[go: up one dir, main page]

JP4062882B2 - Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material - Google Patents

Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material Download PDF

Info

Publication number
JP4062882B2
JP4062882B2 JP2000398925A JP2000398925A JP4062882B2 JP 4062882 B2 JP4062882 B2 JP 4062882B2 JP 2000398925 A JP2000398925 A JP 2000398925A JP 2000398925 A JP2000398925 A JP 2000398925A JP 4062882 B2 JP4062882 B2 JP 4062882B2
Authority
JP
Japan
Prior art keywords
fiber structure
yarn
support
dimensional fiber
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000398925A
Other languages
Japanese (ja)
Other versions
JP2002201551A (en
Inventor
義治 安居
藤夫 堀
誠 都築
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2000398925A priority Critical patent/JP4062882B2/en
Publication of JP2002201551A publication Critical patent/JP2002201551A/en
Application granted granted Critical
Publication of JP4062882B2 publication Critical patent/JP4062882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は回転体形状の三次元繊維構造体の製造方法及びカーボン/カーボン複合材の製造方法に関するものである。
【0002】
【従来の技術】
繊維強化複合材は軽量の構造材料として広く使用されている。複合材用強化材として三次元織物(三次元繊維構造体)がある。この三次元織物を骨格材(強化材)として、樹脂あるいは無機物をマトリックスとした複合材はロケット、航空機、自動車、船舶及び建築物の構造材として幅広い用途が期待されている。
【0003】
複合材の形状として円筒、円錐台等の回転体形状を必要とする場合がある。複合材の形状が回転体形状の場合、単純にX,Y方向の2軸配向の積層糸群を厚さ方向糸で結合して製造することができない。
【0004】
特開平6−173139号公報には、特殊な三次元織物用織機を使用した円盤状又はドーナツ状の三次元織物の製造方法が提案されている。また、特開2000−202931号には、図6に示すように、放射状に延びるr方向繊維51で形成されたr方向繊維層と、リング状に延びるθ方向繊維52からなるθ方向繊維層を積層し、各層と直交するようにz方向繊維53を通す三次元織物の製造方法が提案されている。三次元織物にはr方向繊維51の外側部分の間に別のr方向繊維51a,51bが挿入されている。
【0005】
三次元織物を強化材とした複合材に特に耐熱性が要求される場合は、三次元織物を炭化ケイ素繊維等のセラミック繊維又は炭素繊維で構成し、マトリックスをセラミック物質やカーボンで構成したものがある。
【0006】
【発明が解決しようとする課題】
特開平6−173139号公報に開示された製造方法では、特殊な三次元織物用織機を使用するため、製作できる織物の形状が限定されるとともに、製造コストが高くなる。また、製作時に繊維を何度も屈曲させるため、できあがった三次元織物を構成する繊維の真直性が悪く、織物密度を高めることが難しいため、複合材を製造した際に強度を十分大きくすることができない。とくに、繊維として炭素繊維やセラミック繊維のように曲げに弱い繊維を使用した場合に、前記問題が顕著になる。
【0007】
また、特開2000−202931号に開示された三次元織物の製造方法では、r方向繊維層とθ方向繊維層を積層した後、各層と直交するようにz方向繊維53を通す。r方向繊維51やθ方向繊維52を配列後、高密度にプレスしてからz方向繊維53を通すとあるが、高密度にした後にz方向繊維53を積層繊維層に通すことは非常に困難で、繊維に対するダメージが大きくなる。また、同公報にはr方向繊維層及びθ方向繊維層の具体的な形成方法が開示されていないが、繊維の真直性を保った状態や一定曲率で高密度で配列するのは難しい。
【0008】
本発明は前記従来の問題点に鑑みてなされたものであって、その目的は、回転体形状の複合材の強化材として好適で、製造が比較的簡単で密度の高い三次元繊維構造体の製造方法及びその三次元繊維構造体を用いたカーボン/カーボン複合材の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
前記第1の目的を達成するため請求項1に記載の発明では、回転体形状の樹脂製の支持体に対してその外側に繊維強化複合材製のロッドを放射方向に挿入した後、前記支持体の外側にその外面に沿うようにして糸を順次配列して、軸方向に対して傾斜する方向に延びるように配列された糸で形成された糸層を含む少なくとも面内2軸配向となる積層糸群を形成することにより、前記ロッドを挿入した状態で三次元繊維構造体を形成する。
この発明の製造方法では、回転体形状の樹脂製の支持体に対して繊維強化複合材製のロッドが放射方向に挿入された状態で支持体の外側に糸が配列される。従って、糸の配列間隔が狭い場合でも、三次元繊維構造体の所定の位置にロッドが挿入された状態とすることができる。支持体の外側に、糸が順次配列されるため、糸(繊維)の真直性が良好に保たれる。また、軸方向に対して傾斜する方向に延びるように配列される糸(繊維)で形成された糸層を含むため、該糸層の存在により積層糸群の各糸層が支持体側に締め付けられて、高密度に配列される。
【0011】
請求項2に記載の発明では、請求項1に記載の発明において、前記支持体は円筒状に形成されている。この発明では、円筒状の三次元繊維構造体を容易に製造できる。
【0012】
請求項3に記載の発明では、請求項1又は請求項2に記載の発明において、前記積層糸群は前記支持体の中心軸を含む平面内に配列された軸方向糸からなる軸方向糸層と、前記中心軸と直交する平面内に配列された周方向糸からなる周方向糸層とを備えている。この発明により製造された三次元繊維構造体を使用して複合材を製造した場合、軸方向に対しても周方向に対しても強度を向上させることができる。
【0013】
請求項4に記載の発明では、請求項1〜請求項3のいずれか一項に記載の発明において、前記積層糸群が所定の厚さ積層されたときに、前記積層糸群に対して前記ロッドより長さの短い繊維強化複合材製のロッドを放射方向に挿入し、その後に、さらに積層糸群を形成する。従って、この発明では三次元繊維構造体の密度を径方向の外側寄り部分においても高めることができ、複合材を製造した際、外側寄り部分の強度も確保できる。
【0014】
請求項5に記載の発明では、請求項1〜請求項4のいずれか一項に記載の発明において、前記支持体は焼失可能な材料で形成され、前記積層糸群を構成する糸及び前記繊維強化複合材の強化繊維には炭素繊維が使用されている。この発明により製造された三次元繊維構造体、焼成して支持体及びロッドの樹脂を燃焼除去した後、カーボンをマトリックスとした複合材とすることにより、耐熱性及び強度に優れた複合材が得られる。
【0015】
請求項6に記載の発明では、請求項1〜請求項5のいずれか一項に記載の発明において、前記積層糸群の各糸層を構成する糸は樹脂を含浸させた状態で配列されている。この発明では、糸(繊維)を配列する際に繊維が損傷し難くなる。また、複合材を製造する際に初めて樹脂を含浸させる場合に比較して、樹脂が繊維間に含浸され易くボイド(空孔)部分が発生し難くなる。
【0016】
求項7に記載の発明では、請求項1〜6のいずれか一項に記載の三次元繊維構造体の製造方法により製造された三次元繊維構造体に樹脂を浸透させた後、焼成して樹脂の炭化を行なう。
【0018】
【発明の実施の形態】
以下、本発明をカーボン/カーボン複合材(C/C複合材)の強化材用に具体化した一実施の形態を図1〜図3に従って説明する。図1は三次元繊維構造体1の一部破断模式斜視図であり、図2は模式断面図である。なお、図2においては断面を示すハッチングを省略している。
【0019】
図1及び図2に示すように、三次元繊維構造体1は、回転体形状に形成された樹脂製の支持体2と、その外側に放射方向に挿入された繊維強化複合材製のロッド3と、支持体2の外側にその外面に沿うように配列された複数の糸層からなる積層糸群4とから構成されている。
【0020】
支持体2は所望の外径及び長さで、かつロッド3を保持するのに必要な厚さの円筒状に形成されている。支持体2には放射方向に延びるように多数の孔が形成され、ロッド3は基端において孔に挿入固定されている。支持体2の材質はC/C化工程で焼失あるいは炭化する材料であればよく、一般に樹脂が使用される。この実施の形態では支持体2はフェノール樹脂製である。
【0021】
ロッド3は炭素繊維強化樹脂製で、樹脂にはフェノール樹脂が使用されている。各ロッド3はその先端が三次元繊維構造体1の外面から若干突出する長さに形成されている。
【0022】
積層糸群4は、支持体2の軸方向に沿って延びるように、即ち支持体2の中心軸を含む平面内に配列された軸方向糸5からなる軸方向糸層と、軸方向と直交する平面内に配列された周方向糸6、即ち軸方向に対して90°傾斜する方向に巻き付けられた糸からなる周方向糸層とが交互に積層されて構成されている。即ち、この実施の形態では積層糸群4は、支持体の外周面に沿った面内2軸配向となるように構成されている。軸方向糸5及び周方向糸6は所定のピッチ(例えば3mmのピッチ)で配列されている。各糸5,6には炭素繊維が使用されている。各炭素繊維はロービング(トウ)の状態で使用されている。ロービングとは細い単繊維のフィラメントを多数本束ねた実質無撚りの繊維束を意味する。
【0023】
次に前記のように構成された三次元繊維構造体1の製造方法を説明する。先ず支持体2にロッド3を挿入する。次にロッド3が挿入された支持体2の外面に糸(炭素繊維)を順次配列させる。糸の配列には、支持体2を支持して回転させる機構と、糸を繰り出すとともに支持体2の軸方向に沿って往復動可能な糸ガイドとを備えた装置が使用される。この装置としてフィラメントワインディング装置を利用してもよい。この場合、支持体2をフィラメントワインディング装置に支持したマンドレルに固定するか、支持体2を支持する専用の治具を使用して、その治具をマンドレルに代えてフィラメントワインディング装置のチャックに固定する。そして、支持体2の回転と糸ガイドの軸方向への移動との組合せで、糸が支持体2の外側に順次配列される。
【0024】
周方向糸層を形成する場合は、図3(a)に示すように、糸ガイド7から繰り出された糸が、周方向糸6として支持体2の外側に周方向に巻き付けられて周方向糸層が形成される。糸ガイド7が所定位置に停止した状態で、支持体2が1回転されて支持体2の外側の所定位置に周方向糸6が巻き付けられる。糸ガイド7は、周方向糸6が1周分巻き付けられる毎に1ピッチずつ間欠的に移動され、所定回数周方向糸6が巻き付けられると、1層分の周方向糸6の配列(巻付け)が完了する。
【0025】
次に軸方向糸層が形成される。軸方向糸層を形成する場合は、図3(b)に示すように、糸ガイド7から繰り出された糸が、軸方向糸5として支持体2の外側に軸方向に沿って延びるようにロッド3間に折り返し状に配列されて軸方向糸層が形成される。この場合、糸ガイド7が支持体2の一端側から他端側まで移動する間は支持体2の回転が停止され、糸ガイド7が他端側まで移動した時点で、支持体2が1ピッチ分回転される。次に糸ガイド7が支持体2の他端側から一端側まで移動される間、支持体2が停止される。以下、同様の動作が繰り返されて、支持体2が1回転された時点で、1層分の軸方向糸5の配列が完了する。
【0026】
そして、前記軸方向糸層及び周方向糸層が所定層積層されて積層糸群4が形成された後、糸端が支持体2に止められ、支持体2がフィラメントワインディング装置から取り外されて、三次元繊維構造体1が完成する。
【0027】
なお、各図では糸5,6の配列を分かり易くするため、ロッド3及び糸5,6の間隔を広く表してしているが、実際は配列後の各糸5,6が互いに接触する程度に近接して配列される。
【0028】
前記のように構成された三次元繊維構造体1をC/C複合材の強化材として使用する際には、一般には三次元繊維構造体1を焼成して支持体2及びロッド3の樹脂を燃焼除去して、炭素繊維のみで構成された三次元繊維構造体として使用する。そして、炭素繊維のみで構成された三次元繊維構造体に樹脂を含浸させた後、焼成して樹脂の炭化を行う。支持体2及びロッド3の樹脂がフェノール樹脂の場合は、樹脂の燃焼除去を行わずに、C/C化工程に三次元繊維構造体1をそのまま使用してもよい。
【0029】
この実施の形態では以下の効果を有する。
(1) 三次元繊維構造体1は、回転体形状に形成されるとともにその外側に繊維強化複合材製のロッド3が放射方向に挿入された支持体2と、その外面に沿うように配列された複数の糸層からなる積層糸群4とを備え、軸方向に対して傾斜する方向に巻き付けられた糸により構成された糸層を含む。
【0030】
従って、半径方向に積層された積層糸群4を構成する糸を、支持体2の外周に内側から順に配列して形成することができるため、三次元繊維構造体1の製造が簡単で、糸(繊維)の真直性(一定の曲率での配列を含む)を良好に保持することができる。また、軸方向に対して傾斜する方向に巻き付けられる糸(周方向糸6)により、糸層を支持体2側に締め付けることができ、三次元繊維構造体1の高密度化が容易になる。
【0031】
(2) 支持体2の形状を円筒状にすることで、円筒状の三次元繊維構造体1を容易に製造できる。
(3) 積層糸群4は支持体2の中心軸を含む平面内に配列された軸方向糸5からなる軸方向糸層と、中心軸と直交する平面内に配列された周方向糸6からなる周方向糸層とを備えている。従って、三次元繊維構造体1を使用して複合材を製造した場合、軸方向に対しても周方向に対しても強度を向上させることができる。
【0032】
(4) 支持体2は焼失可能な材料で形成され、積層糸群4を構成する糸5,6及びロッド3の強化繊維には炭素繊維が使用されている。従って、三次元繊維構造体1を、焼成して支持体2及びロッド3の樹脂を燃焼除去した後、カーボンをマトリックスとした複合材とすることにより、耐熱性及び強度に優れた複合材が得られる。
【0033】
(5) 支持体2及びロッド3の樹脂としてフェノール樹脂が使用されている。従って、C/C複合材を製造する際、樹脂を焼失させずにそのままカーボン化用の樹脂として使用できる。
【0034】
(6) ロッド3の挿入本数を変えることで、厚さ方向の配向糸(繊維)の割合を調整できるため、種々の特性の三次元繊維構造体1を簡単に得ることができ、三次元繊維構造体1の製造コストを低減できる。
【0035】
実施の形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ ロッド3は必ずしも支持体2に挿入されたものに限らず、積層糸群4の厚さ方向(径方向)の途中から挿入されたものを含んでもよい。例えば、図4に示すように、積層糸群4の外側寄り部分に各ロッド3より短いロッド8が、ロッド3間に放射方向に延びるように挿入された構造としてもよい。この三次元繊維構造体1を製造する際は、先ず支持体2にロッド3が挿入された状態で、軸方向糸5及び周方向糸6を前記実施の形態と同様にして順次配列する。そして、積層糸群4が所定の厚さ積層された時に、ロッド8の基端を積層糸群4に挿入し、さらに軸方向糸5及び周方向糸6を配列する。この場合、三次元繊維構造体1の密度、特に厚さ方向成分の密度を径方向の外側寄り部分においても高めることができ、複合材を製造した際、外側寄り部分の強度も確保できる。なお、図4では断面を示すハッチングを省略している。
【0036】
○ 積層糸群4の厚さ方向の途中から挿入されるロッド8を支持体2に基端が挿入されたロッド3の間に1本ずつ挿入する構成に限らず、ロッド3の配置間隔あるいは積層糸群4の厚さによっては、2本以上挿入したり、長さの異なるロッドを挿入してもよい。
【0037】
○ 支持体2の形状は回転体形状であればよく、円筒形状に限らず、例えば図5(b)に示すように円錐台形状や、図5(c)に示すように円筒と円錐台とが組み合わされた形状や、図5(d)に示すように球の2箇所を平行にカットした形状等としてもよい。即ち、支持体2の形状を変えることで三次元繊維構造体1の形状を自由に変更できる。なお、図5ではロッドの図示を省略している。
【0038】
○ 積層糸群4を構成する複数の糸層は、軸方向糸5の配列で形成された軸方向糸層と、周方向糸6の配列で形成された周方向糸層との組合せに限らず、少なくとも軸方向に対して傾斜する方向に巻き付けられた糸により構成された糸層を含めばよい。例えば、図5(a),(b)に示すように、支持体2の軸方向に所定の角度でスパイラル状に配列されたスパイラル糸9により構成された糸層のみで面内2軸配向の構成としてもよい。また、軸方向糸5及び周方向糸6にスパイラル糸9を加えて面内4軸配向の構成としたり、スパイラル糸9と軸方向糸5との組合せ、あるいはスパイラル糸9と周方向糸6との組合せで面内3軸配向の構成としてもよい。面内2軸配向に比較して面内3軸配向又は面内4軸配向の方が三次元繊維構造体1の形状安定性が向上するとともに、複合材を構成した際に強度が向上する。
【0039】
○ スパイラル糸9を配列した糸層を含む三次元繊維構造体1において、ロッド3を支持体2に対してスパイラル状に配列してもよい。この場合、スパイラル糸9の配列が円滑に行われる。
【0040】
○ 支持体2にロッド3を挿入する孔を予め形成する代わりに、支持体2を発泡樹脂等、比較的柔らかく、孔を形成することなくロッド3の挿入が可能な材質で形成し、支持体2にロッド3を直接挿入するようにしてもよい。ロッド3の挿入も糸の配列を開始する前に全てのロッド3を挿入しておく方法に限らず、ロッド3の挿入作業を行いながら糸の配列を行うようにしてもよい。この場合、予め支持体2に孔を形成する必要がないため、ロッド3が所定位置に挿入された状態の支持体2を準備するための工数が少なくなり、三次元繊維構造体1の製造時間が短くなって生産性が向上する。また、ロッド3の挿入密度を変更する場合も、挿入密度に合わせて孔の数が異なる支持体2を準備する必要がなくなる。
【0041】
○ 支持体2は樹脂に限らず、紙や木で形成してもよい。
○ 支持体2に軸方向糸5の折り返し専用のロッド(ピン)を設けてもよい。厚さ方向に配列される繊維の密度を高める場合、ロッド3の挿入本数を多くする必要がある。ロッド3の挿入本数を多くするにはロッドの太さを細くする必要があり、細いロッド3に係合する状態で軸方向糸5を折り返してその張力を強くすると、ロッド3が支持体に対して傾き、そのロッド3に含まれる厚さ方向の繊維が軸方向糸5と直交する状態とならなくなる。しかし、支持体2に軸方向糸5の折り返し専用のロッドを設ければ、そのロッドを太くすることにより、軸方向糸5の張力を高めた状態で配列することが可能になる。折り返し専用のロッドは支持体2の外周面に直交する状態で固定される必要はなく、軸方向に傾斜した状態で固定されてもよい。
【0042】
○ 耐熱性が要求される三次元繊維構造体1を構成する際、支持体2を焼失可能な材料で形成するとともに、積層糸群4を構成する糸5,6及びロッド3の強化繊維に炭化ケイ素繊維等のセラミック繊維を使用する。この場合、三次元繊維構造体1を複合材の強化材として使用する際、三次元繊維構造体1を焼成してセラミック繊維でのみ構成された三次元繊維構造体とする。その後、CVI法により三次元繊維構造体の繊維の間隙にセラミック物質が充填された構造の複合材とする。この場合も、耐熱性及び強度に優れた複合材が得られる。
【0043】
○ 耐熱性がさほど要求されない複合材の強化材として使用する場合は、三次元繊維構造体1の構成繊維として炭素繊維やセラミック繊維に代えて、ガラス繊維、アラミド繊維等の高強度、高弾性繊維を使用してもよい。
【0044】
○ 焼成工程を設けず、三次元繊維構造体1に樹脂を含浸させて複合材を製造する場合、支持体2及びロッド3,8を構成する樹脂は複合材のマトリックス樹脂と同じ樹脂を使用するのが好ましい。同じ樹脂を使用すると、複合材の物性が向上する。樹脂としては、フェノール樹脂に限らずエポキシ樹脂等の他の熱硬化性樹脂や、熱硬化性樹脂に限らず熱可塑性樹脂を使用してもよい。
【0045】
○ 積層糸群4の各糸層を構成する糸(繊維)を配列する際、糸に樹脂を含浸させた状態で配列してもよい。この場合、糸を配列する際に繊維の毛羽立ちや繊維同士が擦れ合うことによる損傷が防止される。また、複合材を製造する際に初めて樹脂を含浸させる場合に比較して、樹脂が繊維間に含浸され易くボイド(空孔)部分が発生し難くなる。
【0046】
前記実施の形態から把握できる発明(技術的思想)について、以下に記載する。
(1) 素繊維に代えて炭化ケイ素繊維が使用されている三次元繊維構造体の製造方法
【0047】
(2) 方向に対して傾斜する方向に巻き付けられた糸として、軸方向と直交する平面に対して所定の角度を成すように巻き付けられたスパイラル糸を含む三次元繊維構造体の製造方法
【0048】
(3) 記支持体及び繊維強化複合材の樹脂としてフェノール樹脂が使用されている三次元繊維構造体の製造方法
(4) 回転体形状の樹脂製の支持体に対して炭素繊維又はセラミック繊維強化複合材製のロッドを放射方向に挿入した後、前記支持体の外側に、前記ロッドの強化繊維と同種の繊維製の糸を順次配列して、軸方向に対して傾斜する方向に延びるように配列された糸で形成された糸層を含む少なくとも面内2軸配向となる積層糸群を形成し、その後、該三次元繊維構造体を焼成する三次元繊維構造体の製造方法。
【0049】
(5) 転体形状の樹脂製の支持体に対して炭素繊維強化複合材製のロッドを放射方向に挿入した後、前記支持体の外側に、炭素繊維製の糸を順次配列して、軸方向に対して傾斜する方向に延びるように配列された糸で形成された糸層を含む少なくとも面内2軸配向となる積層糸群を形成し、その後、該三次元繊維構造体を焼成及び樹脂含浸工程を含むカーボン/カーボン化処理を施すカーボン/カーボン複合材の製造方法。
【0050】
【発明の効果】
以上詳述したように、請求項1〜請求項に記載の発明によれば、回転体形状の複合材の強化材として好適で、製造が比較的簡単で密度の高い三次元繊維構造体を得ることができる。また、請求項7に記載の発明によれば、その三次元繊維構造体を用いたカーボン/カーボン複合材を得ることができる。
【図面の簡単な説明】
【図1】 一実施の形態の三次元繊維構造体の一部破断模式斜視図。
【図2】 三次元繊維構造体のロッドの配列状態を示す模式断面図。
【図3】 (a)は周方向糸の配列状態を示す模式斜視図、(b)は軸方向糸の配列状態を示す模式斜視図。
【図4】 別の実施の形態のロッドの配列状態を示す模式断面図。
【図5】 (a),(b)は別の実施の形態の三次元繊維構造体の模式斜視図、(c),(d)は別の実施の形態の三次元繊維構造体の模式断面図。
【図6】 従来の三次元繊維構造体の模式斜視図。
【符号の説明】
1…三次元繊維構造体、2…支持体、3…ロッド、4…積層糸群、5…軸方向糸、6…周方向糸。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a rotating body-shaped three-dimensional fiber structure and a method for producing a carbon / carbon composite material .
[0002]
[Prior art]
Fiber reinforced composites are widely used as lightweight structural materials. There is a three-dimensional fabric (three-dimensional fiber structure) as a reinforcing material for composite materials. A composite material using this three-dimensional woven fabric as a skeleton material (reinforcing material) and a resin or an inorganic material as a matrix is expected to have a wide range of applications as a structural material for rockets, aircraft, automobiles, ships, and buildings.
[0003]
The shape of the composite material may require a rotating body shape such as a cylinder or a truncated cone. In the case where the shape of the composite material is a rotating body shape, it cannot be produced by simply joining a biaxially oriented laminated yarn group in the X and Y directions with a thickness direction yarn.
[0004]
Japanese Patent Laid-Open No. 6-173139 proposes a method for producing a disk-shaped or donut-shaped three-dimensional fabric using a special three-dimensional fabric loom. In addition, as shown in FIG. 6, JP 2000-202931 A has a θ-direction fiber layer composed of an r-direction fiber layer formed of radially extending r-direction fibers 51 and a θ-direction fiber 52 extending in a ring shape. A method of manufacturing a three-dimensional woven fabric in which the z-direction fibers 53 are passed so as to be laminated and orthogonal to each layer has been proposed. In the three-dimensional fabric, other r-direction fibers 51 a and 51 b are inserted between the outer portions of the r-direction fibers 51.
[0005]
When heat resistance is required for a composite material using a three-dimensional fabric as a reinforcing material, the three-dimensional fabric may be composed of ceramic fibers such as silicon carbide fibers or carbon fibers, and the matrix may be composed of ceramic materials or carbon. is there.
[0006]
[Problems to be solved by the invention]
In the manufacturing method disclosed in JP-A-6-173139, a special three-dimensional weaving loom is used, so that the shape of the fabric that can be manufactured is limited and the manufacturing cost is increased. Also, since the fibers are bent many times during production, the straightness of the fibers that make up the resulting three-dimensional fabric is poor, and it is difficult to increase the fabric density. I can't. In particular, the above-mentioned problem becomes remarkable when fibers that are weak against bending such as carbon fibers and ceramic fibers are used.
[0007]
In the method for producing a three-dimensional fabric disclosed in Japanese Patent Application Laid-Open No. 2000-202931, after the r-direction fiber layer and the θ-direction fiber layer are laminated, the z-direction fibers 53 are passed so as to be orthogonal to each layer. After arranging the r-direction fibers 51 and the θ-direction fibers 52, the z-direction fibers 53 are passed after being pressed to a high density, but it is very difficult to pass the z-direction fibers 53 through the laminated fiber layer after the density is increased. This increases the damage to the fibers. The publication does not disclose a specific method for forming the r-direction fiber layer and the θ-direction fiber layer, but it is difficult to arrange the fibers in a straight state or with a constant curvature at a high density.
[0008]
The present invention was made in view of the above conventional problems, As a purpose is suitable as reinforcement of the composite material of the rotator shape, manufacturing is relatively simple and dense three-dimensional fiber structure An object of the present invention is to provide a method for producing a body and a method for producing a carbon / carbon composite material using the three-dimensional fiber structure .
[0009]
[Means for Solving the Problems]
In order to achieve the first object, according to the first aspect of the present invention, a rod made of a fiber reinforced composite material is radially inserted into a rotating body-shaped resin support, and then the support is made. The yarns are sequentially arranged on the outside of the body along the outer surface, and at least in-plane biaxial orientation including a yarn layer formed of yarns arranged to extend in a direction inclined with respect to the axial direction is obtained. By forming the laminated yarn group, a three-dimensional fiber structure is formed with the rod inserted.
In the manufacturing method of the present invention, the yarns are arranged on the outside of the support in a state where the rods made of fiber reinforced composite material are inserted in the radial direction with respect to the support made of resin in the form of a rotating body. Accordingly, even when the yarn arrangement interval is narrow, the rod can be inserted at a predetermined position of the three-dimensional fiber structure. Since the yarns are sequentially arranged on the outer side of the support, the straightness of the yarns (fibers) is kept good. In addition, since it includes a yarn layer formed of yarns (fibers) arranged so as to extend in a direction inclined with respect to the axial direction, each yarn layer of the laminated yarn group is clamped to the support side due to the presence of the yarn layer. , Arranged in high density.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, the support is formed in a cylindrical shape. In the present invention, a cylindrical three-dimensional fiber structure can be easily manufactured.
[0012]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the laminated yarn group includes an axial yarn layer composed of axial yarns arranged in a plane including a central axis of the support. And a circumferential yarn layer composed of circumferential yarns arranged in a plane orthogonal to the central axis. When a composite material is manufactured using the three-dimensional fiber structure manufactured according to the present invention, the strength can be improved both in the axial direction and in the circumferential direction.
[0013]
In the invention according to claim 4, in the invention according to any one of claims 1 to 3, when the laminated yarn group is laminated to a predetermined thickness, the rod is separated from the laminated yarn group by the rod. A rod made of a fiber reinforced composite material having a short length is inserted in the radial direction, and then a laminated yarn group is further formed . Therefore, in the present invention, the density of the three-dimensional fiber structure can be increased even in the radially outer portion, and the strength of the outer portion can be secured when the composite material is manufactured.
[0014]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the support is formed of a material that can be burned out, and the yarn constituting the laminated yarn group and the fiber reinforcement. Carbon fiber is used as the reinforcing fiber of the composite material. After the three-dimensional fiber structure manufactured according to the present invention is baked to burn and remove the resin of the support and the rod, a composite material using carbon as a matrix is obtained, whereby a composite material having excellent heat resistance and strength can be obtained. can get.
[0015]
In the invention according to claim 6, in the invention according to any one of claims 1 to 5, the yarns constituting each yarn layer of the laminated yarn group are arranged in a state impregnated with a resin. . In the present invention, the fibers are hardly damaged when the yarns (fibers) are arranged. Further, compared to the case where the resin is impregnated for the first time when the composite material is manufactured, the resin is more easily impregnated between the fibers, and voids (holes) are less likely to be generated.
[0016]
In the invention described in Motomeko 7, after penetration of the resin into a three-dimensional fiber structure manufactured by the manufacturing method of the three-dimensional fiber structure according to any one of claims 1 to 6, and fired To carbonize the resin.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is embodied for a carbon / carbon composite (C / C composite) reinforcement will be described with reference to FIGS. FIG. 1 is a partially broken schematic perspective view of a three-dimensional fiber structure 1, and FIG. 2 is a schematic sectional view. In FIG. 2, hatching indicating a cross section is omitted.
[0019]
As shown in FIGS. 1 and 2, a three-dimensional fiber structure 1 includes a resin-made support body 2 formed in a rotating body shape, and a fiber-reinforced composite material rod 3 inserted radially in the outside thereof. And a laminated yarn group 4 composed of a plurality of yarn layers arranged along the outer surface of the support 2.
[0020]
The support 2 is formed in a cylindrical shape having a desired outer diameter and length and a thickness necessary for holding the rod 3. A number of holes are formed in the support 2 so as to extend in the radial direction, and the rod 3 is inserted and fixed in the holes at the base end. The support 2 may be made of any material that can be burned or carbonized in the C / C conversion process, and a resin is generally used. In this embodiment, the support 2 is made of a phenol resin.
[0021]
The rod 3 is made of a carbon fiber reinforced resin, and a phenol resin is used as the resin. Each rod 3 is formed to have a length that slightly protrudes from the outer surface of the three-dimensional fiber structure 1.
[0022]
The laminated yarn group 4 extends in the axial direction of the support 2, that is, an axial yarn layer composed of axial yarns 5 arranged in a plane including the central axis of the support 2, and is orthogonal to the axial direction. The circumferential yarns 6 arranged in a plane, that is, circumferential yarn layers made of yarns wound in a direction inclined by 90 ° with respect to the axial direction are alternately laminated. That is, in this embodiment, the laminated yarn group 4 is configured to be in-plane biaxial orientation along the outer peripheral surface of the support. The axial yarn 5 and the circumferential yarn 6 are arranged at a predetermined pitch (for example, a pitch of 3 mm). Carbon fibers are used for the yarns 5 and 6. Each carbon fiber is used in a roving (tow) state. The roving means a substantially untwisted fiber bundle in which a large number of thin single fiber filaments are bundled.
[0023]
Next, the manufacturing method of the three-dimensional fiber structure 1 comprised as mentioned above is demonstrated. First, the rod 3 is inserted into the support 2. Next, threads (carbon fibers) are sequentially arranged on the outer surface of the support 2 into which the rod 3 is inserted. For the arrangement of the yarns, an apparatus including a mechanism for supporting and rotating the support 2 and a yarn guide for feeding the yarn and reciprocating along the axial direction of the support 2 is used. A filament winding apparatus may be used as this apparatus. In this case, the support 2 is fixed to a mandrel supported by the filament winding apparatus, or a dedicated jig for supporting the support 2 is used, and the jig is fixed to the chuck of the filament winding apparatus instead of the mandrel. . The yarns are sequentially arranged outside the support 2 by a combination of the rotation of the support 2 and the movement of the yarn guide in the axial direction.
[0024]
When forming the circumferential yarn layer, as shown in FIG. 3A, the yarn fed from the yarn guide 7 is wound around the outside of the support 2 in the circumferential direction as the circumferential yarn 6, and the circumferential yarn. A layer is formed. With the yarn guide 7 stopped at a predetermined position, the support body 2 is rotated once and the circumferential thread 6 is wound around a predetermined position outside the support body 2. The yarn guide 7 is intermittently moved by one pitch every time the circumferential yarn 6 is wound by one turn, and when the circumferential yarn 6 is wound a predetermined number of times, the arrangement (winding) of the circumferential yarn 6 for one layer is wound. ) Is completed.
[0025]
Next, an axial yarn layer is formed. When the axial yarn layer is formed, as shown in FIG. 3B, the rod fed from the yarn guide 7 is extended to the outside of the support 2 along the axial direction as the axial yarn 5. An axial thread layer is formed by being folded back between the three. In this case, while the yarn guide 7 moves from one end side to the other end side of the support body 2, the rotation of the support body 2 is stopped, and when the yarn guide 7 moves to the other end side, the support body 2 is turned by 1 pitch. It is rotated for minutes. Next, the support body 2 is stopped while the yarn guide 7 is moved from the other end side to the one end side of the support body 2. Thereafter, the same operation is repeated, and when the support 2 is rotated once, the arrangement of the axial yarns 5 for one layer is completed.
[0026]
And after the said axial direction thread layer and the circumferential direction thread layer are laminated | stacked by the predetermined layer, and the laminated yarn group 4 is formed, a thread end is stopped by the support body 2, the support body 2 is removed from a filament winding apparatus, and tertiary The original fiber structure 1 is completed.
[0027]
In addition, in each figure, in order to make the arrangement of the threads 5 and 6 easy to understand, the distance between the rod 3 and the threads 5 and 6 is widely expressed. Arranged in close proximity.
[0028]
When the three-dimensional fiber structure 1 configured as described above is used as a reinforcing material for a C / C composite material, the three-dimensional fiber structure 1 is generally baked and the resin of the support 2 and the rod 3 is used. It is burned off and used as a three-dimensional fiber structure composed only of carbon fibers. And after impregnating resin to the three-dimensional fiber structure comprised only with carbon fiber, it bakes and carbonizes resin. When the resin of the support 2 and the rod 3 is a phenol resin, the three-dimensional fiber structure 1 may be used as it is in the C / C conversion step without performing the combustion removal of the resin.
[0029]
This embodiment has the following effects.
(1) The three-dimensional fiber structure 1 is formed in the shape of a rotating body and is arranged so as to be along the outer surface of the support 2 in which the rod 3 made of fiber reinforced composite material is inserted in the radial direction on the outer side. And a laminated yarn group 4 composed of a plurality of yarn layers, and includes a yarn layer constituted by yarns wound in a direction inclined with respect to the axial direction.
[0030]
Therefore, since the yarns constituting the laminated yarn group 4 laminated in the radial direction can be formed on the outer periphery of the support 2 in order from the inside, the production of the three-dimensional fiber structure 1 is simple, The straightness of the fiber) (including the arrangement with a certain curvature) can be maintained well. Further, the yarn layer can be fastened to the support 2 side by the yarn wound in the direction inclined with respect to the axial direction (circumferential yarn 6), and the density of the three-dimensional fiber structure 1 can be easily increased.
[0031]
(2) By making the shape of the support 2 cylindrical, the cylindrical three-dimensional fiber structure 1 can be easily manufactured.
(3) The laminated yarn group 4 includes an axial yarn layer composed of axial yarns 5 arranged in a plane including the central axis of the support 2, and a circumferential yarn 6 arranged in a plane orthogonal to the central axis. A circumferential yarn layer. Therefore, when a composite material is manufactured using the three-dimensional fiber structure 1, the strength can be improved both in the axial direction and in the circumferential direction.
[0032]
(4) The support 2 is made of a material that can be burned down, and carbon fibers are used as the reinforcing fibers of the yarns 5 and 6 and the rod 3 constituting the laminated yarn group 4. Therefore, after the three-dimensional fiber structure 1 is baked and the resin of the support 2 and the rod 3 is burned and removed, a composite material using carbon as a matrix is obtained, thereby obtaining a composite material having excellent heat resistance and strength. It is done.
[0033]
(5) A phenol resin is used as the resin for the support 2 and the rod 3. Therefore, when producing a C / C composite material, it can be used as it is as a resin for carbonization without burning off the resin.
[0034]
(6) Since the ratio of the oriented yarns (fibers) in the thickness direction can be adjusted by changing the number of rods 3 inserted, the three-dimensional fiber structure 1 having various characteristics can be easily obtained. The manufacturing cost of the structure 1 can be reduced.
[0035]
The embodiment is not limited to the above, and may be embodied as follows, for example.
The rod 3 is not necessarily limited to the one inserted into the support body 2 but may include one inserted from the middle of the laminated yarn group 4 in the thickness direction (radial direction). For example, as shown in FIG. 4, a structure in which rods 8 shorter than the rods 3 are inserted between the rods 3 so as to extend in the radial direction in the outer portion of the laminated yarn group 4. When manufacturing the three-dimensional fiber structure 1, first, the rods 3 are inserted into the support 2 and the axial yarns 5 and the circumferential yarns 6 are sequentially arranged in the same manner as in the above embodiment. When the laminated yarn group 4 is laminated to a predetermined thickness, the base end of the rod 8 is inserted into the laminated yarn group 4, and the axial yarn 5 and the circumferential yarn 6 are arranged. In this case, the density of the three-dimensional fiber structure 1, particularly the density of the component in the thickness direction, can be increased even in the radially outer portion, and the strength of the outer portion can be ensured when the composite material is manufactured. In FIG. 4, hatching indicating a cross section is omitted.
[0036]
The rod 8 inserted from the middle of the thickness direction of the laminated yarn group 4 is not limited to the configuration in which the rods 8 are inserted one by one between the rods 3 whose base ends are inserted into the support 2, but the arrangement interval of the rods 3 or the laminated yarn group Depending on the thickness of 4, two or more rods may be inserted, or rods having different lengths may be inserted.
[0037]
The shape of the support body 2 is not limited to a cylindrical shape as long as it is a rotating body shape. For example, a truncated cone shape as shown in FIG. 5B, or a cylindrical shape and a truncated cone as shown in FIG. Or a shape obtained by cutting two locations of a sphere in parallel as shown in FIG. That is, the shape of the three-dimensional fiber structure 1 can be freely changed by changing the shape of the support 2. In addition, illustration of a rod is abbreviate | omitted in FIG.
[0038]
The plurality of yarn layers constituting the laminated yarn group 4 is not limited to the combination of the axial yarn layer formed by the arrangement of the axial yarns 5 and the circumferential yarn layer formed by the arrangement of the circumferential yarns 6, What is necessary is just to include the thread layer comprised by the thread | yarn wound at least in the direction inclined with respect to an axial direction. For example, as shown in FIGS. 5 (a) and 5 (b), in-plane biaxial orientation is achieved only by a yarn layer composed of spiral yarns 9 arranged in a spiral shape at a predetermined angle in the axial direction of the support 2. It is good also as a structure. In addition, a spiral yarn 9 is added to the axial yarn 5 and the circumferential yarn 6 to form an in-plane four-axis orientation configuration, a combination of the spiral yarn 9 and the axial yarn 5, or the spiral yarn 9 and the circumferential yarn 6 It is good also as a structure of in-plane triaxial orientation by the combination. Compared with in-plane biaxial orientation, in-plane triaxial orientation or in-plane tetraaxial orientation improves the shape stability of the three-dimensional fiber structure 1 and improves the strength when the composite material is configured.
[0039]
In the three-dimensional fiber structure 1 including the yarn layer in which the spiral yarns 9 are arranged, the rods 3 may be arranged in a spiral shape with respect to the support 2. In this case, the spiral yarns 9 are arranged smoothly.
[0040]
○ Instead of forming the hole for inserting the rod 3 in the support 2 in advance, the support 2 is formed of a material such as foamed resin that is relatively soft and can be inserted into the rod 3 without forming a hole. You may make it insert the rod 3 in 2 directly. The insertion of the rods 3 is not limited to the method in which all the rods 3 are inserted before starting the yarn arrangement, and the yarns may be arranged while the rods 3 are inserted. In this case, since it is not necessary to form a hole in the support 2 in advance, the number of steps for preparing the support 2 with the rod 3 inserted in a predetermined position is reduced, and the manufacturing time of the three-dimensional fiber structure 1 is reduced. Becomes shorter and productivity is improved. Further, when the insertion density of the rod 3 is changed, it is not necessary to prepare the support 2 having a different number of holes in accordance with the insertion density.
[0041]
The support 2 is not limited to resin and may be formed of paper or wood.
A rod (pin) dedicated to folding the axial thread 5 may be provided on the support 2. In order to increase the density of fibers arranged in the thickness direction, it is necessary to increase the number of rods 3 inserted. In order to increase the number of rods 3 inserted, it is necessary to reduce the thickness of the rods. When the axial thread 5 is folded back while being engaged with the thin rods 3 and the tension is increased, the rods 3 are supported with respect to the support. Thus, the fibers in the thickness direction contained in the rod 3 do not become perpendicular to the axial yarn 5. However, if a rod dedicated to folding the axial thread 5 is provided on the support 2, it can be arranged with the tension of the axial thread 5 increased by increasing the thickness of the rod. The rod dedicated for folding does not need to be fixed in a state orthogonal to the outer peripheral surface of the support 2, and may be fixed in an inclined state in the axial direction.
[0042]
○ When forming the three-dimensional fiber structure 1 that requires heat resistance, the support 2 is formed of a material that can be burned off, and silicon carbide is used as the reinforcing fibers of the yarns 5 and 6 and the rod 3 constituting the laminated yarn group 4 Use ceramic fibers such as fibers. In this case, when the three-dimensional fiber structure 1 is used as a reinforcing material for the composite material, the three-dimensional fiber structure 1 is fired to form a three-dimensional fiber structure composed only of ceramic fibers. Thereafter, a composite material having a structure in which a gap between the fibers of the three-dimensional fiber structure is filled with a ceramic substance is obtained by the CVI method. Also in this case, a composite material excellent in heat resistance and strength can be obtained.
[0043]
○ When used as a reinforcing material for composite materials that do not require much heat resistance, high-strength, high-elasticity fibers, such as glass fibers and aramid fibers, instead of carbon fibers and ceramic fibers as constituent fibers of the three-dimensional fiber structure 1 May be used.
[0044]
○ When a composite material is produced by impregnating the three-dimensional fiber structure 1 with a resin without providing a firing step, the resin constituting the support 2 and the rods 3 and 8 is the same resin as the matrix resin of the composite material. Is preferred. When the same resin is used, the physical properties of the composite material are improved. The resin is not limited to a phenol resin, and may be another thermosetting resin such as an epoxy resin, or a thermoplastic resin without being limited to a thermosetting resin.
[0045]
When arranging the yarns (fibers) constituting each yarn layer of the laminated yarn group 4, the yarns may be arranged in a state where the yarn is impregnated with a resin. In this case, when the yarns are arranged, damage due to the fluffing of the fibers and rubbing of the fibers is prevented. Further, compared to the case where the resin is impregnated for the first time when the composite material is manufactured, the resin is more easily impregnated between the fibers, and voids (holes) are less likely to be generated.
[0046]
The invention (technical idea) that can be grasped from the embodiment will be described below.
(1) A method of manufacturing a three-dimensional fiber structure in place of the carbon-containing fibers, silicon carbide fibers are used.
[0047]
(2) As the yarn wound in a direction inclined with respect to the axial direction, a manufacturing method of three-dimensional fiber structure comprising a spiral thread wound to form a predetermined angle relative to a plane perpendicular to the axial direction.
[0048]
(3) Manufacturing method of the preceding Symbol support and a fiber reinforced composite material of resin as the phenolic resin is three-dimensional fiber structure is used body.
(4) After inserting a rod made of carbon fiber or a ceramic fiber reinforced composite material in a radial direction with respect to a support made of resin in the form of a rotating body, a fiber of the same type as the reinforcing fiber of the rod is placed outside the support. And forming a laminated yarn group having at least in-plane biaxial orientation including a yarn layer formed of yarns arranged so as to extend in a direction inclined with respect to the axial direction. A method for producing a three-dimensional fiber structure, comprising firing the three-dimensional fiber structure.
[0049]
(5) times after insertion of the coal Moto繊-reinforced composite material of the rod in a radial direction relative to the rotating body resin support shape, on the outer side of the support, successively arranged yarn made of carbon fiber Forming a laminated yarn group having at least in-plane biaxial orientation including a yarn layer formed of yarns arranged so as to extend in a direction inclined with respect to the axial direction, and then firing the three-dimensional fiber structure And a method for producing a carbon / carbon composite material that is subjected to a carbon / carbonization treatment including a resin impregnation step.
[0050]
【The invention's effect】
As described above in detail, according to the invention described in claims 1 to 6 , a three-dimensional fiber structure suitable as a reinforcing material for a rotating body-shaped composite material, which is relatively easy to manufacture and has a high density. Obtainable. Moreover, according to the invention of Claim 7, the carbon / carbon composite material using the three-dimensional fiber structure can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially broken schematic perspective view of a three-dimensional fiber structure according to an embodiment.
FIG. 2 is a schematic cross-sectional view showing an arrangement state of rods of a three-dimensional fiber structure.
3A is a schematic perspective view showing an arrangement state of circumferential yarns, and FIG. 3B is a schematic perspective view showing an arrangement state of axial yarns.
FIG. 4 is a schematic cross-sectional view showing an arrangement state of rods according to another embodiment.
5A and 5B are schematic perspective views of a three-dimensional fiber structure according to another embodiment, and FIGS. 5C and 5D are schematic cross-sections of a three-dimensional fiber structure according to another embodiment. Figure.
FIG. 6 is a schematic perspective view of a conventional three-dimensional fiber structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Three-dimensional fiber structure, 2 ... Support body, 3 ... Rod, 4 ... Laminated yarn group, 5 ... Axial direction thread, 6 ... Circumferential direction thread | yarn.

Claims (7)

回転体形状の支持体に対してその外側に繊維強化複合材製のロッドを放射方向に挿入した後、前記支持体の外側にその外面に沿うようにして糸を順次配列して、軸方向に対して傾斜する方向に延びるように配列された糸で形成された糸層を含む少なくとも面内2軸配向となる積層糸群を形成することにより、前記ロッドを挿入した状態で三次元繊維構造体を形成する三次元繊維構造体の製造方法。After inserting a fiber-reinforced composite rod on the outside of the rotating body-shaped support in the radial direction, the yarns are sequentially arranged on the outside of the support along the outer surface thereof in the axial direction. Forming a three-dimensional fiber structure in a state in which the rod is inserted by forming a laminated yarn group having at least in-plane biaxial orientation including a yarn layer formed of yarns arranged so as to extend in a direction inclined with respect to the A method for producing a three-dimensional fiber structure to be formed. 前記支持体は円筒状に形成されている請求項1に記載の三次元繊維構造体の製造方法The method for manufacturing a three-dimensional fiber structure according to claim 1, wherein the support is formed in a cylindrical shape. 前記積層糸群は前記支持体の中心軸を含む平面内に配列された軸方向糸からなる軸方向糸層と、前記中心軸と直交する平面内に配列された周方向糸からなる周方向糸層とを備えている請求項1又は請求項2に記載の三次元繊維構造体の製造方法The laminated yarn group includes an axial yarn layer made of axial yarns arranged in a plane including the central axis of the support, and a circumferential yarn layer made of circumferential yarns arranged in a plane orthogonal to the central axis. The manufacturing method of the three-dimensional fiber structure of Claim 1 or Claim 2 provided with these. 前記積層糸群が所定の厚さ積層されたときに、前記積層糸群に対して前記ロッドより長さの短い繊維強化複合材製のロッドを放射方向に挿入し、その後に、さらに積層糸群を形成する請求項1〜請求項3のいずれか一項に記載の三次元繊維構造体の製造方法When the laminated yarn group is laminated to a predetermined thickness, a rod made of a fiber reinforced composite material having a shorter length than the rod is inserted in the radial direction into the laminated yarn group, and then a laminated yarn group is further formed. The manufacturing method of the three-dimensional fiber structure as described in any one of Claims 1-3. 前記支持体は焼失可能な材料で形成され、前記積層糸群を構成する糸及び前記繊維強化複合材の強化繊維には炭素繊維が使用されている請求項1〜請求項4のいずれか一項に記載の三次元繊維構造体の製造方法The said support body is formed with the material which can be burnt down, and the carbon fiber is used for the reinforcement | strengthening fiber of the thread | yarn which comprises the said laminated yarn group, and the said fiber reinforced composite material. The manufacturing method of the three-dimensional fiber structure of description. 前記積層糸群の各糸層を構成する糸は樹脂を含浸させた状態で配列されている請求項1〜請求項5のいずれか一項に記載の三次元繊維構造体の製造方法The method for producing a three-dimensional fiber structure according to any one of claims 1 to 5, wherein the yarns constituting each yarn layer of the laminated yarn group are arranged in a state impregnated with a resin. 請求項1〜6のいずれか一項に記載の三次元繊維構造体の製造方法により製造された三次元繊維構造体に樹脂を浸透させた後、焼成して樹脂の炭化を行なうカーボン/カーボン複合材の製造方法。 A carbon / carbon composite in which a resin is infiltrated into a three-dimensional fiber structure produced by the method for producing a three-dimensional fiber structure according to any one of claims 1 to 6, and then fired to carbonize the resin. A method of manufacturing the material .
JP2000398925A 2000-12-27 2000-12-27 Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material Expired - Fee Related JP4062882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000398925A JP4062882B2 (en) 2000-12-27 2000-12-27 Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000398925A JP4062882B2 (en) 2000-12-27 2000-12-27 Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material

Publications (2)

Publication Number Publication Date
JP2002201551A JP2002201551A (en) 2002-07-19
JP4062882B2 true JP4062882B2 (en) 2008-03-19

Family

ID=18863793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000398925A Expired - Fee Related JP4062882B2 (en) 2000-12-27 2000-12-27 Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material

Country Status (1)

Country Link
JP (1) JP4062882B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4656564B2 (en) * 2005-02-02 2011-03-23 株式会社Ihiエアロスペース Manufacturing method of three-dimensional fiber structure
JP5023884B2 (en) * 2007-08-24 2012-09-12 株式会社豊田自動織機 Fiber reinforced resin gear and method for manufacturing the same
JP6484047B2 (en) * 2015-01-30 2019-03-13 イビデン株式会社 Fluid rectifier
CN114643725B (en) * 2020-12-21 2024-04-26 中国航发商用航空发动机有限责任公司 Manufacturing method of composite casing and composite casing
CN114086294B (en) * 2021-11-19 2023-11-21 北京方硕复合材料技术有限公司 Fabric and die assembly with deformation easy to regulate and control
CN115369541B (en) * 2022-08-29 2023-08-18 华南理工大学 A three-dimensional woven reinforced cable with woven thread anchoring section and weaving method

Also Published As

Publication number Publication date
JP2002201551A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
US4495231A (en) Fiber composite
US5312660A (en) Braided shaped filamentary structures and methods of making
RU2504478C2 (en) Preset-shape lined preforms with bidirectional reinforcement for composite structure
JP4808862B2 (en) Deployable structural parts and manufacturing method thereof
US5018271A (en) Method of making a composite blade with divergent root
JP2002234777A (en) Process of making ceramic matrix composite parts with cooling channels
GB2512421B (en) Method for manufacturing an oxide/oxide composite material turbomachine blade provided with internal channels
KR102044896B1 (en) Circumferential stiffeners for composite fancases
CA2331945C (en) Manufacturing method and apparatus of fiber reinforced composite member
US5013216A (en) Composite blade perform with divergent root
GB2212824A (en) Making a hollow composite article
JPS6130059B2 (en)
JP4062882B2 (en) Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material
US5091246A (en) Three dimensional fabric and method for making the same
US5049036A (en) Composite blade with divergent root and method for making same
US4522883A (en) Circumferentially wrapped carbon-carbon structure
US4976550A (en) Expanded fiber-reinforced bearings
JP4446135B2 (en) Method and apparatus for manufacturing fiber reinforced composite member
JP2875865B2 (en) Three-dimensional fabric
US4527754A (en) Non-thermal expanding spool for carbon fiber oxidation
JP2002254429A (en) Composite material and method for manufacturing it
JP2003301364A (en) Unidirectional filament three-dimensional structure by staple fiber interlacing
JPH11343177A (en) High temperature pressure molding furnace member consisting of carbon fiber reinforced carbon composite material and its production
CN115735027B (en) Fiber texture for a housing made of composite material with mixed warp strands
JPH0151586B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees