JP2002254429A - Composite material and method for manufacturing it - Google Patents
Composite material and method for manufacturing itInfo
- Publication number
- JP2002254429A JP2002254429A JP2001062251A JP2001062251A JP2002254429A JP 2002254429 A JP2002254429 A JP 2002254429A JP 2001062251 A JP2001062251 A JP 2001062251A JP 2001062251 A JP2001062251 A JP 2001062251A JP 2002254429 A JP2002254429 A JP 2002254429A
- Authority
- JP
- Japan
- Prior art keywords
- composite material
- fiber structure
- dimensional fiber
- yarn
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 13
- 239000000835 fiber Substances 0.000 claims abstract description 139
- 239000011347 resin Substances 0.000 claims abstract description 41
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000012779 reinforcing material Substances 0.000 claims abstract description 36
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 238000005520 cutting process Methods 0.000 claims description 8
- 238000005470 impregnation Methods 0.000 claims description 6
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 8
- 239000004917 carbon fiber Substances 0.000 abstract description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 4
- 238000001354 calcination Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 30
- 239000000463 material Substances 0.000 description 15
- 239000004744 fabric Substances 0.000 description 12
- 230000037237 body shape Effects 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000002759 woven fabric Substances 0.000 description 5
- 239000003733 fiber-reinforced composite Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 102100032298 Dynein axonemal heavy chain 14 Human genes 0.000 description 1
- 101001105102 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) 50S ribosomal protein L15 Proteins 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101001016204 Homo sapiens Dynein axonemal heavy chain 14 Proteins 0.000 description 1
- 101000634707 Homo sapiens Nucleolar complex protein 3 homolog Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100029099 Nucleolar complex protein 3 homolog Human genes 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は三次元繊維構造体を
強化材(補強基材)とした複合材及びその製造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material using a three-dimensional fiber structure as a reinforcing material (reinforcing substrate) and a method for producing the same.
【0002】[0002]
【従来の技術】繊維強化複合材は軽量の構造材料として
広く使用されている。複合材用補強基材として三次元織
物(三次元繊維構造体)がある。この三次元織物を強化
材として、樹脂あるいは無機物をマトリックスとした複
合材はロケット、航空機、自動車、船舶及び建築物の構
造材として幅広い用途が期待されている。BACKGROUND OF THE INVENTION Fiber reinforced composites are widely used as lightweight structural materials. There is a three-dimensional woven fabric (three-dimensional fiber structure) as a reinforcing base material for a composite material. A composite material using the three-dimensional fabric as a reinforcing material and a resin or an inorganic material as a matrix is expected to be widely used as a structural material for rockets, aircraft, automobiles, ships, and buildings.
【0003】複合材を幅広い用途に使用するためには、
一般の金属製の構造材と同様に各部材同士をボルトある
いはピンにより連結可能とする必要があり、複合材に連
結用の孔(穴)が必要となる。従来、この種の孔の加工
は、一般に強化材に樹脂を含浸させた複合材の状態で、
ドリルにより行われる。特開平2−229265号公報
には、複合材の強化材となる三次元織物に樹脂を含浸さ
せる前に、特殊なドリルで繊維を切断せずに穴開け加工
を行う方法が開示されている。In order to use composite materials for a wide range of applications,
It is necessary to connect each member with a bolt or a pin similarly to a general metal structural material, and a hole (hole) for connection is required in the composite material. Conventionally, this kind of hole processing is generally performed in the state of a composite material in which a reinforcing material is impregnated with a resin.
Performed by drill. JP-A-2-229265 discloses a method of perforating a three-dimensional fabric as a reinforcing material of a composite material without cutting the fiber with a special drill before impregnating the resin with a three-dimensional fabric.
【0004】また、複合材として円板状あるいはリング
状等の回転体形状のものを必要とする場合がある。複合
材の形状が回転体形状の場合、単純にX,Y方向の2軸
配向の積層糸群を厚さ方向糸で結合して製造することが
できない。回転体形状の三次元織物Fを製造する場合、
図6(a)に示すように、放射状に延びるr方向繊維5
1で形成されたr方向繊維層と、リング状に延びるθ方
向繊維52からなるθ方向繊維層と、各繊維層と直交す
るように配列されて各繊維層を結合するz方向繊維53
とが必要になる。In some cases, a composite material having a rotating body shape such as a disk shape or a ring shape is required. In the case where the shape of the composite material is a rotating body, it is not possible to simply fabricate a laminate yarn group of biaxial orientation in the X and Y directions with a thickness direction yarn. When manufacturing a three-dimensional woven fabric F having a rotating body shape,
As shown in FIG. 6A, radially extending r-direction fibers 5
1, a θ-direction fiber layer comprising a ring-shaped θ-direction fiber 52, and a z-direction fiber 53 arranged orthogonally to each fiber layer and connecting each fiber layer.
Is required.
【0005】また、大型で複雑な形状の繊維強化複合材
を1個の三次元繊維構造体を強化材として製造するの
は、三次元繊維構造体の製造が難しく、しかも手間がか
かる。そこで単純な形状の二次元構造体又は三次元繊維
構造体を強化材とした構造材と、三次元繊維構造体を強
化材とした構造材とを接着結合して使用することが考え
られる。[0005] In addition, it is difficult and time-consuming to produce a large-sized and complex-shaped fiber-reinforced composite material using one three-dimensional fiber structure as a reinforcing material. Therefore, it is conceivable that a structural material having a simple shape of a two-dimensional structure or a three-dimensional fiber structure as a reinforcing material and a structural material having a three-dimensional fiber structure as a reinforcing material are bonded and used.
【0006】一方、繊維強化複合材の接着結合に際して
は、繊維強化複合材の接合部の形状が、接合部の応力集
中に大きな影響を与えることが知られている(複合材料
工学(日科技連)840〜841頁、845頁)。そし
て、図7(a)に示すように、一定厚みの板材55同士
を接合した場合に比較して、図7(b)に示すように、
一定厚みの板材55と一端が斜状(テーパー状)に形成
された板材56とを接合した場合の方が応力集中が起こ
り難い。一端が斜状(テーパー状)に形成された板材の
テーパー部同士を接合すると、より応力集中が起こり難
い。また、一定厚みの板材55同士を接合した場合は、
接着面のラップ長Lを増しても接着能(耐荷重)にほと
んど寄与しないが、一端が斜状に形成された板材同士を
接合した場合は接着面のラップ長Lを増すことにより接
着能が向上する。従って、一端がテーパー状に形成され
た三次元繊維構造体を強化材とした構造材を使用するこ
とにより、結合部(接合部)の特性(強度、応力集中の
起こり難さ等)の優れた大型の構造材が得られる。そし
て、特開平11−241256号公報には、一端がテー
パー状の三次元繊維構造体及びその製造方法が開示され
ている。On the other hand, it is known that the shape of the joint portion of the fiber-reinforced composite material has a great effect on the stress concentration at the joint portion in the adhesive bonding of the fiber-reinforced composite material. ) 840-841, 845). Then, as shown in FIG. 7 (a), compared to a case where the plate members 55 having a certain thickness are joined to each other, as shown in FIG. 7 (b),
Stress concentration is less likely to occur when a plate member 55 having a constant thickness and a plate member 56 whose one end is formed obliquely (tapered) are joined. When the tapered portions of the plate material having one end inclined (tapered) are joined to each other, stress concentration is less likely to occur. When the plate members 55 having a certain thickness are joined to each other,
Increasing the lap length L of the bonding surface hardly contributes to the adhesive performance (load bearing capacity). However, when joining plate materials having one end inclined, increasing the wrap length L of the bonding surface increases the bonding capability. improves. Therefore, by using a structural material in which a three-dimensional fiber structure having one end formed in a tapered shape as a reinforcing material, the characteristics (strength, stress concentration, and the like) of the joint (joint) are excellent. Large structural materials can be obtained. Japanese Patent Application Laid-Open No. H11-241256 discloses a three-dimensional fiber structure having one end tapered and a method for manufacturing the same.
【0007】[0007]
【発明が解決しようとする課題】複合材、特に強化材に
炭化ケイ素繊維等のセラミック繊維又は炭素繊維を使用
した複合材では、複合材の状態での穴開けやテーパー加
工の際に工具の摩耗が大きい。三次元織物(三次元繊維
構造体)に樹脂が含浸される前の状態であれば、工具の
摩耗は小さくなる。しかし、三次元織物の繊維体積含有
率が低い場合は、樹脂が含浸されていない状態で穴開け
やテーパー加工等を行うと、切断除去された繊維の近傍
において三次元織物の繊維の配列が乱れたり、脱落が生
じ易い。特開平11−241256号公報に開示された
ように、予め一端がテーパー状の三次元繊維構造体を製
造すれば問題はないが、製造に手間がかかる。In a composite material, particularly a composite material using ceramic fiber such as silicon carbide fiber or carbon fiber as a reinforcing material, wear of a tool when drilling or tapering in a composite material state. Is big. If the three-dimensional fabric (three-dimensional fiber structure) is not impregnated with the resin, the wear of the tool is reduced. However, when the fiber volume content of the three-dimensional fabric is low, if the holes are drilled or tapered while the resin is not impregnated, the fiber arrangement of the three-dimensional fabric is disturbed in the vicinity of the cut and removed fibers. Or fall off easily. As disclosed in Japanese Patent Application Laid-Open No. H11-241256, there is no problem if a three-dimensional fiber structure having one end tapered in advance, but it takes time and effort to manufacture.
【0008】特開平2−229265号公報に開示され
た方法のように、繊維を切断せずに穴開け加工を行う方
法を採用すれば、加工後に繊維の脱落が発生することが
ない。しかし、この方法では、穴開けに際して、穴開け
箇所の近傍に存在する繊維が工具によって押しのけられ
て、穴の周囲に高密度で配置される。従って、繊維体積
含有率が低い場合は問題がないが、繊維体積含有率が高
い場合は穴の押し広げが難しい。また、穴開けができた
場合でも、図6(b)に示すように、三次元織物Fに形
成された穴(孔)57の近傍に膨張部58が発生し、織
物組織が乱れて、強度的に不利になる。[0008] If a method of performing perforation processing without cutting fibers as in the method disclosed in Japanese Patent Application Laid-Open No. 2-229265 is adopted, the fibers do not fall off after processing. However, in this method, at the time of drilling, the fibers existing in the vicinity of the drilled portion are pushed away by a tool and are arranged at high density around the hole. Therefore, there is no problem when the fiber volume content is low, but it is difficult to spread the holes when the fiber volume content is high. Further, even when a hole is formed, as shown in FIG. 6B, an expanded portion 58 is generated in the vicinity of a hole (hole) 57 formed in the three-dimensional fabric F, the fabric structure is disturbed, and the strength is reduced. Disadvantageously.
【0009】また、従来の回転体形状の三次元織物F
は、r方向、θ方向及びz方向に配列された繊維によっ
て構成されるため、三次元織物Fの外周側と内側とにお
いて、組織や繊維体積含有率を均一にするのが難しいと
いう問題がある。そして、用途によっては、必ずしもθ
方向(周方向)に沿って延びる繊維を必要とせず、全体
が均一な組織及び密度で繊維が配列されたものが必要と
される。Further, a conventional three-dimensional woven fabric F having a rotating body shape is used.
Is composed of fibers arranged in the r-direction, the θ-direction, and the z-direction. Therefore, there is a problem that it is difficult to make the tissue and the fiber volume content uniform on the outer peripheral side and the inner side of the three-dimensional fabric F. . And, depending on the application, θ
There is no need for fibers extending along the direction (circumferential direction), and a fiber in which fibers are arranged with a uniform texture and density throughout is required.
【0010】本発明は前記従来の問題点に鑑みてなされ
たものであって、その第1の目的は、従来より簡単にか
つ低コストで製造でき、繊維体積含有率の高い三次元繊
維構造体を強化材とし、かつ孔やテーパー部を有する直
方体、立方体及び平板形状の複合材や、回転体形状の複
合材を提供することにある。また、第2の目的はその製
造方法を提供することにある。The present invention has been made in view of the above-mentioned conventional problems, and a first object of the present invention is to provide a three-dimensional fiber structure which can be manufactured more easily and at lower cost and has a high fiber volume content. The present invention is to provide a rectangular parallelepiped, cubic, or flat composite material having a hole or a tapered portion, and a rotating composite material having a hole or a tapered portion. Further, a second object is to provide a manufacturing method thereof.
【0011】[0011]
【課題を解決するための手段】前記第1の目的を達成す
るため、請求項1に記載の発明では、繊維が直線状に配
列され、かつ繊維体積含有率が40%以上の三次元繊維
構造体を強化材とした複合材であって、少なくとも孔あ
るいはテーパー部を有し、前記三次元繊維構造体にマト
リックス相を構成するための樹脂等を含浸させる前の状
態において刃物で加工を施すことにより前記孔あるいは
テーパー部が形成された。According to the first aspect of the present invention, there is provided a three-dimensional fiber structure in which fibers are linearly arranged and the fiber volume content is 40% or more. A composite material having a body as a reinforcing material, having at least a hole or a tapered portion, and performing processing with a blade in a state before impregnating the three-dimensional fiber structure with a resin or the like for forming a matrix phase. Thereby, the hole or the tapered portion was formed.
【0012】この発明では、繊維体積含有率が40%以
上の三次元繊維構造体で複合材の強化材が構成されてい
るため、樹脂が含浸されていない状態で強化材に孔を形
成したりテーパー部等の外形加工を施しても、切断除去
された繊維の近傍において、複合材の物性を悪化させる
ほど三次元織物の繊維の配列が乱れたり、脱落が生じる
ことがない。従って、三次元繊維構造体を刃物で複合材
の形状に対応した形状に加工した後、樹脂の含浸等の後
工程を行うことで複合材を製造でき、複合材の段階で加
工を施す場合に比較して、刃物の摩耗が小さくなる。In the present invention, since the reinforcing material of the composite material is constituted by the three-dimensional fiber structure having a fiber volume content of 40% or more, pores may be formed in the reinforcing material without being impregnated with the resin. Even when the outer shape processing such as the tapered portion is performed, the arrangement of the fibers of the three-dimensional fabric is not disturbed or dropped so as to deteriorate the physical properties of the composite material in the vicinity of the cut and removed fibers. Therefore, after processing the three-dimensional fiber structure into a shape corresponding to the shape of the composite material with a blade, a composite material can be manufactured by performing a post-process such as resin impregnation. In comparison, the wear of the cutting tool is reduced.
【0013】請求項2に記載の発明では、請求項1に記
載の発明において、前記三次元繊維構造体は、少なくと
も互いに直交する方向に折り返し状に配列された第1及
び第2の面内配列糸により形成された複数の糸層と、前
記各糸層と直交する方向に配列されて前記各糸層を結合
する厚さ方向糸とを含む三次元繊維構造体である。この
発明では、複数行、複数列に張設された経糸群の間に経
糸と直交する第1の緯糸と、経糸及び第1の緯糸と直交
する第2の緯糸を挿入する工程を繰り返して形成される
三次元織物に比較して繊維体積含有率が大きな三次元繊
維構造体を形成するのが容易となる。According to a second aspect of the present invention, in the first aspect of the present invention, the three-dimensional fibrous structures are arranged in a first and second in-plane arrangement folded at least in directions orthogonal to each other. A three-dimensional fiber structure including a plurality of yarn layers formed by yarns, and a thickness direction yarn arranged in a direction orthogonal to the yarn layers and connecting the yarn layers. In the present invention, a step of inserting a first weft orthogonal to a warp and a second weft orthogonal to a warp and a first weft between warp groups stretched in a plurality of rows and a plurality of columns is formed repeatedly. This makes it easier to form a three-dimensional fiber structure having a larger fiber volume content than the three-dimensional fabric to be manufactured.
【0014】請求項3に記載の発明では、請求項1又は
請求項2に記載の発明において、前記三次元繊維構造体
は中央に孔が形成された円板状に加工されている。この
発明によれば、放射状に延びるr方向繊維と、周方向に
延びるθ方向繊維と、各層と直交するように配列される
z方向繊維とから構成される円板状の三次元繊維構造体
に比較して、三次元繊維構造体の組織及び繊維体積含有
率を簡単に均一にできる。According to a third aspect of the present invention, in the first or second aspect, the three-dimensional fiber structure is processed into a disc shape having a hole formed in the center. According to the present invention, there is provided a disk-shaped three-dimensional fiber structure including radially extending r-direction fibers, circumferentially extending θ-direction fibers, and z-direction fibers arranged to be orthogonal to each layer. In comparison, the structure and the fiber volume content of the three-dimensional fiber structure can be easily made uniform.
【0015】請求項4に記載の発明では、請求項1又は
請求項2に記載の発明において、前記三次元繊維構造体
は少なくとも一端側がテーパー状に薄くなるように加工
されている。この発明によれば、テーパー状に形成され
た部分で他の部材と接着剤を介して接合した場合、接着
部での応力集中が起こり難くなり、接着強度即ち接着部
が耐え得る負荷(荷重)が大きくなる。According to a fourth aspect of the present invention, in the first or second aspect, the three-dimensional fiber structure is processed so that at least one end thereof is tapered and thinned. According to the present invention, when the tapered portion is bonded to another member via an adhesive, stress concentration at the bonded portion is less likely to occur, and the bonding strength, that is, the load (load) that the bonded portion can withstand. Becomes larger.
【0016】第2の目的を達成するため、請求項5に記
載の発明では、繊維体積含有率が40%以上の三次元繊
維構造体を強化材とした複合材の製造方法であって、前
記三次元繊維構造体にマトリックス相を構成するための
樹脂等を含浸させる前に刃物で加工を施すことにより、
三次元繊維構造体の外形を複合材の外形に合わせた形状
に形成したりあるいは孔を形成した後、樹脂の含浸等の
後工程を行う。According to a fifth aspect of the present invention, there is provided a method for producing a composite material using a three-dimensional fiber structure having a fiber volume content of 40% or more as a reinforcing material. By impregnating the three-dimensional fiber structure with a blade before impregnating the resin etc. for constituting the matrix phase,
After the outer shape of the three-dimensional fiber structure is formed into a shape conforming to the outer shape of the composite material or holes are formed, a post-process such as resin impregnation is performed.
【0017】この発明によれば、強化材となる三次元繊
維構造体に樹脂を含浸させる前に刃物で加工を施すた
め、樹脂含浸後に加工を行う場合に比較して加工が容易
になるとともに、刃物の摩耗が小さくなる。また、加工
を施さずに複合材の形状に対応した三次元繊維構造体を
形成する場合に比較して製造が簡単になる。According to the present invention, since the three-dimensional fiber structure serving as the reinforcing material is processed with the blade before impregnating the resin, the processing is facilitated as compared with the case where the processing is performed after the resin impregnation. Wear of the blade is reduced. Further, the production is simplified as compared with the case where a three-dimensional fiber structure corresponding to the shape of the composite material is formed without performing processing.
【0018】[0018]
【発明の実施の形態】以下、本発明をカーボン/カーボ
ン複合材(C/C複合材)に具体化した一実施の形態を
図1〜図3に従って説明する。図1は複合材の模式斜視
図であり、図3(a),(b)は複合材の強化材となる
三次元繊維構造体を製造する際の、繊維の配列状態を示
す模式図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment in which the present invention is embodied in a carbon / carbon composite material (C / C composite material) will be described below with reference to FIGS. FIG. 1 is a schematic perspective view of a composite material, and FIGS. 3A and 3B are schematic diagrams showing an arrangement state of fibers when a three-dimensional fiber structure serving as a reinforcing material of the composite material is manufactured. .
【0019】図1に示すように、複合材1は中央に孔1
aを有する回転体形状(この実施の形態では円板状)に
形成されている。複合材1は複合材の外形とほぼ同様の
円環状の強化材2と、マトリックス相3とで構成されて
いる。強化材2は炭素繊維を使用し、繊維体積含有率が
40%以上に構成された三次元繊維構造体により形成さ
れ、マトリックス相3は樹脂を焼成した炭素で構成され
ている。As shown in FIG. 1, the composite material 1 has a hole 1 in the center.
It is formed in a rotating body shape having a (disc shape in this embodiment). The composite material 1 includes an annular reinforcing material 2 having substantially the same outer shape as the composite material, and a matrix phase 3. The reinforcing material 2 is formed of a three-dimensional fiber structure having a fiber volume content of 40% or more using carbon fibers, and the matrix phase 3 is formed of carbon obtained by firing a resin.
【0020】三次元繊維構造体は互いに直交する方向に
延びる第1の面内配列糸x及び第2の面内配列糸yによ
り形成された複数の糸層4(図3(a)にのみ図示)
と、両面内配列糸x,yに対してほぼ±45°の角度で
交差するように配列されたバイアス糸B1 ,B2 により
形成された複数の糸層5(図3(b)にのみ図示)とを
備えている。そして、各糸層4,5が各糸層4,5と直
交する方向に配列される厚さ方向糸z(図1にのみ図
示)により結合されている。The three-dimensional fiber structure has a plurality of yarn layers 4 (shown only in FIG. 3A) formed by a first in-plane arrangement yarn x and a second in-plane arrangement yarn y extending in directions orthogonal to each other. )
And a plurality of yarn layers 5 formed by bias yarns B1 and B2 arranged so as to intersect with the yarns x and y arranged on both sides at an angle of approximately ± 45 ° (shown only in FIG. 3B). And The yarn layers 4 and 5 are connected by a thickness direction yarn z (shown only in FIG. 1) arranged in a direction orthogonal to the yarn layers 4 and 5.
【0021】次に前記のように構成された複合材1の製
造方法を説明する。先ず強化材2の製造方法を説明す
る。円環状の強化材2を形成するため、図2に示すよう
な枠体6を使用して、四角板状の三次元繊維構造体7
(図1に鎖線で図示)を形成する。三次元繊維構造体7
を形成する場合、まず、枠体6上に積層糸群を配列す
る。枠体6は製造する積層糸群の外形形状に対応した形
状(この実施の形態では正方形状)に形成され、厚さ方
向糸zの挿入区域と対応する領域6aを囲むように、規
制部材としてのピン8が所定ピッチで取り外し可能に配
置されている。Next, a method of manufacturing the composite material 1 having the above-described structure will be described. First, a method for manufacturing the reinforcing material 2 will be described. In order to form the annular reinforcing material 2, a rectangular plate-shaped three-dimensional fiber structure 7 is formed using a frame 6 as shown in FIG.
(Shown by chain lines in FIG. 1). Three-dimensional fiber structure 7
Is formed, first, the laminated yarn groups are arranged on the frame 6. The frame 6 is formed in a shape (square in this embodiment) corresponding to the outer shape of the laminated yarn group to be manufactured, and serves as a regulating member as a regulating member so as to surround a region 6a corresponding to the insertion region of the thickness direction yarn z. The pins 8 are removably arranged at a predetermined pitch.
【0022】そして、図3(a)に示すように、第1の
面内配列糸xが0°の配向角でピン8と係合して折り返
すように枠体6の枠に沿って配列されて第1の面内配列
糸xの糸層4が形成される。その上に、第2の面内配列
糸yが90°の配向角でピン8と係合して折り返すよう
に枠体6の枠に沿って配列されて第2の面内配列糸yの
糸層4が形成される。また、図3(b)に示すように、
バイアス糸B1 ,B2は±45°の配向角でピン8と係
合して折り返すように配列されて各糸層5が形成され
る。そして、各糸層4,5が所定の数積層された積層糸
群が枠体6上に形成された後、本願出願人が先に提案し
た厚さ方向糸挿入装置(例えば、特開平8−21824
9号公報)により、厚さ方向糸zの挿入が行われる。積
層糸群の表面側から厚さ方向糸zが積層糸群に挿入され
るとともに裏面側で抜け止め糸(図示せず)で結合され
ることによって繊維体積含有率が40%以上の三次元繊
維構造体7が形成される。なお、厚さ方向糸zは所定の
張力を有した状態で積層糸群に配設されている。従っ
て、最終的に三次元繊維構造体7を形成するためにピン
8を外しても、三次元繊維構造体7としての形態を保つ
ことは可能である。Then, as shown in FIG. 3 (a), the first in-plane arranged yarns x are arranged along the frame of the frame body 6 so as to be engaged with the pins 8 at an orientation angle of 0 ° and folded back. Thus, the yarn layer 4 of the first in-plane arrangement yarn x is formed. The second in-plane arrangement yarn y is further arranged along the frame of the frame body 6 so that the second in-plane arrangement yarn y is engaged with the pin 8 at an orientation angle of 90 ° and folded back thereon. Layer 4 is formed. Also, as shown in FIG.
The bias yarns B1 and B2 are arranged so as to be folded back by engaging with the pins 8 at an orientation angle of ± 45 ° to form each yarn layer 5. After a predetermined number of the yarn layers 4 and 5 are formed on the frame 6, a thickness direction yarn insertion device proposed by the applicant of the present application (for example, Japanese Patent Application Laid-Open No. Hei 8-21824).
No. 9), the thickness direction thread z is inserted. A three-dimensional fiber structure having a fiber volume content of 40% or more by inserting a thickness direction yarn z from the front surface side of the laminated yarn group into the laminated yarn group and bonding the thickness direction yarn z on the back surface side with a retaining yarn (not shown) 7 is formed. Note that the thickness direction yarns z are arranged in the stacked yarn group with a predetermined tension. Therefore, even if the pins 8 are removed to finally form the three-dimensional fiber structure 7, it is possible to maintain the form as the three-dimensional fiber structure 7.
【0023】各糸x,y,z,B1 ,B2 には炭素繊維
が使用され、各炭素繊維はロービング(トウ)の状態で
使用されている。ロービングとは細い単繊維のフィラメ
ントを多数本束ねた実質無撚りの繊維束を意味する。な
お、各図では糸x,y,z,B1 ,B2 の配列を分かり
易くするため、その間隔を広く表してしているが、実際
は配列後の各糸x,y,z,B1 ,B2 が互いに接触す
る程度に近接して配列される。Each of the yarns x, y, z, B1, B2 is made of carbon fiber, and each carbon fiber is used in a roving (tow) state. Roving means a substantially non-twisted fiber bundle obtained by bundling a large number of single filament filaments. In each of the figures, the intervals between the yarns x, y, z, B1, and B2 are shown widely in order to make the arrangement of the yarns easy to understand. They are arranged close enough to contact each other.
【0024】次に前記のように四角板状に構成された三
次元繊維構造体7を刃物を使用して円環状に加工する。
外側を円弧状に切り落とすのは糸鋸に類似した切断装置
を使用して行われる。孔1aの径が小さい場合は、孔1
aはカップ状の刃物を回転させることにより形成され
る。また、孔1aの径が大きい場合は、小さな孔をカッ
プ状の刃物で形成した後、糸鋸に類似した切断装置を使
用して孔1aが形成される。そして、形成された円環状
の強化材を使用してC/C複合材を製造する場合は、三
次元繊維構造体に樹脂を含浸させた後、焼成して樹脂の
炭化を行う。樹脂としてはフェノール樹脂を使用するの
が好ましい。Next, the three-dimensional fiber structure 7 formed in the shape of a square plate as described above is processed into an annular shape using a cutting tool.
The outside is cut off in an arc using a cutting device similar to a jigsaw. If the diameter of the hole 1a is small,
a is formed by rotating a cup-shaped blade. When the diameter of the hole 1a is large, a small hole is formed with a cup-shaped blade, and then the hole 1a is formed using a cutting device similar to a thread saw. When a C / C composite material is manufactured using the formed annular reinforcing material, the three-dimensional fiber structure is impregnated with a resin and then fired to carbonize the resin. It is preferable to use a phenol resin as the resin.
【0025】前記のように構成された円環状のC/C複
合材1は、例えば、ブレーキディスクとして使用され
る。この実施の形態では以下の効果を有する。The annular C / C composite material 1 configured as described above is used, for example, as a brake disk. This embodiment has the following effects.
【0026】(1) 複合材1の強化材2として、繊維
が直線状に配列され、かつ繊維体積含有率が40%以上
の三次元繊維構造体7を使用して、該三次元繊維構造体
7に樹脂を含浸させる前の状態において、孔1aや外形
の加工を刃物で行って形成した強化材2が使用されてい
る。従って、複合材1の段階で加工を施す場合に比較し
て、刃物の摩耗が小さくなる。また、繊維体積含有率が
高いため、樹脂が含浸されていない状態で三次元繊維構
造体7に孔を形成したり外形加工を施しても、切断除去
された繊維の近傍において、複合材の物性を悪化させる
ほど三次元繊維構造体7の繊維の配列が乱れたり、脱落
が生じることがなく、複合材1に必要な物性が確保され
る。(1) As the reinforcing material 2 of the composite material 1, a three-dimensional fiber structure 7 in which fibers are linearly arranged and the fiber volume content is 40% or more is used. Before the resin 7 is impregnated into the resin 7, the reinforcing material 2 formed by processing the hole 1a and the outer shape with a blade is used. Therefore, as compared with the case where the processing is performed at the stage of the composite material 1, the wear of the blade is reduced. Further, since the fiber volume content is high, even if holes are formed or the outer shape processing is performed on the three-dimensional fiber structure 7 in a state where the resin is not impregnated, the physical properties of the composite material in the vicinity of the cut and removed fibers are reduced. The worse the is, the more the fiber arrangement of the three-dimensional fiber structure 7 is not disturbed or dropped, and the physical properties required for the composite material 1 are secured.
【0027】(2) 円板状の強化材2を構成する三次
元繊維構造体7は、強化繊維としての両面内配列糸x,
y及びバイアス糸B1 ,B2 により面内4軸の疑似等方
性を有する。従って、放射状に延びるr方向繊維と、周
方向に延びるθ方向繊維と、各層と直交するように配列
されるz方向繊維とから構成される円板状の三次元繊維
構造体に比較して、強化材2は組織及び繊維体積含有率
とも全体が均一に形成され、複合材1の物性が良好にな
る。(2) The three-dimensional fiber structure 7 constituting the disk-shaped reinforcing material 2 is composed of yarns x, arranged on both sides as reinforcing fibers.
Due to y and the bias yarns B1 and B2, the in-plane four axes are pseudo-isotropic. Therefore, compared to a disk-shaped three-dimensional fiber structure composed of radially extending r-direction fibers, circumferentially extending θ-direction fibers, and z-direction fibers arranged to be orthogonal to each layer, The reinforcing material 2 is uniformly formed as a whole in both the structure and the fiber volume content, and the physical properties of the composite material 1 are improved.
【0028】(3) 三次元繊維構造体7は、両面内配
列糸x,y及びバイアス糸B1 ,B2 により形成された
複数の糸層4,5を厚さ方向糸zで結合した構成であ
る。従って、複数行、複数列に張設された経糸群の間に
経糸と直交する第1の緯糸と、経糸及び第1の緯糸と直
交する第2の緯糸とを挿入する工程を繰り返して形成さ
れる三次元織物に比較して繊維体積含有率が大きな三次
元繊維構造体7を形成するのが容易となる。(3) The three-dimensional fiber structure 7 has a structure in which a plurality of yarn layers 4 and 5 formed by yarns x and y arranged in both surfaces and bias yarns B1 and B2 are connected by a thickness direction yarn z. . Therefore, it is formed by repeating the step of inserting the first weft orthogonal to the warp and the second weft orthogonal to the warp and the first weft between the warp groups stretched in a plurality of rows and a plurality of columns. It is easy to form a three-dimensional fiber structure 7 having a larger fiber volume content than a three-dimensional fabric.
【0029】(4) 強化材2となる三次元繊維構造体
7に樹脂を含浸させる前に刃物で加工を施すため、樹脂
含浸後に加工を行う場合に比較して加工が容易になると
ともに、加工を施さずに複合材1の形状に対応した三次
元繊維構造体を形成する場合に比較して製造が簡単にな
る。(4) Since the three-dimensional fiber structure 7 serving as the reinforcing material 2 is processed with a blade before impregnating the resin, the processing is facilitated as compared with the case where the processing is performed after the resin impregnation, and the processing is performed. The manufacturing is simplified as compared with the case where a three-dimensional fiber structure corresponding to the shape of the composite material 1 is formed without performing the above-described process.
【0030】(5) 各糸x,y,z,B1 ,B2 を構
成する炭素繊維がロービング(トウ)の状態で使用され
ているため、高密度で配列された繊維同士が密着され、
樹脂を含浸しない状態で刃物で加工を施しても、切断除
去された繊維の近傍において、繊維の配列の乱れが生じ
難い。(5) Since the carbon fibers constituting each of the yarns x, y, z, B1, B2 are used in a roving (tow) state, the fibers arranged at high density are brought into close contact with each other,
Even if processing is performed with a blade without impregnating the resin, disorder of the fiber arrangement is unlikely to occur near the cut and removed fibers.
【0031】(6) 焼成により炭素化する樹脂として
フェノール樹脂を使用しているため、樹脂としてエポキ
シ樹脂等を使用する場合に比較して、焼成による炭素化
が容易になる。(6) Since a phenol resin is used as a resin to be carbonized by firing, carbonization by firing is easier than when an epoxy resin or the like is used as the resin.
【0032】(7) 各糸層4,5を構成する糸とし
て、少なくとも当該糸層内で連続した1本の糸が使用さ
れているため、各糸を適切な張力を付与した状態で配列
するのが容易となり、複合材1としたときの物性の向上
に寄与する。(7) Since at least one continuous yarn in the yarn layers is used as the yarns constituting the yarn layers 4 and 5, the yarns are arranged with an appropriate tension applied. This facilitates the improvement of the physical properties of the composite material 1.
【0033】(8) 孔1aをドリルで形成するのでは
なく、カップ状の刃物あるいは糸鋸に類似した切断装置
により形成されるため、加工の際に繊維の乱れが起こり
難い。(8) Since the hole 1a is formed not by a drill but by a cutting device similar to a cup-shaped blade or a thread saw, the fiber is less likely to be disturbed during processing.
【0034】実施の形態は前記に限定されるものではな
く、例えば、次のように具体化してもよい。 ○ 複合材1の形状は円環状に限らず、図4(a),
(b)に示すように、一端側がテーパー状に形成された
板状であってもよい。この複合材を製造する際は、前記
実施の形態と同様に四角板状の三次元繊維構造体7を製
造した後、その一端側がテーパー状に薄くなるように刃
物で加工して強化材を形成する。そして、その強化材に
樹脂を含浸させて複合材1とする。C/C複合材とする
場合は、樹脂含浸後に焼成を行う。この複合材1は、図
4(b)に示すように、テーパー部1b同士を接着剤で
接合して使用することにより、応力集中が起こり難く、
結合部(接合部)の特性(強度、応力集中の起こり難さ
等)の優れた大型の構造材が得られる。The embodiment is not limited to the above, and may be embodied as follows, for example. ○ The shape of the composite material 1 is not limited to an annular shape.
As shown in (b), one end side may be formed in a tapered shape. When manufacturing this composite material, a square plate-shaped three-dimensional fiber structure 7 is manufactured in the same manner as in the above-described embodiment, and a reinforcing material is formed by processing with a blade so that one end side thereof is tapered and thinned. I do. Then, the reinforcing material is impregnated with a resin to obtain the composite material 1. When a C / C composite material is used, baking is performed after resin impregnation. As shown in FIG. 4 (b), when the composite material 1 is used by bonding the tapered portions 1b to each other with an adhesive, stress concentration hardly occurs.
A large-sized structural material having excellent characteristics (strength, difficulty of stress concentration, etc.) of a joint (joint) can be obtained.
【0035】○ 板状部材の端部をテーパー状に加工す
る場合は、強化材2を構成する三次元繊維構造体7とし
て、その表面及び裏両に配置される糸層をバイアス糸B
1 ,B2 で構成された糸層5とするのが好ましい。バイ
アス糸B1 , B2 で構成された糸層5の場合、端部から
のほつれが起こり難いため、該糸層5を表面及び裏面側
に配置することにより、三次元繊維構造体7全体として
も繊維のほつれが起こり難くなる。また、第1の面内配
列糸x又は第2の面内配列糸yによる糸層4で形成した
場合と比較して、表層に配列された糸の密度が高くな
り、複合材1の表面の平滑性が向上する。In the case where the end of the plate-like member is processed into a tapered shape, the three-dimensional fiber structure 7 constituting the reinforcing material 2 is formed of a bias yarn B disposed on both the front and back surfaces thereof.
It is preferable to use a yarn layer 5 composed of 1, B2. In the case of the yarn layer 5 composed of the bias yarns B1 and B2, it is difficult for the yarn layer 5 to be frayed from the end portion. Is less likely to fray. Further, compared to the case where the yarn layer 4 is formed by the first in-plane arrangement yarn x or the second in-plane arrangement yarn y, the density of the yarns arranged on the surface layer becomes higher, and the surface of the composite material 1 has a higher density. The smoothness is improved.
【0036】○ 図5に示すように、板状の複合材1に
該複合材1をボルトあるいはピンにより他の部材と連結
可能とするための孔1cを設けてもよい。この場合、孔
1cはカップ状の刃物を回転させることにより形成され
る。As shown in FIG. 5, the plate-shaped composite material 1 may be provided with a hole 1c for connecting the composite material 1 to another member by means of bolts or pins. In this case, the hole 1c is formed by rotating a cup-shaped blade.
【0037】○ 厚さ方向糸zの配列は抜け止め糸と共
同で各糸層を締め付ける配列のものに限らず、例えば特
開平6−184906号公報に開示された繊維構造体の
ように、チェーンステッチ方式で厚さ方向糸z自身が抜
け止め機能を果たすように各糸層を貫通して締め付ける
構成としてもよい。また、厚さ方向糸zが積層糸群の表
側から裏側へ挿通される工程と、裏側から表側へ挿通さ
れる工程とが交互に繰り返される配列方法としてもよ
い。The arrangement of the thickness direction yarns z is not limited to the arrangement in which the yarn layers are fastened together with the retaining yarns. For example, a chain such as a fiber structure disclosed in JP-A-6-184906 is used. A configuration may be adopted in which the thread in the thickness direction z is perforated and tightened by a stitch method so that the thickness direction thread z itself performs a retaining function. Further, an arrangement method in which a step of inserting the thickness direction yarn z from the front side to the back side of the laminated yarn group and a step of inserting the thickness direction yarn z from the back side to the front side may be alternately repeated.
【0038】○ 厚さ方向への糸の挿入は、厚さ方向糸
zと繊維に樹脂を含浸させて硬化させたFRP製のロッ
ドとによって行われてもよい。この場合、各糸x,y,
B1, B2 をピン8で折り返すように配列した後、厚さ
方向糸zを粗に配列した状態で、所定数のロッドを繊維
配列部に挿入する。そして、ピン8を取り外すと、ロッ
ドが挿入された三次元繊維構造体が形成される。そし
て、所定の形状に刃物で加工した後、樹脂を含浸硬化さ
せた状態でFRPとして使用したり、焼成してC/C複
合材として使用される。The insertion of the yarn in the thickness direction may be performed by a thickness direction yarn z and an FRP rod obtained by impregnating the fiber with a resin and curing the resin. In this case, each yarn x, y,
After arranging B1 and B2 so as to be folded back by the pins 8, a predetermined number of rods are inserted into the fiber arrangement portion with the thickness direction threads z roughly arranged. Then, when the pin 8 is removed, a three-dimensional fiber structure into which the rod is inserted is formed. Then, after processing into a predetermined shape with a blade, the resin is impregnated and hardened and used as an FRP or baked to be used as a C / C composite material.
【0039】○ 面内配列糸xと面内配列糸yとは互い
に直交する方向に配列されていなくてもよい。 ○ 繊維体積含有率は50〜60%が好ましい。The in-plane arrangement yarn x and the in-plane arrangement yarn y do not have to be arranged in directions orthogonal to each other. ○ The fiber volume content is preferably 50 to 60%.
【0040】○ 厚さ方向糸zとしてロッドを使用する
場合に使用する治具として、ピン8を支持する枠体6の
内側に発泡樹脂等、比較的柔らかく、孔を形成すること
なくロッドの挿入が可能な材質で形成した繊維配列部を
設け、繊維配列部にロッドを直接挿入するようにしても
よい。As a jig used when a rod is used as the thickness direction thread z, the insertion of the rod is relatively soft, such as foamed resin, without forming a hole inside the frame 6 supporting the pin 8. It is also possible to provide a fiber array portion made of a material capable of performing the above-mentioned steps, and to directly insert a rod into the fiber array portion.
【0041】○ 焼成工程を設けず、三次元繊維構造体
7に樹脂を含浸させて複合材を製造する場合、ロッドを
構成する樹脂は複合材1のマトリックス樹脂と同じ樹脂
を使用するのが好ましい。同じ樹脂を使用すると、複合
材の物性が向上する。樹脂としては、フェノール樹脂に
限らずエポキシ樹脂等の他の熱硬化性樹脂や、熱硬化性
樹脂に限らず熱可塑性樹脂を使用してもよい。When a composite material is produced by impregnating the three-dimensional fiber structure 7 with a resin without providing a firing step, it is preferable to use the same resin as the matrix resin of the composite material 1 for the rod. . When the same resin is used, the physical properties of the composite material are improved. The resin is not limited to the phenol resin, but may be another thermosetting resin such as an epoxy resin, or a thermoplastic resin without being limited to the thermosetting resin.
【0042】○ バイアス糸B1 ,B2 の配向角は±4
5°に限らず、他の角度であってもよい。しかし、±4
5°の配向角で配列されている場合が、斜め方向からの
力に対して最も有効に機能する。The orientation angle of the bias yarns B1 and B2 is ± 4
The angle is not limited to 5 ° and may be another angle. However, ± 4
The arrangement at an orientation angle of 5 ° functions most effectively with respect to a diagonal force.
【0043】○ 三次元繊維構造体7は面内4軸、合計
5軸の構成に限らず、バイアス糸B1 ,B2 を省略して
両面内配列糸x,yのみから各糸層を構成してもよい。 ○ 三次元繊維構造体7を構成する繊維として炭素繊維
以外の繊維を使用してもよい。複合材1に耐熱性が要求
される場合は、繊維に炭化ケイ素繊維等のセラミック繊
維を使用する。耐熱性がさほど要求されない複合材1と
して使用する場合は、三次元繊維構造体7の構成繊維と
してアラミド繊維等の高強度、高弾性繊維を使用しても
よい。The three-dimensional fiber structure 7 is not limited to a configuration having four axes in a plane, that is, a total of five axes. Is also good. The fibers constituting the three-dimensional fiber structure 7 may be fibers other than carbon fibers. When heat resistance is required for the composite material 1, ceramic fibers such as silicon carbide fibers are used for the fibers. When used as the composite material 1 that does not require much heat resistance, a high-strength, high-elastic fiber such as aramid fiber may be used as a constituent fiber of the three-dimensional fiber structure 7.
【0044】○ 複合材1の形状は円環状や四角板状に
限らず、円板状、円柱状、円錐台状等の回転体形状や、
三角形や五角形以上の多角形状としてもよい。 ○ マトリックス相3として金属を使用してもよい。The shape of the composite material 1 is not limited to an annular shape or a square plate shape, but a rotating body shape such as a disk shape, a column shape, a truncated cone shape, and the like.
The shape may be a polygon such as a triangle or a pentagon. ○ A metal may be used as the matrix phase 3.
【0045】前記各実施の形態から把握できる技術的思
想(発明)について、以下に記載する。 (1) 請求項1〜請求項4のいずれか一項に記載の発
明において、前記三次元繊維構造体は互いに直交する方
向に折り返し状に配列された第1及び第2の面内配列糸
により形成された複数の糸層と、前記両面内糸に対して
交差する方向に配列されたバイアス糸により形成された
複数の糸層と、前記各糸層と直交する方向に配列されて
前記各糸層を結合する厚さ方向糸とを含む。The technical ideas (inventions) that can be grasped from the above embodiments are described below. (1) In the invention according to any one of claims 1 to 4, the three-dimensional fiber structure is formed by first and second in-plane arranged yarns arranged in a folded shape in directions orthogonal to each other. A plurality of yarn layers formed, a plurality of yarn layers formed by bias yarns arranged in a direction intersecting with the inner yarns on both surfaces, and the respective yarns arranged in a direction orthogonal to the respective yarn layers A thickness direction thread for joining the layers.
【0046】(2) 請求項1〜請求項5のいずれか一
項に記載の発明において、前記三次元繊維構造体は炭素
繊維のロービングにより形成されている。 (3) 請求項3に記載の発明において、前記複合材は
強化材及びマトリックスの両方が炭素で構成されたカー
ボン・カーボン複合材である。(2) In the invention according to any one of claims 1 to 5, the three-dimensional fiber structure is formed by roving carbon fibers. (3) In the invention according to claim 3, the composite material is a carbon-carbon composite material in which both the reinforcing material and the matrix are made of carbon.
【0047】(4) 請求項4に記載の発明において、
前記三次元繊維構造体は表面側及び裏面側にそれぞれ一
対のバイアス糸層が配列されている。(4) In the invention according to claim 4,
The three-dimensional fiber structure has a pair of bias yarn layers arranged on the front side and the back side, respectively.
【0048】[0048]
【発明の効果】以上詳述したように請求項1〜請求項5
に記載の発明によれば、繊維体積含有率の高い三次元繊
維構造体を強化材とし、かつ孔やテーパー部を有する直
方体、立方体及び平板形状の複合材や、回転体形状の複
合材を従来より簡単にかつ低コストで製造できる。As described in detail above, claims 1 to 5 are provided.
According to the invention described in (3), a three-dimensional fiber structure having a high fiber volume content is used as a reinforcing material, and a rectangular parallelepiped, cubic or flat composite material having holes or tapered portions, and a rotating composite material are conventionally used. It can be manufactured more easily and at lower cost.
【図1】 一実施の形態の複合材の模式斜視図。FIG. 1 is a schematic perspective view of a composite material according to one embodiment.
【図2】 積層糸群の形成に使用する治具の模式平面
図。FIG. 2 is a schematic plan view of a jig used to form a laminated yarn group.
【図3】 (a)は面内配列糸の配列状態を示す模式
図、(b)はバイアス糸の配列状態を示す模式図。FIG. 3A is a schematic view showing an arrangement state of in-plane arrangement yarns, and FIG. 3B is a schematic view showing an arrangement state of bias yarns.
【図4】 (a)は別の実施の形態の複合材の模式斜視
図、(b)は複合材の接合状態を示す模式側面図。FIG. 4A is a schematic perspective view of a composite material according to another embodiment, and FIG. 4B is a schematic side view showing a joined state of the composite material.
【図5】 別の実施の形態の複合材の模式斜視図。FIG. 5 is a schematic perspective view of a composite material according to another embodiment.
【図6】 (a)従来の回転体形状の三次元織物の模式
斜視図、(b)は穴開けを行った三次元織物の模式斜視
図。FIG. 6A is a schematic perspective view of a conventional three-dimensional woven fabric having a rotating body shape, and FIG. 6B is a schematic perspective view of a three-dimensional woven fabric in which holes are formed.
【図7】 2個の複合材の接合状態を示す模式側面図。FIG. 7 is a schematic side view showing a joined state of two composite materials.
1…複合材、1a,1c…孔、1b…テーパー部、2…
強化材、3…マトリックス相、4,5…糸層、7…三次
元繊維構造体、x…第1の面内配列糸、y…第2の面内
配列糸、z…厚さ方向糸、B1 ,B2 …バイアス糸。DESCRIPTION OF SYMBOLS 1 ... Composite material, 1a, 1c ... Hole, 1b ... Taper part, 2 ...
Reinforcing material, 3 matrix phase, 4,5 yarn layer, 7 three-dimensional fiber structure, x first in-plane arrangement yarn, y second in-plane arrangement yarn, z thickness direction yarn, B1, B2 ... Bias thread.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 105:08 B29C 67/14 X (72)発明者 神谷 隆太 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 Fターム(参考) 4F072 AA04 AA07 AB10 AB27 AC01 AD13 AH21 AL16 4F205 AD16 AD24 AD25 AD27 AG22 AG23 AG28 HA06 HA25 HA33 HA37 HA47 HB01 HC07 HF05 HG06 HL16 HL17 HL18 4L048 AA05 AB07 BA22 BB06 CA01 DA41 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 105: 08 B29C 67/14 X (72) Inventor Ryuta Kamiya 2-1-1 Toyota-cho, Kariya-shi, Aichi Prefecture Address F-term in Toyota Industries Corporation (Reference) 4F072 AA04 AA07 AB10 AB27 AC01 AD13 AH21 AL16 4F205 AD16 AD24 AD25 AD27 AG22 AG23 AG28 HA06 HA25 HA33 HA37 HA47 HB01 HC07 HF05 HG06 HL16 HL17 HL18 4L04A05A05A05
Claims (5)
含有率が40%以上の三次元繊維構造体を強化材とした
複合材であって、少なくとも孔あるいはテーパー部を有
し、前記三次元繊維構造体にマトリックス相を構成する
ための樹脂等を含浸させる前の状態において刃物で加工
を施すことにより前記孔あるいはテーパー部が形成され
た複合材。1. A composite material in which fibers are linearly arranged and a three-dimensional fiber structure having a fiber volume content of 40% or more as a reinforcing material, the composite material having at least a hole or a tapered portion, A composite material in which the holes or the tapered portions are formed by performing processing with a cutting tool in a state before impregnating the original fiber structure with a resin or the like for forming a matrix phase.
いに直交する方向に折り返し状に配列された第1及び第
2の面内配列糸により形成された複数の糸層と、前記各
糸層と直交する方向に配列されて前記各糸層を結合する
厚さ方向糸とを含む三次元繊維構造体である請求項1に
記載の複合材。2. The three-dimensional fiber structure according to claim 1, wherein the three-dimensional fiber structure includes a plurality of yarn layers formed by first and second in-plane yarns arranged in a folded shape at least in a direction orthogonal to each other; 2. The composite material according to claim 1, wherein the composite material is a three-dimensional fiber structure including: a thickness direction yarn that is arranged in a direction orthogonal to each other and connects the yarn layers. 3.
された円板状に加工されている請求項1又は請求項2に
記載の複合材。3. The composite material according to claim 1, wherein the three-dimensional fiber structure is processed into a disk shape having a hole formed in the center.
側がテーパー状に薄くなるように加工されている請求項
1又は請求項2に記載の複合材。4. The composite material according to claim 1, wherein at least one end of the three-dimensional fiber structure is processed so as to be tapered.
維構造体を強化材とした複合材の製造方法であって、前
記三次元繊維構造体にマトリックス相を構成するための
樹脂等を含浸させる前に刃物で加工を施すことにより、
三次元繊維構造体の外形を複合材の外形に合わせた形状
に形成したりあるいは孔を形成した後、樹脂の含浸等の
後工程を行う複合材の製造方法。5. A method for producing a composite material using a three-dimensional fiber structure having a fiber volume content of 40% or more as a reinforcing material, wherein a resin or the like for forming a matrix phase in the three-dimensional fiber structure is provided. By processing with a blade before impregnating,
A method for producing a composite material, in which the outer shape of the three-dimensional fiber structure is formed into a shape conforming to the outer shape of the composite material or holes are formed, and then a post-process such as resin impregnation is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001062251A JP2002254429A (en) | 2001-03-06 | 2001-03-06 | Composite material and method for manufacturing it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001062251A JP2002254429A (en) | 2001-03-06 | 2001-03-06 | Composite material and method for manufacturing it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002254429A true JP2002254429A (en) | 2002-09-11 |
Family
ID=18921416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001062251A Pending JP2002254429A (en) | 2001-03-06 | 2001-03-06 | Composite material and method for manufacturing it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002254429A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009137578A (en) * | 2007-12-07 | 2009-06-25 | Boeing Co:The | Modular composite manufacturing method |
JP2011527957A (en) * | 2008-07-17 | 2011-11-10 | スネクマ・プロピュルシオン・ソリド | Method for producing nozzle or Suehiro nozzle element made of composite material |
US8613301B2 (en) | 2008-09-30 | 2013-12-24 | The Boeing Company | Compaction of prepreg plies on composite laminate structures |
US8752293B2 (en) | 2007-12-07 | 2014-06-17 | The Boeing Company | Method of fabricating structures using composite modules and structures made thereby |
US8936695B2 (en) | 2007-07-28 | 2015-01-20 | The Boeing Company | Method for forming and applying composite layups having complex geometries |
US9046437B2 (en) | 2006-12-22 | 2015-06-02 | The Boeing Company | Leak detection in vacuum bags |
US9770871B2 (en) | 2007-05-22 | 2017-09-26 | The Boeing Company | Method and apparatus for layup placement |
-
2001
- 2001-03-06 JP JP2001062251A patent/JP2002254429A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9046437B2 (en) | 2006-12-22 | 2015-06-02 | The Boeing Company | Leak detection in vacuum bags |
US9770871B2 (en) | 2007-05-22 | 2017-09-26 | The Boeing Company | Method and apparatus for layup placement |
US10603848B2 (en) | 2007-05-22 | 2020-03-31 | The Boeing Company | Apparatus for layup placement |
US8936695B2 (en) | 2007-07-28 | 2015-01-20 | The Boeing Company | Method for forming and applying composite layups having complex geometries |
US10052827B2 (en) | 2007-07-28 | 2018-08-21 | The Boeing Company | Method for forming and applying composite layups having complex geometries |
JP2009137578A (en) * | 2007-12-07 | 2009-06-25 | Boeing Co:The | Modular composite manufacturing method |
US8752293B2 (en) | 2007-12-07 | 2014-06-17 | The Boeing Company | Method of fabricating structures using composite modules and structures made thereby |
US8916010B2 (en) | 2007-12-07 | 2014-12-23 | The Boeing Company | Composite manufacturing method |
US9764499B2 (en) | 2007-12-07 | 2017-09-19 | The Boeing Company | Structures using composite modules and structures made thereby |
JP2011527957A (en) * | 2008-07-17 | 2011-11-10 | スネクマ・プロピュルシオン・ソリド | Method for producing nozzle or Suehiro nozzle element made of composite material |
US8613301B2 (en) | 2008-09-30 | 2013-12-24 | The Boeing Company | Compaction of prepreg plies on composite laminate structures |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106799878B (en) | Method and needle for reinforcing porous materials | |
JP2004131538A (en) | Carbon nanofiber-dispersed resin fiber-reinforced composite material | |
JP2002541002A (en) | Cordal preform for fiber-reinforced products and method of making same | |
JPS59196238A (en) | Fiber reinforced composite body | |
US5527584A (en) | High thermal conductivity triaxial non-metallic honeycomb | |
JP2011506784A (en) | How to weave a closed structure with intersecting walls | |
KR20010023769A (en) | New and useful improvements in fiber-reinforced composite materials structures and methods of making same | |
CN108474148B (en) | Preform with integral gap filler | |
KR960000558B1 (en) | Oriented prepreg and carbon fiber reinforced composite | |
JP2002254429A (en) | Composite material and method for manufacturing it | |
US11377191B2 (en) | Composite panel with reinforcing pins | |
GB2278084A (en) | Ultra-high performance carbon composites | |
US3895162A (en) | Composite metal fiber wool resin product and method | |
JP2004197325A (en) | Fiber reinforced sheet | |
KR101931030B1 (en) | Through-the-thickness carbon fiber composites and method of preparing the same | |
JP4062879B2 (en) | Three-dimensional fiber structure | |
WO2015064733A1 (en) | Coil spring | |
US4221622A (en) | Method of obtaining fibre substrates intended for the production of composite bodies | |
JP4696431B2 (en) | Reinforcing sheet and reinforcing method | |
CN102862299B (en) | Lamellar composite part | |
JP4062882B2 (en) | Method for producing three-dimensional fiber structure and method for producing carbon / carbon composite material | |
JP2000143360A (en) | Carbon fiber-reinforced carbon composite material whose interlayer is strengthened | |
JP2015080944A (en) | Fiber-reinforced resin | |
JP2003301364A (en) | Unidirectional filament three-dimensional structure by staple fiber interlacing | |
JPH0147583B2 (en) |