assigned is further limited.

特許文献1に記載の半導体装置300では、図8に示す従来の半導体装置200に比して、チップ上に形成できる電極パッド数を増やすことができる。しかし、この半導体装置300においても、電源端子及びグランド端子と信号端子とが近接して配置されていない場合には、以下に示すような問題が発生することとなる。   In the semiconductor device 300 described in Patent Document 1, the number of electrode pads that can be formed on a chip can be increased as compared with the conventional semiconductor device 200 shown in FIG. However, also in this semiconductor device 300, when the power supply terminal, the ground terminal, and the signal terminal are not arranged close to each other, the following problems occur.

図10は、信号端子に近接して電源端子及びグランド端子が配置されない比較例の半導体装置を斜視図で示している。この半導体装置400は、IF(インターフェース)チップ401と、DRAMとして構成される4つの半導体チップ402とを有する。IFチップ401に外部から供給された電源は、電源貫通電極403及びグランド貫通電極404を介して、各半導体チップ402内のチップ内電源配線405及びチップ内グランド配線406にそれぞれ供給される。ドライバ407は、半導体チップ202の周辺部分に配置されており、チップ内電源配線405及びチップ内グランド配線406から電源の供給を受けて動作する。ドライバ407が出力する信号は、信号貫通電極408を介してIFチップ401に入力される。   FIG. 10 is a perspective view of a semiconductor device of a comparative example in which a power supply terminal and a ground terminal are not disposed adjacent to the signal terminal. The semiconductor device 400 includes an IF (interface) chip 401 and four semiconductor chips 402 configured as a DRAM. The power supplied from the outside to the IF chip 401 is supplied to the in-chip power supply wiring 405 and the in-chip ground wiring 406 in each semiconductor chip 402 via the power supply through electrode 403 and the ground through electrode 404, respectively. The driver 407 is disposed in the peripheral portion of the semiconductor chip 202 and operates by receiving power from the in-chip power supply wiring 405 and the in-chip ground wiring 406. A signal output from the driver 407 is input to the IF chip 401 via the signal through electrode 408.

半導体装置400において、最上層の半導体チップ402(3)のドライバ407が出力をLレベルからHレベルに変化させる場合について考える。この場合、図10中に矢印409で示すような経路を流れる電流によって信号貫通電極408が充電される。この充電電流は、高電位側の電源から、IFチップ401、電源貫通電極403、チップ内電源配線405、信号貫通電極408、及び、IFチップ401をたどって低電位側の電源に帰還し、その電流経路は、立体的なループ状の電流経路を構成している。   In the semiconductor device 400, consider a case where the driver 407 of the uppermost semiconductor chip 402 (3) changes the output from the L level to the H level. In this case, the signal through electrode 408 is charged by a current flowing through a path indicated by an arrow 409 in FIG. This charging current is fed back from the high potential side power source to the low potential side power source through the IF chip 401, the power supply through electrode 403, the in-chip power supply wiring 405, the signal through electrode 408, and the IF chip 401. The current path constitutes a three-dimensional loop-shaped current path.

上記のようにして、最上層の半導体チップ402の出力がLレベルからHレベルに変化すると、半導体装置400の外部では、上記のループの面積や、ループを流れる電流、その周波数成分に応じた電磁ノイズが発生する。比較例の半導体装置400では、電源貫通電極403と信号貫通電極408とが離れているためループ面積が大きく、電磁ノイズが大きいという問題がある。また、半導体装置400では、2つの信号貫通電極408が隣接して配置されていると、隣接する信号貫通電極408間でクロストークが発生することがあるという問題もある。   As described above, when the output of the uppermost semiconductor chip 402 changes from the L level to the H level, outside the semiconductor device 400, the area of the loop, the current flowing through the loop, and the electromagnetic wave corresponding to the frequency component Noise is generated. The semiconductor device 400 of the comparative example has a problem that the loop area is large and the electromagnetic noise is large because the power supply through electrode 403 and the signal through electrode 408 are separated. Further, in the semiconductor device 400, when the two signal through electrodes 408 are arranged adjacent to each other, there is a problem that crosstalk may occur between the adjacent signal through electrodes 408.

本発明は、積層された複数の半導体チップを有する半導体装置であって、発生する電磁ノイズを低減できる半導体装置を提供することを目的とする。また、本発明は、前記目的を達成した上で、隣接する信号線間のクロストークを抑制できる半導体装置を提供することを目的とする。   An object of the present invention is to provide a semiconductor device having a plurality of stacked semiconductor chips and capable of reducing generated electromagnetic noise. Another object of the present invention is to provide a semiconductor device that can suppress crosstalk between adjacent signal lines while achieving the above object.

上記目的を達成するために、本発明の半導体装置は、それぞれがチップ外信号線を介してチップ外に信号を出力する、積層された複数の半導体チップと、それぞれが前記チップ外信号線、電源線、及び、グランド線を構成し前記複数の半導体チップを貫通して延びる複数の貫通電極とを備える半導体装置において、少なくとも1つの前記チップ外信号線を構成する貫通電極が、前記電源線を構成する貫通電極と前記グランド線を構成する貫通電極の双方に隣接して配置されることを特徴とする。   In order to achieve the above object, a semiconductor device of the present invention includes a plurality of stacked semiconductor chips, each of which outputs a signal to the outside of the chip via an out-of-chip signal line, and the out-of-chip signal line and the power source. And a plurality of through electrodes extending through the plurality of semiconductor chips and forming at least one through-chip signal line constitutes the power supply line It is characterized by being disposed adjacent to both the penetrating electrode and the penetrating electrode constituting the ground line.

本発明の半導体装置では、上記構成を採用することにより、チップ外信号線が出力状態を変化させた際に、その信号線を構成する貫通電極と電源線を構成する貫通電極とを流れる電流の電流経路、又は、その信号線を構成する貫通電極とグランド線を構成する貫通電極とを流れる電流の電流経路のループ面積を小さくでき、半導体装置から発生する電磁ノイズを低減することができる。   In the semiconductor device of the present invention, by adopting the above-described configuration, when the signal line outside the chip changes the output state, the current flowing through the through electrode constituting the signal line and the through electrode constituting the power supply line is reduced. The loop area of the current path of the current flowing through the current path or the through electrode constituting the signal line and the through electrode constituting the ground line can be reduced, and electromagnetic noise generated from the semiconductor device can be reduced.

本発明の半導体装置では、順次に配列された、電源線を構成する貫通電極、前記チップ外信号線を構成する貫通電極、及び、前記グランド線を構成する貫通電極を含む構成を採用することができる。この場合、チップ外信号線を構成する貫通電極が、その両側から電源線を構成する貫通電極とグランド線を構成する貫通電極とによって挟み込まれていることにより、チップ外信号線を構成する貫通電極と電源線を構成する貫通電極、又は、チップ外信号線を構成する貫通電極とグランド線を構成する貫通電極とによって構成される立体的な電流ループの面積を小さくすることができ、発生する電磁ノイズを低減できる。   In the semiconductor device of the present invention, it is possible to employ a configuration including a through electrode that constitutes a power supply line, a through electrode that constitutes the off-chip signal line, and a through electrode that constitutes the ground line, which are sequentially arranged. it can. In this case, the through electrode constituting the signal line outside the chip is sandwiched between the through electrode constituting the power supply line and the through electrode constituting the ground line from both sides of the through electrode constituting the signal line outside the chip. The area of the three-dimensional current loop formed by the through electrode constituting the power line and the through electrode constituting the off-chip signal line and the through electrode constituting the ground line can be reduced, and the generated electromagnetic Noise can be reduced.

本発明の半導体装置では、隣接する2つのチップ外信号線を構成する貫通電極の間に、前記電源線を構成する貫通電極及び前記グランド線を構成する貫通電極の少なくとも一方が配置される構成を採用することができる。この場合、隣接する2つのチップ外信号線を構成する貫通電極の間のクロストークを抑制できる。   In the semiconductor device of the present invention, at least one of the through electrode constituting the power supply line and the through electrode constituting the ground line is disposed between the through electrodes constituting the adjacent two off-chip signal lines. Can be adopted. In this case, it is possible to suppress crosstalk between the through electrodes constituting the two adjacent off-chip signal lines.

本発明の半導体装置では、前記少なくとも1つのチップ外信号線を構成する貫通電極が、前記電源線を構成する貫通電極及び前記グランド線を構成する貫通電極の少なくとも一方を含む貫通電極によって囲まれる構成を採用することができる。この場合、チップ外信号線を構成する貫通電極に侵入するノイズ等を低減することができる。   In the semiconductor device of the present invention, the through electrode constituting the at least one off-chip signal line is surrounded by the through electrode including at least one of the through electrode constituting the power supply line and the through electrode constituting the ground line. Can be adopted. In this case, it is possible to reduce noise or the like entering the through electrode constituting the off-chip signal line.

本発明の半導体装置では、前記複数の半導体チップがDRAMを含む構成とすることができる。   In the semiconductor device of the present invention, the plurality of semiconductor chips may include a DRAM.

本発明の半導体装置では、チップ外信号線を構成する貫通電極と、電源線又はグランド線を構成する貫通電極とにより構成される立体的な電流経路のループの面積を小さくできるため、発生する電磁ノイズを低減することができる。また、隣接する2つのチップ外信号線を構成する貫通電極の間に、電源線又はグランド線を構成する貫通電極の少なくとも一方を配置する場合には、チップ外信号線を構成する貫通電極間で発生するクロストークを低く抑えることができる。   In the semiconductor device of the present invention, since the area of the three-dimensional current path loop formed by the through electrode constituting the off-chip signal line and the through electrode constituting the power supply line or the ground line can be reduced, the generated electromagnetic wave Noise can be reduced. When at least one of the through electrodes constituting the power supply line or the ground line is arranged between the through electrodes constituting the two adjacent off-chip signal lines, between the through electrodes constituting the off-chip signal lines. The generated crosstalk can be kept low.

以下、図面を参照し、本発明の実施形態例に基づいて、本発明を更に詳細に説明する。図1は、本発明の半導体装置を斜視図で示している。この半導体装置100は、IFチップ101と、その上に積層された3つの半導体チップ110(0)〜110(3)とを有し、各チップ間は、電源線を構成する電源貫通電極121と、グランド線を構成するグランド貫通電極122と、チップ外信号線を構成する信号貫通電極123とによって接続されている。電源貫通電極121、グランド貫通電極122、及び、信号貫通電極123は、それぞれ半導体チップ110の周縁部に形成される。   Hereinafter, with reference to the drawings, the present invention will be described in more detail based on exemplary embodiments of the present invention. FIG. 1 is a perspective view of a semiconductor device of the present invention. The semiconductor device 100 includes an IF chip 101 and three semiconductor chips 110 (0) to 110 (3) stacked on the IF chip 101, and a power supply through electrode 121 constituting a power supply line is provided between the chips. The ground through electrode 122 constituting the ground line and the signal through electrode 123 constituting the off-chip signal line are connected. The power supply through electrode 121, the ground through electrode 122, and the signal through electrode 123 are each formed on the peripheral edge of the semiconductor chip 110.

IFチップ101は、IF内電源配線102と、IF内グランド配線103と、レシーバ104とを有する。各半導体チップ110は、DRAMチップとして構成され、チップ内電源配線111と、チップ内グランド配線112と、DRAMセル(内部回路)113と、ドライバ114とを有する。IFチップ101に外部から供給された電源は、IF内電源配線102及びIF内グランド配線103と、電源貫通電極121及びグランド貫通電極122とを介して、各半導体チップ110内のチップ内電源配線111及びチップ内グランド配線112に供給される。   The IF chip 101 includes an IF power supply wiring 102, an IF ground wiring 103, and a receiver 104. Each semiconductor chip 110 is configured as a DRAM chip, and includes an in-chip power supply wiring 111, an in-chip ground wiring 112, a DRAM cell (internal circuit) 113, and a driver 114. The power supplied from the outside to the IF chip 101 is supplied to the power supply wiring 111 in the chip in each semiconductor chip 110 through the power supply wiring 102 in the IF, the ground wiring 103 in the IF, the power supply through electrode 121 and the ground through electrode 122. And supplied to the intra-chip ground wiring 112.

図2は、図1の半導体装置100の周縁部を断面図で示している。IFチップ101及び各半導体チップ110には、それぞれチップ内を貫通するチップ内貫通電極が設けられており、IFチップ101のチップ内貫通電極と半導体チップ110のチップ内貫通電極とをバンプ124によって接続することで、Z方向に延びる貫通電極120が形成される。貫通電極120は、電源貫通電極121、グランド貫通電極122、又は、信号貫通電極123(図1)を含む。電源貫通電極121及びグランド貫通電極122は、信号が変化する際の電流経路のループ面積削減を目的として、或いは、信号貫通電極123間のクロストーク削減を目的として挿入されるものを含む。電源貫通電極121及びグランド貫通電極122と、信号貫通電極123との間隔は例えば50μm程度であり、各貫通電極120の直径は例えば20μm程度である。なお、貫通電極120間の間隔、貫通電極120の直径に関しては、貫通電極製造技術の進歩に従い、これらの値よりも小さくなることも考えられる。   FIG. 2 shows a peripheral portion of the semiconductor device 100 of FIG. 1 in a cross-sectional view. Each of the IF chip 101 and each semiconductor chip 110 is provided with an in-chip through electrode penetrating through the chip, and the in-chip through electrode of the IF chip 101 and the in-chip through electrode of the semiconductor chip 110 are connected by a bump 124. Thus, the through electrode 120 extending in the Z direction is formed. The through electrode 120 includes a power supply through electrode 121, a ground through electrode 122, or a signal through electrode 123 (FIG. 1). The power supply through electrode 121 and the ground through electrode 122 include those inserted for the purpose of reducing the loop area of the current path when the signal changes or for reducing the crosstalk between the signal through electrodes 123. The intervals between the power supply through electrode 121 and the ground through electrode 122 and the signal through electrode 123 are, for example, about 50 μm, and the diameter of each through electrode 120 is, for example, about 20 μm. Note that the distance between the through electrodes 120 and the diameter of the through electrodes 120 may be smaller than these values as the through electrode manufacturing technology advances.

図3は、半導体チップ110のドライバ114付近を平面図として示している。各電源貫通電極121は、それぞれチップ内電源配線111に接続され、各グランド貫通電極122は、それぞれチップ内グランド配線112に接続される。また、各信号貫通電極123は、ドライバ114の出力に接続される。電源貫通電極121及びグランド貫通電極122は、それぞれドライバ114及び信号貫通電極123に近接して配置されている。電源貫通電極121、グランド貫通電極122、及び、信号貫通電極123は、一列に並ぶように配置され、信号貫通電極123、Y方向の両側から、電源貫通電極121及びグランド貫通電極122によって挟み込まれている。   FIG. 3 is a plan view showing the vicinity of the driver 114 of the semiconductor chip 110. Each power supply through electrode 121 is connected to the in-chip power supply wiring 111, and each ground through electrode 122 is connected to the in-chip ground wiring 112. Each signal through electrode 123 is connected to the output of the driver 114. The power supply through electrode 121 and the ground through electrode 122 are arranged close to the driver 114 and the signal through electrode 123, respectively. The power supply through electrode 121, the ground through electrode 122, and the signal through electrode 123 are arranged in a line, and are sandwiched by the signal through electrode 123 and the ground through electrode 122 from both sides in the Y direction. Yes.

信号貫通電極123と、電源貫通電極121及びグランド貫通電極122の比率は、それら貫通電極120の長さに応じて変更できる。例えば、積層されるチップ数が少ない場合には、貫通電極120の長さは短くなり、電流経路のループ面積は小さくなるため、信号貫通電極123間のクロストークの影響は小さい。このような場合には、信号貫通電極123と、電源貫通電極121及びグランド貫通電極122との比率を1:1とする必要はなく、複数の信号貫通電極123に対して、それぞれ1本の電源貫通電極121及びグランド貫通電極122を配置してもよい。   The ratio of the signal through electrode 123, the power supply through electrode 121, and the ground through electrode 122 can be changed according to the length of the through electrode 120. For example, when the number of stacked chips is small, the length of the through electrode 120 is reduced and the loop area of the current path is reduced, so that the influence of crosstalk between the signal through electrodes 123 is small. In such a case, the ratio of the signal through electrode 123 to the power through electrode 121 and the ground through electrode 122 does not have to be 1: 1, and one power source is provided for each of the plurality of signal through electrodes 123. The through electrode 121 and the ground through electrode 122 may be disposed.

図4は、図1の半導体装置100を、チップ内の回路図の一部と共に模式的に示している。同図では、IFチップ101に形成されるレシーバ104の1つ、及び、半導体チップ110に形成されるドライバ114の1つの回路部分を示している。以下、図1及び図4を参照し、最上層の半導体チップ110(3)のドライバ114(1)が、出力する信号をLレベルからHレベルに変化させる際の動作、及び、出力する信号をHレベルからLレベルに変化させる際の動作について説明する。   FIG. 4 schematically shows the semiconductor device 100 of FIG. 1 together with a part of a circuit diagram in the chip. In the figure, one circuit portion of one receiver 104 formed on the IF chip 101 and one driver 114 formed on the semiconductor chip 110 is shown. Hereinafter, referring to FIGS. 1 and 4, the operation when the driver 114 (1) of the uppermost semiconductor chip 110 (3) changes the output signal from the L level to the H level and the output signal are described. The operation when changing from the H level to the L level will be described.

ドライバ114(1)の出力がHレベルであるとき、ドライバ114(1)を構成するpMOSトランジスタM1及びnMOSトランジスタM2のゲートにLレベルの信号が入力されると、pMOSトランジスタM1がオンに、nMOSトランジスタがオフになって、ドライバ114(1)は、出力をHレベルに変化させる。このとき、ドライバ114(1)には、外部電源から、IF内電源配線102、複数の電源貫通電極121のうち最もドライバ114に近接して配置される電源貫通電極121(1)、及び、チップ内電源配線111を介して、充電電流が供給される。この充電電流は、pMOSトランジスタM1、信号貫通電極123(1)、レシーバ104の入力とIF内グランド配線103との間の寄生容量C2、及び、IF内グランド配線103を介して、外部電源に帰還する。   When the output of the driver 114 (1) is at the H level, when an L level signal is input to the gates of the pMOS transistor M1 and the nMOS transistor M2 constituting the driver 114 (1), the pMOS transistor M1 is turned on, and the nMOS The transistor is turned off, and the driver 114 (1) changes the output to the H level. At this time, the driver 114 (1) includes, from an external power supply, the power supply wiring in the IF 102, the power supply through electrode 121 (1) disposed closest to the driver 114 among the plurality of power supply through electrodes 121, and the chip. A charging current is supplied through the internal power supply wiring 111. This charging current is fed back to the external power supply via the pMOS transistor M1, the signal through electrode 123 (1), the parasitic capacitance C2 between the input of the receiver 104 and the IF ground wiring 103, and the IF ground wiring 103. To do.

上記とは逆に、ドライバ114(1)の出力がLレベルであるときドライバ114(1)を構成するpMOSトランジスタM1及びnMOSトランジスタM2のゲートにHレベルの信号が入力されると、pMOSトランジスタM1がオフに、nMOSトランジスタがオンになって、ドライバ114(1)は、出力をLレベルに変化させる。このとき、ドライバ114(1)には、外部電源から、IF内電源配線102、レシーバ104の入力とIF内電源配線102との間の寄生容量C1、及び、信号貫通電極123(1)を介して、放電電流が供給される。この放電電流は、nMOSトランジスタM2、チップ内グランド配線112、複数のグランド貫通電極122のうち最もドライバ114に近接して配置されるグランド貫通電極122(1)、及び、IF内グランド配線103を介して、外部電源に帰還する。   Contrary to the above, when an H level signal is input to the gates of the pMOS transistor M1 and the nMOS transistor M2 constituting the driver 114 (1) when the output of the driver 114 (1) is at the L level, the pMOS transistor M1. Is turned off, the nMOS transistor is turned on, and the driver 114 (1) changes the output to the L level. At this time, the driver 114 (1) is supplied from an external power source through the IF power line 102, the parasitic capacitance C 1 between the input of the receiver 104 and the IF power line 102, and the signal through electrode 123 (1). Thus, a discharge current is supplied. This discharge current passes through the nMOS transistor M2, the in-chip ground wiring 112, the ground through electrode 122 (1) disposed closest to the driver 114 among the plurality of ground through electrodes 122, and the IF in-ground ground wiring 103. Return to the external power supply.

ここで、本実施形態例の半導体装置100におけるドライバ114の出力が変化した際に流れる電流の立体的な電流経路と、図10に示した比較例の半導体装置400における立体的な電流経路とを比較する。比較例の半導体装置400では、電源貫通電極403及びグランド貫通電極404がドライバ407から離れた位置に形成されており、ドライバ407が出力を変化させた際に流れる充電電流又は放電電流の立体的な電流経路のループの面積が大きい。これに対して、本実施形態例の半導体装置100では、充電電流又は放電電流は、それぞれ複数の電源貫通電極121及びグランド貫通電極122のうち、出力が変化するドライバ114に最も近い電源貫通電極121又はグランド貫通電極122によって供給されるため、比較例の半導体装置400に比して、立体的な電流経路のループの面積を小さくできる。   Here, the three-dimensional current path of the current that flows when the output of the driver 114 in the semiconductor device 100 of this embodiment changes, and the three-dimensional current path of the semiconductor device 400 of the comparative example shown in FIG. Compare. In the semiconductor device 400 of the comparative example, the power supply through electrode 403 and the ground through electrode 404 are formed at positions away from the driver 407, and the three-dimensional charge current or discharge current that flows when the driver 407 changes the output. The loop area of the current path is large. On the other hand, in the semiconductor device 100 of this embodiment, the charging current or the discharging current is the power supply through electrode 121 closest to the driver 114 whose output changes among the plurality of power supply through electrodes 121 and the ground through electrode 122, respectively. Alternatively, since it is supplied by the ground through electrode 122, the area of the three-dimensional current path loop can be reduced as compared with the semiconductor device 400 of the comparative example.

本実施形態例では、貫通電極120(図2)を用いて上層側と下層側とを接続しており、半導体チップ110上に多数の電極パッドを形成できるため、信号電極パッドの近傍に、電源電極パッド及びグランド電極パッドを形成できる。このため、半導体装置100では、信号貫通電極123の近傍に、電源貫通電極121及びグランド貫通電極122を配置する構成を採用することができ、この構成により、アドレスや、コマンド、データ等の信号が変化する際の電流経路のループ面積を小さくしている。一般に、面積Sの回路ループに周波数成分fを持つ電流iが流れた場合には、ループから距離r離れた点における電界の大きさEは、
E=1.316×10-14×(i・f2・S/r) (1)
で表すことができ、本実施形態例の半導体装置100では、上記のようにループ面積Sを小さくできるため、半導体装置100から発生する電磁ノイズを低減することができる。
In the present embodiment example, the upper layer side and the lower layer side are connected using the through electrode 120 (FIG. 2), and a large number of electrode pads can be formed on the semiconductor chip 110. Electrode pads and ground electrode pads can be formed. For this reason, the semiconductor device 100 can employ a configuration in which the power supply through electrode 121 and the ground through electrode 122 are disposed in the vicinity of the signal through electrode 123. With this configuration, signals such as addresses, commands, and data can be transmitted. The loop area of the current path when changing is reduced. In general, when a current i having a frequency component f flows in a circuit loop having an area S, the electric field magnitude E at a point away from the loop by a distance r is:
E = 1.316 × 10 −14 × (i · f 2 · S / r) (1)
In the semiconductor device 100 of the present embodiment example, the loop area S can be reduced as described above, so that electromagnetic noise generated from the semiconductor device 100 can be reduced.

図5は、本発明の第2実施形態例の半導体装置における半導体チップの一部を平面図として示している。本実施形態例の半導体装置100aは、図1に示す第1実施形態例の半導体装置100と同様に、積層された複数の半導体チップ110aを有する。なお、図5では、半導体チップ110aを図3と同様に示し、電源貫通電極121、グランド貫通電極122、及び、信号貫通電極123以外については省略して図示している。本実施形態例では、電源貫通電極121及びグランド貫通電極122は、隣接する2つの信号貫通電極123の間に配置される。   FIG. 5 is a plan view showing a part of the semiconductor chip in the semiconductor device according to the second embodiment of the present invention. Similar to the semiconductor device 100 of the first embodiment shown in FIG. 1, the semiconductor device 100a of this embodiment has a plurality of stacked semiconductor chips 110a. In FIG. 5, the semiconductor chip 110 a is shown in the same manner as in FIG. 3, and components other than the power supply through electrode 121, the ground through electrode 122, and the signal through electrode 123 are omitted. In the present embodiment example, the power supply through electrode 121 and the ground through electrode 122 are disposed between two adjacent signal through electrodes 123.

第1実施形態例の半導体装置100では、図3に示すように、隣接する2つの電源貫通電極121同士、グランド貫通電極122同士、及び、信号貫通電極123同士が、それぞれX方向に沿って一列に並んで配列されており、隣接する2つの信号貫通電極123間でクロストークが問題になる可能性があった。本実施形態例の半導体装置100aでは、隣接する2つの信号貫通電極123の間に、電源貫通電極121及びグランド貫通電極122が配置されるため、第1実施形態例と同様に、信号貫通電極123に電流が流れた際のループ面積を小さくして電磁ノイズ発生を低減できると共に、第1実施形態例に比して、隣接する2つの信号貫通電極123間でのクロストークを抑制できる。   In the semiconductor device 100 of the first embodiment, as shown in FIG. 3, two adjacent power supply through electrodes 121, ground through electrodes 122, and signal through electrodes 123 are arranged in a row along the X direction. The crosstalk may be a problem between the two adjacent signal penetration electrodes 123. In the semiconductor device 100a of the present embodiment example, the power supply through electrode 121 and the ground through electrode 122 are disposed between two adjacent signal through electrodes 123. Therefore, the signal through electrode 123 is the same as in the first embodiment. In addition to reducing the loop area when a current flows through and reducing electromagnetic noise, crosstalk between two adjacent signal through electrodes 123 can be suppressed as compared to the first embodiment.

なお、図5では、隣接する2つの信号貫通電極123の間に電源貫通電極121及びグランド貫通電極122を配置する例について示したが、これに加えて、図6に示すように、信号貫通電極123をY方向の両側から挟みこむ位置に、電源貫通電極121及びグランド貫通電極122を配置してもよい。この場合には、信号貫通電極123は、電源貫通電極121とグランド貫通電極122とによって、その周囲を囲まれることになる。   5 shows an example in which the power supply through electrode 121 and the ground through electrode 122 are arranged between two adjacent signal through electrodes 123, but in addition to this, as shown in FIG. The power supply through electrode 121 and the ground through electrode 122 may be arranged at positions where the 123 is sandwiched from both sides in the Y direction. In this case, the signal through electrode 123 is surrounded by the power through electrode 121 and the ground through electrode 122.

貫通電極を備える半導体装置では、貫通電極が、N行×M列(N、Mは2以上の整数)の格子状に配置されることが考えられる。このような場合、信号貫通電極123を配置する格子点に隣接する格子点の貫通電極を、電源貫通電極121又はグランド貫通電極122として構成し、信号貫通電極123を電源貫通電極121又はグランド貫通電極122で囲うことで、ループ面積を削減し、信号貫通電極123間のクロストークを低減することができる。   In a semiconductor device provided with a through electrode, it is conceivable that the through electrode is arranged in a grid of N rows × M columns (N and M are integers of 2 or more). In such a case, the through electrode at the lattice point adjacent to the lattice point where the signal through electrode 123 is disposed is configured as the power through electrode 121 or the ground through electrode 122, and the signal through electrode 123 is configured as the power through electrode 121 or the ground through electrode. By enclosing with 122, the loop area can be reduced and the crosstalk between the signal through electrodes 123 can be reduced.

本発明の半導体装置では、全ての信号貫通電極123の近傍に電源貫通電極121及びグランド貫通電極122が配置されている必要はない。例えば、回路ブロックのレイアウトなどの都合によっては、すべての信号貫通電極123の近傍に電源貫通電極121及びグランド貫通電極122を配置できない場合もある。その場合には、複数の信号貫通電極123の近傍に、それぞれ1つの電源貫通電極121及びグランド貫通電極122が配置されていればよい。また、式(1)からわかるように、半導体装置100から距離r離れた点における電界の大きさは、電流の周波数成分fや電流値iによっても決まるため、信号貫通電極123を流れる電流によって発生するノイズが小さい場合には、その信号貫通電極123の近傍には、電源貫通電極121及びグランド貫通電極122を配置しなくてもよい。   In the semiconductor device of the present invention, the power supply through electrode 121 and the ground through electrode 122 do not have to be disposed in the vicinity of all the signal through electrodes 123. For example, depending on the layout of the circuit block, the power supply through electrode 121 and the ground through electrode 122 may not be disposed in the vicinity of all the signal through electrodes 123. In that case, one power supply through electrode 121 and one ground through electrode 122 may be disposed in the vicinity of the plurality of signal through electrodes 123. Further, as can be seen from equation (1), the magnitude of the electric field at a point r away from the semiconductor device 100 is also determined by the frequency component f of the current and the current value i. When the noise to be transmitted is small, the power supply through electrode 121 and the ground through electrode 122 may not be disposed in the vicinity of the signal through electrode 123.

図7(a)及び(b)は、それぞれ、2つの信号貫通電極に対してそれぞれ2つの電源貫通電極及びグランド貫通電極が配置される半導体装置を示している。同図(a)では、4つの信号貫通電極123がX方向に沿って等間隔で1列に配列されており、2つの信号貫通電極123(1)及び123(2)の近傍には、電源貫通電極121(1)及びグランド貫通電極122(1)が配置され、別の2つの信号貫通電極123(3)及び123(4)の近傍には、電源貫通電極121(2)及びグランド貫通電極122(2)が配置されている。   FIGS. 7A and 7B each show a semiconductor device in which two power supply through electrodes and ground through electrodes are arranged for two signal through electrodes, respectively. In FIG. 5A, four signal through electrodes 123 are arranged in a line at equal intervals along the X direction, and a power source is located near the two signal through electrodes 123 (1) and 123 (2). The through electrode 121 (1) and the ground through electrode 122 (1) are arranged, and in the vicinity of the other two signal through electrodes 123 (3) and 123 (4), the power through electrode 121 (2) and the ground through electrode 122 (2) is arranged.

図7(a)に示す構成では、隣接する2つの信号貫通電極123間のクロストークが問題になる場合がある。そのような場合には、同図(b)に示すように、各信号貫通電極123のY方向の位置をずらして配置すればよい。このようにすることで、X方向での隣接する2つの信号貫通電極123の間隔を変えずに、信号貫通電極123間の距離を長くすることができ、クロストークの発生を抑制できる。   In the configuration shown in FIG. 7A, crosstalk between two adjacent signal through electrodes 123 may be a problem. In such a case, as shown in FIG. 5B, the Y-direction position of each signal penetration electrode 123 may be shifted. By doing so, the distance between the signal through electrodes 123 can be increased without changing the interval between the two adjacent signal through electrodes 123 in the X direction, and the occurrence of crosstalk can be suppressed.

上記各実施形態例では、信号貫通電極123がドライバ114の出力に接続される例について示したが、信号貫通電極123が接続されるのは、ドライバ114の出力には限定されない。また、ドライバ114は、pMOSトランジスタM1及びnMOSトランジスタM2によって構成されるプッシュ・プル型のドライバに限定されず、例えばnMOSトランジスタによって構成されるオープン・ドレイン型のドライバであってもよい。半導体チップ110は、DRAMチップには限定されず、半導体装置100の最下層はIFチップ101に限定されない。   In each of the embodiments described above, an example in which the signal through electrode 123 is connected to the output of the driver 114 has been described. However, the connection of the signal through electrode 123 is not limited to the output of the driver 114. The driver 114 is not limited to a push-pull driver configured by the pMOS transistor M1 and the nMOS transistor M2, and may be an open drain driver configured by an nMOS transistor, for example. The semiconductor chip 110 is not limited to a DRAM chip, and the lowermost layer of the semiconductor device 100 is not limited to the IF chip 101.

以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の半導体装置は、上記実施形態例にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。   Although the present invention has been described based on the preferred embodiment, the semiconductor device of the present invention is not limited to the above embodiment, and various modifications and changes can be made to the configuration of the above embodiment. Those subjected to are also included in the scope of the present invention.

本発明の半導体装置を示す斜視図。The perspective view which shows the semiconductor device of this invention. 半導体装置100の周縁部を示す断面図。FIG. 6 is a cross-sectional view showing a peripheral portion of the semiconductor device 100. 半導体チップ110のドライバ114付近を示す平面図。FIG. 3 is a plan view showing the vicinity of a driver 114 of a semiconductor chip 110. 図1の半導体装置100を、チップ内の回路図の一部と共に模式的に示す平面図。FIG. 2 is a plan view schematically showing the semiconductor device 100 of FIG. 1 together with a part of a circuit diagram in a chip. 本発明の第2実施形態例の半導体装置における半導体チップの一部を示す平面図。The top view which shows a part of semiconductor chip in the semiconductor device of 2nd Embodiment of this invention. 本発明の第2実施形態例の変形の半導体装置における半導体チップの一部を示す平面図。The top view which shows a part of semiconductor chip in the semiconductor device of the modification of 2nd Embodiment of this invention. (a)及び(b)は、それぞれ、2つの信号貫通電極に対してそれぞれ2つの電源貫通電極及びグランド貫通電極が配置される半導体装置の一部を示す平面図。(A) And (b) is a top view which shows a part of semiconductor device with which two power supply penetration electrodes and ground penetration electrodes are each arrange | positioned with respect to two signal penetration electrodes. (a)は、積層された複数のチップを有する従来の一般的な半導体装置を示す平面図、同図(b)は、同図(a)のA−A断面を示す断面図。(A) is a top view which shows the conventional general semiconductor device which has the some chip | tip laminated | stacked, The same figure (b) is sectional drawing which shows the AA cross section of the figure (a). 特許文献1に記載された半導体装置300を示す断面図。FIG. 6 is a cross-sectional view showing a semiconductor device 300 described in Patent Document 1. 信号端子に近接して電源端子及びグランド端子が配置されない比較例の半導体装置を示す斜視図。The perspective view which shows the semiconductor device of the comparative example by which a power supply terminal and a ground terminal are not arrange | positioned adjacent to a signal terminal.

符号の説明Explanation of symbols

100:半導体装置
101:IFチップ
102:IF内電源配線
103:IF内グランド配線
104:レシーバ
110:半導体チップ
111:チップ内電源配線
112:チップ内グランド配線
113:DRAMセル(内部回路)
114:ドライバ
120:貫通電極
121:電源貫通電極
122:グランド貫通電極
123:信号貫通電極
DESCRIPTION OF SYMBOLS 100: Semiconductor device 101: IF chip 102: IF power supply wiring 103: IF ground wiring 104: Receiver 110: Semiconductor chip 111: In-chip power wiring 112: In-chip ground wiring 113: DRAM cell (internal circuit)
114: Driver 120: Through electrode 121: Power supply through electrode 122: Ground through electrode 123: Signal through electrode

Claims (5)

それぞれがチップ外信号線を介してチップ外に信号を出力する、積層された複数の半導体チップと、それぞれが前記チップ外信号線、電源線、及び、グランド線を構成し前記複数の半導体チップを貫通して延びる複数の貫通電極とを備える半導体装置において、
少なくとも1つの前記チップ外信号線を構成する貫通電極が、前記電源線を構成する貫通電極と前記グランド線を構成する貫通電極の双方に隣接して配置され、前記電源線を構成する貫通電極と前記グランド線を構成する貫通電極は電流方向が互いに逆向きであることを特徴とする半導体装置。
A plurality of stacked semiconductor chips, each of which outputs a signal to the outside of the chip via an off-chip signal line, and each of the plurality of semiconductor chips comprising the off-chip signal line, a power supply line, and a ground line In a semiconductor device comprising a plurality of through electrodes extending through,
At least one through-electrode constituting the off-chip signal line is disposed adjacent to both the through-electrode constituting the power supply line and the through-electrode constituting the ground line, and the through-electrode constituting the power supply line; 2. A semiconductor device according to claim 1, wherein the through electrodes constituting the ground line have current directions opposite to each other .
順次に配列された、電源線を構成する貫通電極、前記チップ外信号線を構成する貫通電極、及び、前記グランド線を構成する貫通電極を含む、請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, comprising a through electrode constituting a power supply line, a through electrode constituting the off-chip signal line, and a through electrode constituting the ground line, which are sequentially arranged. 隣接する2つのチップ外信号線を構成する貫通電極の間に、前記電源線を構成する貫通電極及び前記グランド線を構成する貫通電極の少なくとも一方が配置されている、請求項1又は2に記載の半導体装置。   The at least one of the penetration electrode which comprises the said power supply line, and the penetration electrode which comprises the said ground line is arrange | positioned between the penetration electrodes which comprise two adjacent signal signals outside a chip | tip. Semiconductor device. 前記少なくとも1つのチップ外信号線を構成する貫通電極が、前記電源線を構成する貫通電極及び前記グランド線を構成する貫通電極の少なくとも一方を含む貫通電極によって囲まれる、請求項3に記載の半導体装置。   4. The semiconductor according to claim 3, wherein the through electrode constituting the at least one off-chip signal line is surrounded by a through electrode including at least one of the through electrode constituting the power supply line and the through electrode constituting the ground line. apparatus. 前記複数の半導体チップがDRAMを含む、請求項1乃至4の何れか一項に記載の半導体装置。 The semiconductor device according to claim 1 , wherein the plurality of semiconductor chips includes a DRAM.
JP2004373097A 2003-12-26 2004-12-24 Semiconductor device Expired - Fee Related JP4068616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373097A JP4068616B2 (en) 2003-12-26 2004-12-24 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003431961 2003-12-26
JP2004373097A JP4068616B2 (en) 2003-12-26 2004-12-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2005210106A JP2005210106A (en) 2005-08-04
JP4068616B2 true JP4068616B2 (en) 2008-03-26

Family

ID=34914213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373097A Expired - Fee Related JP4068616B2 (en) 2003-12-26 2004-12-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4068616B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799157B2 (en) 2005-12-06 2011-10-26 エルピーダメモリ株式会社 Multilayer semiconductor device
JP4753725B2 (en) * 2006-01-20 2011-08-24 エルピーダメモリ株式会社 Multilayer semiconductor device
JP4971074B2 (en) * 2006-08-28 2012-07-11 国立大学法人長岡技術科学大学 Production support program for industrial products
JP4791924B2 (en) * 2006-09-22 2011-10-12 株式会社東芝 Semiconductor memory device
JP2008124105A (en) * 2006-11-09 2008-05-29 Seiko Epson Corp Multilayer printed wiring board
JP5149554B2 (en) * 2007-07-17 2013-02-20 株式会社日立製作所 Semiconductor device
JP5372382B2 (en) * 2008-01-09 2013-12-18 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
JP5357510B2 (en) * 2008-10-31 2013-12-04 株式会社日立製作所 Semiconductor integrated circuit device
US7894230B2 (en) 2009-02-24 2011-02-22 Mosaid Technologies Incorporated Stacked semiconductor devices including a master device
US8330489B2 (en) 2009-04-28 2012-12-11 International Business Machines Corporation Universal inter-layer interconnect for multi-layer semiconductor stacks
JP5904259B2 (en) * 2010-01-08 2016-04-13 ソニー株式会社 Semiconductor device, solid-state imaging device, and camera system
JP5685898B2 (en) 2010-01-08 2015-03-18 ソニー株式会社 Semiconductor device, solid-state imaging device, and camera system
KR101751045B1 (en) 2010-05-25 2017-06-27 삼성전자 주식회사 3D Semiconductor device
CN103229240B (en) 2010-11-23 2015-05-20 考文森智财管理公司 Method and apparatus for sharing internal power supplies in integrated circuit devices
JP5684590B2 (en) 2011-01-28 2015-03-11 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device
JP2013258271A (en) 2012-06-12 2013-12-26 Ps4 Luxco S A R L Semiconductor device

Also Published As

Publication number Publication date
JP2005210106A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4068616B2 (en) Semiconductor device
US7576421B2 (en) Semiconductor device having a multi-layered semiconductor substrate
USRE46666E1 (en) Package board having internal terminal interconnection and semiconductor package employing the same
US8878351B2 (en) Semiconductor device
US7663903B2 (en) Semiconductor memory device having improved voltage transmission path and driving method thereof
US8633596B2 (en) Semiconductor package with bonding wires of reduced loop inductance
US20110169171A1 (en) Dual Interconnection in Stacked Memory and Controller Module
JP2005191447A (en) Semiconductor device and manufacturing method thereof
JP2010010492A (en) Semiconductor device and semiconductor integrated circuit
US20110115100A1 (en) Semiconductor device
US7960823B2 (en) Semiconductor device with different sized ESD protection elements
KR20220006807A (en) Semiconductor package including stacked semiconductor chips
JP4707095B2 (en) Semiconductor circuit
JP4754201B2 (en) Semiconductor device
JP5168872B2 (en) Semiconductor integrated circuit
CN113707645A (en) Semiconductor package including capacitor
JP4175155B2 (en) Semiconductor device
US7999370B2 (en) Semiconductor chip capable of increased number of pads in limited region and semiconductor package using the same
JP2009070967A (en) Semiconductor integrated circuit
JP2006041480A (en) Wiring structure of pad portion in semiconductor device
JP2005327987A (en) Semiconductor device
JP2012146979A (en) Area efficient arrangement of interface device within integrated circuit
JP2008085019A (en) Macro cell block and semiconductor device
JP2015213136A (en) Semiconductor device
JP2011258743A (en) Semiconductor chip and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees