[go: up one dir, main page]

JP4062666B2 - トルク変動制御装置及びトルク変動制御プログラム - Google Patents

トルク変動制御装置及びトルク変動制御プログラム Download PDF

Info

Publication number
JP4062666B2
JP4062666B2 JP2002082941A JP2002082941A JP4062666B2 JP 4062666 B2 JP4062666 B2 JP 4062666B2 JP 2002082941 A JP2002082941 A JP 2002082941A JP 2002082941 A JP2002082941 A JP 2002082941A JP 4062666 B2 JP4062666 B2 JP 4062666B2
Authority
JP
Japan
Prior art keywords
torque
motor
amount
value
torque fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002082941A
Other languages
English (en)
Other versions
JP2003284207A (ja
Inventor
裕 玉川
好浩 片桐
真一 北島
知之 高野
浩之 牧野
篤 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002082941A priority Critical patent/JP4062666B2/ja
Priority to US10/394,174 priority patent/US6859693B2/en
Priority to DE10313338A priority patent/DE10313338B4/de
Publication of JP2003284207A publication Critical patent/JP2003284207A/ja
Application granted granted Critical
Publication of JP4062666B2 publication Critical patent/JP4062666B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating imbalance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、モータで駆動する電気自動車及びモータとエンジンとで駆動するハイブリッド車において、加速/減速の際に発生するトルク振動を抑制するためのトルク変動制御装置及びトルク変動制御プログラムに関する。
【0002】
【従来の技術】
従来、エンジンで駆動するMT車(マニュアルトランスミッションを搭載した車両)において、走行中に急加速や急減速を行うと、車体が前後に揺さぶられることがある。これは、エンジントルクの急激な変動に対して、駆動輪が即座に追随できず、エンジンから駆動輪にトルクを伝達する駆動系、特に、ドライブシャフト(駆動軸)がねじれ振動を起こし、このねじれ振動がエンジンの回転速度を振動させ、車両の推進力に振動が生じることにより生じる現象である。
【0003】
ドライブシャフトは、図9(a)に示すように、物理的には、バネとダンパとを並列に組み合わせたモデルとして表現される。エンジントルクの急変動によりドライブシャフトがねじれると、バネの作用により、ドライブシャフトはねじれ振動を起こすが、そのねじれ振動は、ダンパの作用により時間と共に振幅が小さくなる。つまりドライブシャフトのねじれ振動は徐々に振幅が減衰する単振動で表せる。
【0004】
ここで、加速/減速により発生するドライブシャフトのねじれ振動(トルク変動)について、図9(b)を用いて説明する。図9(b)は縦軸が、ドライブシャフトのねじれ振動を反映するパラメータであるエンジン回転速度、横軸が時間を示している。エンジン回転速度が一定の状態から急激に車両の加速を開始すると、ドライブシャフトにねじれ振動が発生しなければ、図中の破線で示したように、エンジン回転速度は直線的に増加するはずである。しかし現実には、ドライブシャフトにねじれ振動が発生するために、エンジン回転速度は振動しながら増加していく。このエンジン回転速度の振動は、トルク変動として体感され、搭乗者は前後に揺さぶられる感じを受け、これが搭乗者には違和感となる。この点については、モータで走行する車両であっても全く同じである。
【0005】
この問題に対する対策としては、加速時に急激なトルクの増加が生じないように、アクセルが強く踏み込まれた際に、エンジンの点火時期を遅角させ、エンジン出力を低下させ、アクセルに対するエンジンの応答を遅くする方法が広く行われている。しかし、この方法では、加速性能が低下する恐れがあった。
【0006】
また、駆動装置としてエンジンとモータとを備えたハイブリッド車においてもこの問題は発生し、そのための対策として、特開2001−57714号公報に記載の発明では、急激なトルク変動指令が発せられた場合に、そのトルク変動指令をそのまま駆動系に伝達するのではなく、トルク変動指令に対して遅延処理を行い、緩やかにトルクを変動させることで振動を抑制している。しかし、この方法では、トルク変動指令に対するモータの応答性を低下させることとなるために、加速性能が悪化するという問題点があった。
【0007】
さらに、特開2001−57714号公報の発明を改良したものとして、特開2001−28809号公報に記載された発明が挙げられる。
【0008】
この発明においては、モータのトルクを変更するトルク指令が発せられた場合、モータの出力に対応するモータの回転速度から目標逆モデルを用いて、モータが実際に出力しているトルクを推定トルクとして推定し、この推定トルクとトルク指令値との差分を元にしてトルク振動を制御するための制御トルクを算出し、この制御トルクをトルク指令値に加算したものを、モータに対して出力する。しかし、このシステムの場合、エンジンとモータとを併用するハイブリッド車においては、エンジンのトルク指令による出力トルクの高精度なコントロールが困難であり、トルク指令値と実際の出力トルクとの間に差異が発生してしまい、結果として推定トルクにエンジントルクの誤差が重畳されるために、不用な補償トルクを発生する場合があった。
【0009】
【発明が解決しようとする課題】
このような問題点に鑑み本発明は、ハイブリッド車において急激なトルク変動が生じた場合に、そのトルク変動を速やかに収束させることで、トルク変動に伴う車体の前後振動を抑制することが可能な、トルク変動制御装置及びトルク変動制御プログラムを提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明は、前記した課題を解決するために、次のように構成した。請求項1に記載の発明は、車両を駆動する駆動軸に回転トルクを与えるモータと、前記モータを駆動トルク量に基づいて駆動制御するモータ制御手段と、前記駆動軸又は前記モータの回転軸の回転速度を検出する回転速度検出手段と、を備える車両におけるトルク変動制御装置であって、前記回転速度の変化に基づいて車両に発生するトルク変動を検出するトルク変動検出手段と、前記トルク変動に対して逆位相の補正駆動トルク量を設定する補正駆動トルク量設定手段と、を備え、前記トルク変動検出手段は、前記回転速度の1階微分値を演算する第1微分演算手段と、前記回転速度の2階微分値を演算する第2微分演算手段と、を有し、前記1階微分値と前記2階微分値に基づいて前記補正駆動トルク量設定手段が補正駆動トルク量を出力する前記トルク変動におけるタイミングを検出することを特徴とするトルク変動制御装置である。
【0011】
請求項1に記載の発明によれば、回転速度検出手段は駆動軸又はモータの回転軸の回転速度をモニタし、トルク変動検出手段は、モータの回転速度の1階時間微分値を演算するための第1微分演算手段と、モータの回転速度の2階時間微分値を演算するための第2微分演算手段を有している。
トルク変動検出手段は、回転速度の1階微分値と2階微分値に基づいて、前記補正駆動トルク量設定手段が補正駆動トルク量を出力する前記トルク変動におけるタイミングを検出することにより、回転速度検出手段により検出された回転速度中に単振動的なトルク変動が発生していないかどうかを評価している。この単振動的なトルク変動が検出された場合には、補正駆動トルク量設定手段が、この単振動的なトルク変動と逆位相の補正駆動トルク量を設定し、モータ制御手段はこの補正駆動トルク量を加味してモータを制御し、単振動的なトルク変動を打ち消す。1階微分値と2階微分値に基づいて適切なタイミングで前記した補正駆動トルク量をモータの駆動トルク量に加算するので、車両の加速/減速時に発生する単振動的なトルク変動を効果的に抑制することが可能となる。
【0012】
尚、ここで、モータは、実施の形態に示すように、バッテリからの電力の供給を受けて、電動機として稼動し、駆動軸に対して駆動トルクを付与することが可能であるとともに、発電機として稼動して、駆動軸の回転に従動して回転し、バッテリを充電する回生動作を行うことも可能であるようなものでもよい。
【0013】
請求項2に記載の発明は、前記補正駆動トルク量設定手段は、前記トルク変動検出手段が前記トルク変動を検出したとき、前記2階微分値に基づいて前記逆位相の補正駆動トルク量を設定することを特徴とする請求項1に記載のトルク変動制御装置である。
請求項2に記載の発明によれば、車両の駆動軸の回転速度の2階微分値に基づいて補正駆動トルク量設定手段がモータの駆動トルク量に加算する補正駆動トルク量を設定する。
さらに、タイミング設定手段が、1階微分値及び2階微分値に基づいて適切なタイミングで前記した補正駆動トルク量をモータの駆動トルク量に加算するので、車両の加速/減速時に発生する単振動的なトルク変動を効果的に抑制することが可能となる。
【0014】
請求項3に記載の発明は、前記1階微分値が所定値以下であり、且つ、前記2階微分値が0以上の場合を、前記補正駆動トルク量を出力するトルク変動におけるタイミングとし、前記補正駆動トルク量設定手段が正の補正駆動トルク量を設定し、前記モータ制御手段が前記モータの駆動トルク量を前記正の補正駆動トルク量で補正することを特徴とする請求項1又は請求項2に記載のトルク変動制御装置である。
【0015】
図1(a)に、車両が加速している状態におけるモータの回転速度の時間変化を模式的に示した。ここで、モータは、バッテリからの電力を供給されて電動機として稼動しており、積極的に駆動軸に対して駆動トルクを与えているものとする。
【0016】
図1(a)において横軸は時間であり、縦軸はモータの回転速度を示す。モータに与えられる加速時の駆動トルク量は、図中に破線で示すように、直線的であるが、実際のモータの回転速度は、前記したように駆動軸のねじれ振動のために、単振動的なトルク変動を伴いながら増加していく。
【0017】
モータの回転速度の1階微分を図1(b)に示した。モータの回転速度を1階微分することにより、定数部分が消え、0の周りに振動するモータのトルク変動成分のみが抽出される。このトルク変動成分は、モータ回転速度の振動の振幅が大きいほど大きい値を示す。また、図1(a)のモータ回転速度と比較したときに1階微分は位相が90°ずれているが、やはり時間と共に振幅が減衰する単振動として表現される。
【0018】
モータの回転速度の2階微分を図1(c)に示した。モータの回転速度を2階微分すると、図1(a)においてボトムの位置が、図1(c)ではピークとなり、図1(a)ではピークの位置が、図1(c)ではボトムとなるという、図1(a)のモータ回転速度とは180°位相がずれ、0を中心として振動する曲線が得られる。
【0019】
図1(a)の領域Aは、モータに与えられる加速時の駆動トルク量(破線)よりも実際のモータの駆動トルク量(出力)が相対的に不足している領域ともみなせる。請求項3に記載されたトルク変動制御装置は、この領域Aにおいて、モータに対して正の補正駆動トルク量を付与し、相対的に不足している駆動トルク量を補償することで、トルク変動を打ち消し、それ以降のモータ回転速度の振動(トルク変動)を抑制するものである。
【0020】
より具体的には、実施の形態で述べる例では、トルク変動検出手段は、1階微分値が所定値L(図1(b))以下であり、且つ2階微分値が0以上となったときに、所定の大きさ以上の単振動的なトルク変動が発生したと判断する。
【0021】
この判断を受けて、補正駆動トルク量設定手段は、後記するように2階微分値(図1(c)の斜線部)に所定のゲインを乗じて求めた正の補正駆動トルク量を設定し、モータ制御手段は、この正の補正駆動トルク量をモータトルク指令値に加算してモータに対して出力する。そして、1階微分値が所定値Uとなるまで、補正駆動トルク量設定手段は、その時々の2階微分値より正の補正駆動トルク量を算出し、モータに正の補正駆動トルク量を出力し続ける。
【0022】
このように、領域Aにおいてのみ正の補正駆動トルク量を出力することで、相対的な駆動トルク量の不足分が補償され、単振動的なトルク変動が打ち消されて、それ以降のトルク変動は消失する。特に、請求項3に記載の発明は、車両の加速時に有効である。
また、ここで、正の補正駆動トルクとは、駆動軸の回転速度を増加するようなトルクのことを言う。
【0023】
請求項4に記載の発明は、前記トルク変動検出手段は前記1階微分値が所定値以上であり、且つ、前記2階微分値が0以下の場合を前記補正駆動トルク量を出力するトルク変動におけるタイミングとし、前記補正駆動トルク量設定手段が負の補正駆動トルク量を設定し、前記モータ制御手段が前記モータの駆動トルク量を前記負の補正駆動トルク量で補正することを特徴とする請求項1又は請求項2に記載のトルク変動制御装置である。
【0024】
請求項4に記載の発明は、特に、車両の減速時に有効である。
【0025】
請求項4に記載の発明を、図2を参照して説明する。図2は、図1と同様に、車両が減速している状態におけるモータの回転速度の時間変化(図2(a))、その1階微分値(図2(b))、その2階微分値(図2(c))を示す。
ここで、モータは、発電機として稼動しており、駆動軸に従動して回転し、バッテリに充電を行っているものとする。
【0026】
図2(a)の領域Bは、モータに与えられる減速時の駆動トルク量(破線)よりも実際のモータの駆動トルク量が相対的に過剰となっている領域ともみなせる。請求項4に記載されたトルク変動制御装置は、この領域Bにおいて、モータに対して負の補正駆動トルク量を付与することで、相対的に過剰となっている駆動トルク量を補償することで、トルク変動を打ち消し、それ以降のモータ回転速度の振動(トルク変動)を抑制するものである。
【0027】
より具体的には、トルク変動検出手段は、1階微分値が所定値U’以上であり、且つ2階微分値が0以下となったときに、所定の大きさ以上の単振動的なトルク振動が発生したと判断する。
【0028】
この判断を受けて、補正駆動トルク量設定手段は、後記するように2階微分値(図2(c)の斜線部)に所定のゲインを乗じて求めた負の補正駆動トルク量(駆動トルク量)を設定し、モータ制御手段は、この負の補正駆動トルク量をモータの駆動トルク量(トルク指令値)に加算してモータに対して出力する。そして、1階微分値が所定値L’となるまで、補正駆動トルク量設定手段は、その時々の2階微分値より負の補正駆動トルク量を算出し、モータに負の補正駆動トルク量を出力し続ける。
【0029】
このように、領域Bにおいてのみ負の補正駆動トルク量を出力することで、相対的な駆動トルク量の過剰分が補償され、単振動的なトルク変動が打ち消されて、それ以降のトルク変動は消失する。
尚、ここで、負の補正駆動トルク量とは、駆動軸の回転速度を減少するようなトルクのことを言う。
【0030】
請求項5に記載の発明は、前記モータの駆動トルク量を前記正の補正駆動トルク量で補正する際に、前記モータの駆動トルク量が上限値となる場合には、前記駆動トルク量の上限値で前記モータを駆動することを特徴とする請求項3に記載のトルク変動制御装置である。
【0031】
請求項5に記載の発明は、請求項3に記載の発明において、正の補正駆動トルク量をモータに対して出力する際に、モータの駆動トルク量が上限値を越えてしまう場合を想定したものである。
【0032】
この場合には、正の補正駆動トルク量をモータの駆動トルク量の上限値を超えないように制限する。これにより、モータを駆動するバッテリ、PDU等が過剰な電力を供給しないように保護する。
【0033】
この場合には、正の補正駆動トルク量がモータの駆動トルク量の上限値で規制されてしまい、充分に単振動的なトルク変動を抑制できない場合も考えられるが、それに対しては、請求項4に記載の発明のように、モータに対して負の補正駆動トルク量を出力することで、トルク変動を抑制する。ここで、負の補正駆動トルク量の大きさ及び出力期間は、請求項4に記載された発明と同様とすることができる。
【0034】
このように、請求項5に記載の発明によれば、モータの駆動トルク量が上限値となった場合であっても、負の補正駆動トルク量をモータに対して出力することにより、単振動的なトルク変動を抑制することが可能となる。
【0035】
請求項6に記載の発明は、前記モータの駆動トルク量を前記負の補正駆動トルク量で補正する際に、前記モータの駆動トルク量が上限値となる場合には、前記駆動トルク量の上限値で前記モータを駆動することを特徴とする請求項3に記載のトルク変動制御装置である。
【0036】
請求項6に記載の発明は、請求項4に記載の発明において、負の補正駆動トルク量をモータに対して出力する際に、モータの駆動トルク量が上限値を越えてしまう場合を想定したものである。
【0037】
この場合には、負の補正駆動トルク量の出力量をモータの駆動トルク量の上限値を超えないように制限する。これにより、モータを駆動するバッテリ、PDU(Power Drive Unit)等に過剰な電力が供給されないように保護する。
【0038】
この場合には、負の補正駆動トルク量の出力量がモータの駆動トルク量の上限値で規制されてしまい、充分に単振動的なトルク変動を抑制できない場合も考えられるが、それに対しては、請求項3に記載の発明のように、モータに対して正の補正駆動トルク量を出力することで、トルク変動を抑制する。ここで、正の補正駆動トルク量の大きさ及び出力期間は、請求項3に記載された発明と同様とする。
【0039】
このように、請求項6に記載の発明によれば、モータの駆動トルク量が上限値となった場合であっても、正の補正駆動トルク量をモータに対して出力することにより、単振動的なトルク変動を抑制することが可能となる。
【0040】
請求項7に記載の発明は、前記車両が前記駆動軸に接続するエンジンを有し、トルク変動が検出された場合に、エンジンの点火時期の遅角量を増加させることを特徴とする請求項1、請求項2、請求項3又は請求項5の何れか一項に記載のトルク変動制御装置である。
【0041】
請求項7に記載された発明は、エンジンとモータと併用して稼動するハイブリッド車に関するものである。請求項3に記載の発明において、正の補正駆動トルクをモータに対して出力してもなお、トルク変動が収束しない場合には、エンジンの点火時期を遅角することにより、加速指令に対するエンジンの応答性を低下させることでトルク変動を抑制する。
【0042】
これにより、ハイブリッド車においては、請求項3に記載の発明により単振動的なトルク変動が解消しない場合であっても、エンジンの遅角量を大きくすることにより、トルク変動を解消することが可能となる。
【0043】
請求項8に記載の発明は、前記補正駆動トルク量は、前記2階微分値に所定のゲインを乗じて設定されることを特徴とする請求項1から請求項7のいずれか一項に記載のトルク変動制御装置である。
【0044】
請求項8に記載の発明によれば、補正駆動トルク量を2階微分値に所定のゲインを乗じることにより設定する。図1,2に示したように、2階微分値は、モータの回転速度のトルク変動と180°位相がずれているので、2階微分値に対してゲイン(正の値)を乗じるだけで、補正駆動トルク量を算出することが可能となる。
【0045】
請求項9に記載の発明は、前記第2微分演算手段は前記1階微分値をローパスフィルタを通過させた後に前記2階微分値を演算し、前記ローパスフィルタ通過に伴う遅延を、前記2階微分値を所定進角することで補正することを特徴とする請求項1から請求項8の何れか一項に記載のトルク変動制御装置。
【0046】
請求項9に記載の発明は、1階微分値をローパスフィルタを通過させた後に2階微分値を算出するので、2階微分値より高周波雑音成分が除去され、トルク変動成分のみが抽出されるので、前記した補正駆動トルク量をモータに対して出力するタイミング及び補正駆動トルク量の大きさを適切に設定することが可能となる。
【0047】
また、ローパスフィルタを通過させることにより2階微分値には遅延分が導入されるために、2階微分値は1階微分値に対して位相遅れを生じる。請求項9に記載の発明では、2階微分値を所定進角させることで、この位相遅れを解消した。これにより、1階微分値及び2階微分値を直接比較することが可能となり、補正駆動トルク量の出力タイミングを正確に決定することが可能となる。
【0048】
請求項10に記載の発明は、前記モータの駆動トルク量の上限は、バッテリ温度及び/又はインバータ温度により制限されることを特徴とする請求項1から請求項9の何れか一項に記載のトルク変動制御装置である。
【0049】
請求項10に記載の発明によれば、請求項5及び請求項6に記載したモータの駆動トルク量の上限は、バッテリ温度及び/又はインバータ温度により制限されるので、低温時や高温時等、バッテリ及び/又はインバータの性能が低下する場面や、性能が低下し易くなる場面においても、その条件下におけるバッテリやインバータの性能等に応じてトルク変動の制御を行うことができる。
【0050】
請求項11に記載の発明は、駆動力発生用のモータを備える車両に搭載されるコンピュータを、入力した車両の駆動軸又はモータの回転軸の回転速度を微分して1階微分値を演算する第1微分演算手段、前記第1微分演算手段の微分値をさらに微分して2階微分値を演算する第2微分演算手段、前記2階微分値に所定のゲインを乗じて補正駆動トルク量を設定する補正駆動トルク量設定手段、前記1階微分値及び/又は前記2階微分値に基づいて前記モータの駆動トルク量を前記補正駆動トルク量で補正するタイミングを設定するタイミング設定手段、として機能させることを特徴とする車両のトルク変動制御プログラムである。
【0051】
請求項11に記載の発明は、車両の駆動軸の回転速度の2階微分値に基づいて補正駆動トルク量設定手段がモータの駆動トルク量に加算する補正駆動トルク量を設定する。さらに、タイミング設定手段が、1階微分値及び/又は2階微分値に基づいて適切なタイミングで前記した補正駆動トルク量をモータの駆動トルク量に加算するので、車両の加速/減速時に発生する単振動的なトルク変動を効果的に抑制することが可能となる。
【0052】
【発明の実施の形態】
以下、本発明の実施の形態を適宜図面を参照して説明する。
図3に、本発明のトルク変動制御装置が用いられるハイブリッド車の機能ブロック図を示した。
【0053】
この実施の形態のハイブリッド車は、スロットル1、エンジン2、モータ3、駆動輪4、PDU7、バッテリ8、エンジンECU5、モータECU6等からなり、本発明のトルク変動制御装置9は、モータECU6内に納められている。また、図示してはいないが、モータ3の後段にはクラッチ及びマニュアル変速機が配置されている。つまり本実施形態のハイブリッド車はMT車である。ちなみに、トルクコンバータを備えた車両や、自動クラッチ付きのCVTを備えた車両の場合は、トルクコンバータや自動クラッチでトルク変動が吸収される傾向にあり、ドライバが体感するトルク変動は、本実施の形態の車両よりも少ない。
【0054】
ハイブリッド車においては、エンジン2とモータ3及び駆動輪4は、駆動軸10を介して直結されている。すなわち、エンジン2とモータ3との間に変速機を有する車両も存在するが、本実施形態の車両ではエンジン2とモータ3とは直結されている。モータ3は、エンジン2を始動する役割、車両の運転状態に応じてエンジン2の出力を補助する役割、車両制動時の回生動作による回生エネルギで発電する役割、車両の運転状態に応じてエンジン2の出力で発電する役割を有する。モータ3は、電動機の役割だけでなく発電機の役割も有する発電電動機である。エンジン2は、ガソリンなどを燃料とする内燃機関であり燃料とスロットル1を介して吸入される空気を混合して燃焼することで、駆動軸10に対して駆動力を伝達する。
【0055】
PDU7は、インバータなどから構成され、エンジン2の出力を補助するアシスト時には、バッテリ8から電力を供給されてモータ3を駆動する。逆に回生時は、モータ3により発電された電力を供給されてバッテリ8を充電する。なお、インバータは、例えばパルス幅変調(Pulse Width Modulation)によるPWMインバータであり、複数のスイッチング素子をブリッジ接続した図示しないブリッジ回路を備える。
【0056】
モータの駆動用及び回生充電用に使用されるバッテリ(高圧バッテリ)8は、ニッケル水素電池を多数本まとめて接続した組電池になっている。ちなみに、モータ3をバッテリ8に蓄えられた電力で駆動するときは、モータECU6に制御されるPDU7を介してバッテリ8からモータ3に電力が供給される(放電)。一方、モータ3が発電するときは、発電された電気エネルギ(電力)はモータECU6に制御されるPDU7を介してバッテリ8に蓄えられる(充電)。
【0057】
エンジンECU5は、エンジン2を制御する役割を果たし、スロットル1の開度に基づいて、エンジン2に供給される燃料量、エンジン2の点火時期等を制御する。さらに、エンジンECU5は、エンジン2に掛かる負荷を常に評価しており、この負荷に応じたトルク指令値をモータECU6に対して送信する。このトルク指令値とは、モータ3の出力トルクを指示するものである。基本的には、モータ3は、このトルク指令値に基づいて、時には発電機として、時には電動機として稼動する。尚、「トルク指令値」は、特許請求の範囲で言うところの「駆動トルク量」に対応する。
【0058】
モータECU6は、内部に本発明のトルク変動制御装置9を備えており、前記したトルク指令値に、このトルク変動制御装置9で演算される補正トルク指令値を加算してトルク指令値とし、このトルク指令値に基づいてPDU7を介してモータ3を制御する役割を果たす。尚、「補正トルク指令値」は、特許請求の範囲で言うところの「補正駆動トルク量」に相当する。
【0059】
また、モータECU6には、駆動軸10に設けられた回転速度センサ11から、駆動軸10の回転速度が入力され、この回転速度は、トルク変動制御装置9で補正トルク指令値を算出するために利用される。
【0060】
さらにまた、モータECU6には、バッテリ8の温度及びPDU7の温度が、入力され、これらの情報は、その温度環境におけるバッテリ8の出力(放電)限界及び充電限界、従って、モータ3のトルク指令値の上限を決定するために用いられる。
【0061】
続いて、図4に本発明のトルク変動制御装置9を含むモータ3の駆動制御系の機能ブロック図を示す。
モータECU6は、トルク変動制御装置9、加算器50、モータ制御コントローラ51等からなる。
【0062】
トルク変動制御装置9には、駆動軸10に設けられた回転速度センサ11から駆動軸10の回転速度が入力される。トルク変動制御装置9では、内部で、後記の各種演算が行われ、加減速に伴い発生する単振動的なトルク変動を解消するための補正トルク指令値の大きさ及びその出力タイミングが評価され出力される。
【0063】
加算器50は、トルク変動制御装置9から出力される補正トルク指令値とエンジンECU5より出力されるトルク指令値とを加算するためのものである。加算器50により両者は加算されてトルク指令値が更新され、モータ制御コントローラ51に出力される。
【0064】
モータ制御コントローラ51は、加算器50から入力されるモータ3に対するトルク指令値に基づきモータ3を制御する役割を果たす。
また、モータ3に電力を供給して駆動させる場合のバッテリ8からの供給電力の上限値(従って、モータ3のトルク指令値の上限値)及びモータ3により発電を行う際のバッテリ8への充電電力の上限値(従って、モータ3のトルク指令値の上限値)は、何れもPDU7及びバッテリ8の温度により規制される。モータ制御コントローラ51には、PDU7及びバッテリ8よりPDU温度及びバッテリ温度に関する情報が入力されており、モータ3へのトルク指令値がその温度条件下における上限値を越えないように制御している。
【0065】
次に、トルク変動制御装置9の機能について説明する。
トルク変動制御装置9は、第1微分演算手段70、ローパスフィルタ(以下「LPF」という)71、第2微分演算手段72、タイミング演算手段73、ゲイン乗算器74、ゲイン記憶手段75及び乗算器76とからなる。
尚、トルク変動制御装置9は、モータECU6の内部で機能するプログラムとして構成されるものとする。つまり、モータECU6がメモリに記憶されたプログラム(トルク変動制御プログラム)を読み出し実行することにより、トルク変動制御装置9の各ブロックが持つ機能が実現される。
【0066】
先ず回転速度センサ11で評価された駆動軸10の回転速度は、第1微分演算手段70に入力され、回転速度の1階微分値が演算される。続いて、この1階微分値はLPF71を通過することで、周波数の高いノイズが除去されて、第2微分演算手段72に入力されて回転速度の2階微分値が演算される。
【0067】
尚、LPF71を通過させた1階微分値を用いて2階微分値を演算しているために、2階微分値には、所定の位相遅れが導入される。そこで、2階微分値を所定進角させることにより、この位相遅れをキャンセルしている。
【0068】
ここで計算された2階微分値は、ゲイン乗算器74に入力され、2階微分値に対して所定の定数であるゲインKが乗ぜられ、補正トルク指令値が求められる。尚、ここで、ゲインKの値は、車両の運行状況に応じて予め設定されており、ゲイン記憶手段75中に記憶されている。
【0069】
ゲイン乗算器74では常に補正トルク指令値が評価されているが、この補正トルク指令値が常にモータ3に対して出力される訳ではなく、加速/減速時に駆動軸10が単振動的なトルク変動を生じた際にのみ、このトルク変動を打ち消すために出力される。この補正トルク指令値の出力タイミングを決定(設定)するのが、タイミング演算手段73である。
【0070】
タイミング演算手段73には、1階微分値及びそれに対応する2階微分値が常に入力されている。タイミング演算手段73は1階微分値より車両の加速/減速を判断し、それに応じて1階微分値及び2階微分値の大きさより、単振動的なトルク変動が発生しているかどうかを判断する。この点の詳細については、「課題を解決するための手段」の欄において図1、図2を参照して説明した通りである。
【0071】
ここで、タイミング演算手段73は、単振動的なトルクを検知した際には「1」を、それ以外の場合には「0」を出力する。
乗算器76は、タイミング演算手段73から出力される値とゲイン乗算器74から出力される補正トルク指令値とを乗算し、その乗算結果を加算器50に出力する。
【0072】
単振動的なトルク変動が発生していない場合には、タイミング演算手段73からは「0」が出力されるので、乗算器76が加算器50に出力する値は0となり、加算器50からモータ制御コントローラ51に出力されるトルク指令値には、補正トルク指令値は加算されない。
【0073】
それに対して、単振動的なトルク変動が発生している場合には、タイミング演算手段73からは「1」が出力されるので、乗算器76は加算器50に対して、補正トルク指令値を出力する。よって、加算器50からモータ制御コントローラ51に出力されるトルク指令値は補正トルク指令値が加算されたものとなる。
【0074】
尚、特許請求の範囲で言うところの「トルク変動検出手段」が、第1微分演算手段70、LPF71、第2微分演算手段72及びタイミング演算手段73とから構成され、特許請求の範囲で言うところの「補正駆動トルク量設定手段」は第2微分演算手段72、ゲイン乗算器74、ゲイン記憶手段75、乗算器76とからなる。
【0075】
次に、このトルク変動制御を実現するための処理について図5〜図6のフローチャートを用いて説明する。
【0076】
図5は、本発明のトルク変動制御装置の処理フローを示した流れ図である。
先ずS1において、駆動軸10に設けられた回転速度センサ11から駆動軸10の回転速度NEがトルク変動制御装置9(図4)により取得される。
【0077】
続いて、第1微分手段70において、この回転速度NEが時間微分され、1階微分値dNEが演算される(S2)。続いて、この1階微分値dNEはローパスフィルタ(LPF)71を通過し、高い周波数のノイズ成分が除かれる(S3)。このようにしてノイズ成分が除かれた1階微分値dNEは、第2微分手段72により時間微分され、さらに、LPF71を通過した際に導入された遅延を補償するために所定進角されて、2階微分値ddNEが得られる(S4)。
【0078】
続いて、2階微分値ddNEはゲイン乗算器74に送信され、ゲイン記憶手段75に記憶されているゲインKが2階微分値ddNEに乗ぜられ、補正トルク指令値RTQが求められる(S5)。
【0079】
ここで、駆動軸10の回転速度が領域A(図1(a))にある場合には、相対的に駆動軸10を回転するトルク指令値が不足しているということであるので、駆動軸10の回転をアシストするような正の補正トルク指令値が、2階微分値(図1(c)斜線部)に所定のゲインKを乗ずることで求められる。
【0080】
それに対して、駆動軸10の回転速度が領域B(図2(a))にある場合には、相対的に駆動軸10を駆動するトルク指令値が過剰であるので、駆動軸10の回転を減速するような負の補正トルク指令値が、2階微分値(図2(c)の斜線部)に所定のゲインKを乗ずることで求められる。
【0081】
S5と並行して、タイミング演算手段73においては、駆動軸10において単振動的なトルク変動が発生していないかどうかが判断されている(S6)。S6において、トルク変動が発生していない(N)と判断される場合には、flagが「0」と設定される(S7)。それに対しトルク変動が発生していると判断される場合にはflagが「1」と設定される(S8)。尚、S6のトルク変動の検出フローについては詳細を後記する。
【0082】
続いて、S9では、乗算器76において、後記の(1)式の演算が行われる。
補正トルク指令値(RTQ)=補正トルク指令値(RTQ)×flag・・(1)
つまり乗算器76では、S6において、トルク変動が検出されflag=1となった場合にのみ補正トルク指令値RTQが0以外の値を有することとなる。
【0083】
続いて、S10では、加算器50において、後記の(2)式の演算が行われ、モータ3を所定トルク指令値で回転させるためのトルク指令値が求められる。
トルク指令値=トルク指令値+補正トルク指令値(RTQ)・・・(2)
【0084】
続いて、S10で求められたトルク指令値は、モータ制御コントローラ51に送信される。前記したようにモータ制御コントローラ51は、バッテリ温度及びPDU温度に基づいて、その温度環境におけるモータ3のトルク指令値の上限値を評価しており、S11においては、トルク指令値が、モータ3のトルク指令値の上限値を上回っていないかどうかが判断される。
【0085】
トルク指令値がモータ3のトルク指令値の上限値を上回っている場合(Y)には、バッテリ8及びPDU7を保護するために、トルク指令値をモータ3のトルク指令値の上限値に設定(規制)する(S12)。
【0086】
ここで、S12においてトルク指令値がモータ3のトルク指令値の上限値に規制された場合における単振動的なトルク変動の抑制について詳述する。例えば、図1(a)の領域Aにおいては、相対的にトルク指令値が不足しており、単振動的なトルク変動を抑制するためには、駆動軸10を積極的に駆動するような正の補正トルク指令値RTQが加えられなければならない。
【0087】
正の補正トルク指令値RTQをトルク指令値に加えた結果、前記した(2)式のトルク指令値がモータ3のトルク指令値の上限値を上回ってしまった場合、S12において、トルク指令値はモータ3のトルク指令値の上限値まで足切りされてしまう。このような場合には、領域A(図1(a))においては充分にトルク変動を抑制できないので、単振動的なトルク変動は次の周期に持ち越して領域A’が出現する(図1(a))。
【0088】
この領域A’は、相対的にトルク指令値が過剰な領域であるので、領域A’以降のトルク変動を抑制するためには、駆動軸10に対してトルク指令値を減少させるような負の補正トルク指令値RTQが加えられなければならない。つまり、領域A’においては、領域Aとは逆に駆動軸10のトルク指令値を減少させるような補正トルク指令値RTQがトルク指令値に加えられるので、モータ3のトルク指令値が上限値を越えることはなく、領域A’において確実に単振動的なトルク変動を収束させることが可能となる。
【0089】
図2の場合も同様であり、例え、領域Bにおいてトルク変動を抑制することができなくとも、領域B’において、領域Bとは逆の補正トルク指令値RTQが加えられることにより単振動的なトルク変動を抑制することが可能となる。
【0090】
最後に、モータ制御コントローラ51からトルク指令値がPDU7を介してモータに出力される(S13)。
S13の後は、処理はS1に戻りS1〜S13の間を繰り返す。
【0091】
尚、このフローチャート中には明示していないが、図1のように車両が加速している場合において、何等かの原因により単振動的なトルク変動が収束しない際には、エンジン2の点火時期を遅角して、エンジン2の応答性を低下させ、緩やかに加速させることでトルク変動を抑制しても良い。
【0092】
続いて、前記S6〜S8において、タイミング演算手段73で行われる単振動的なトルク変動の検出フローについて図6,図1,図2を参照しながら説明する。
S6においては、加速/減速時に駆動軸10で発生する図1及び図2で見たような単振動的なトルク振動を検出し、さらに、図1における領域A及び図2における領域Bを抽出する処理がなされる。
【0093】
まず、第1微分演算手段70からタイミング演算手段73に入力される1階微分値dNEに基づき、車両が加速しているのか、減速しているのかが判断される(S100)。つまり、S100においては、駆動軸10の回転速度が、図1のように時間とともに増加する傾向であるのか、図2のように減少する傾向であるのかが判断される。
【0094】
車両が加速していると判断された場合(加速)には、S101において、駆動軸10の回転速度の1階微分値dNEが所定の値L(負値)以下であるかどうかが判断される(図1(b))。ここで、dNE≦Lの場合(Y)には、回転速度NEが基準値L(負値)を下回って大きく変動していることを示し、続いて、2階微分値ddNEが0以上であるかどうかが判断される(S102)。S102において、2階微分値ddNE≧0であると判断された場合(Y)には、駆動軸10で図1(a)で見たような単振動的なトルク変動が発生しており、そのトルク変動が領域A(図1(a))に入ったとの判断がなされ、前記した(1)式に従い、補正トルク指令値RTQをトルク指令値に加算するためにflagが1に設定される。
【0095】
つまり、S101とS102における処理においては、補正トルク指令値RTQをモータ3の制御に加算する開始タイミングが決定される。
【0096】
それに対し、S102において、ddNE<0の場合(N)には、flagが更新されることはなく、flagは前回値(0又は1)を維持したままとなる。
【0097】
S101において、dNE>Lと判断された場合(N)には、処理はS104に移行し、1階微分値dNEが所定値U(正値)以上であるかどうかが判断される(図1(b))。ここで、dNE≧Uであると判断された場合(Y)には、図1(a)、図1(b)で見たように、トルク変動が領域Aの終りに近づいたことを示し、S105においてflag=0と設定され、前記した(1)式に従い補正トルク指令値RTQは0となり、補正トルク指令値RTQはモータ3に対するトルク指令値に反映されなくなる。つまり、S104、S105においては、モータ3に対する補正トルク指令値RTQによる制御を終了するための終了タイミングが決定される。
【0098】
それに対し、S104においてdNE<U(正値)であると判断された場合(N)には、flagが更新されることはなく、flagは前回値(0又は1)を維持したままとなる。
【0099】
つまり、車両が加速している場面においては、dNE≦L(S101)及びddNE≧0(S102)という両条件が成立したときに初めてflagが1となることにより、補正トルク指令値RTQがトルク指令値に加算され、補正トルク指令値RTQがモータ3の制御に反映され始める。また、dNE≧U(S104)が成立したときにのみ、flagが0とされ、補正トルク指令値RTQはトルク指令値へ加算されなくなる。これ以外の場合には、flagは前回値(0又は1)を維持したままとなり、それまで行われてきた制御が続行される。
【0100】
続いて、S100において、減速指令が発せられていると判断された場合(減速)には、先ず、S106において、1階微分値dNEが所定値U’(正値)以上であるかどうかが判断される(図2(b))。ここで、dNE≧U’であると判断されると、S107において2階微分値ddNEが0以下であるかどうかが判断される(図2(c))。S107において、ddNE≦0である場合(Y)には、図2(a)において、駆動軸10の回転速度が単振動的にトルク変動しており、そのトルク変動が領域B(図2(a))に入ったとの判断がなされ、前記した(1)式に従い、補正トルク指令値RTQをトルク指令値に加算するためにflagが1に設定される(S108)。
【0101】
それに対し、S107において、ddNE>0の場合(N)には、flagは前回値(0又は1)を維持したままとなる。
【0102】
S106において、dNE<U’(正値)と判断された場合(N)には(図2(b))、処理はS109に移行し、1階微分値が所定値L’(負値)以下であるかどうかが判断される(図2(b))。ここで、dNE≦L’と判断された場合には、図2(a)、図2(b)で見たように、トルク変動が領域Bの終りに近づいたことを示し、S110においてflag=0とされ、前記した(1)式に従い補正トルク指令値RTQは0となり、補正トルク指令値RTQはモータ3の制御に反映されなくなる。それに対し、S109において、dNE>L’と判断された場合(N)には、flagは前回値(0又は1)を維持したままとなる。
【0103】
つまり、車両が減速している場面においては、dNE≧U’(S106)及びddNE≦0(S107)という両条件が成立したときに初めてflagが1となることにより、負の補正トルク指令値RTQがトルク指令値に加算され、補正トルク指令値RTQがモータ3の制御に反映され始める。また、dNE≦L’(S109)が成立したときにのみ、flagが0とされ、負の補正トルク指令値RTQはトルク指令値へ加算されなくなる。これ以外の場合には、flagは前回値(0又は1)を維持したままとなり、それまで行われてきた制御が続行される。
【0104】
また、S100において、加速でも減速でもない、つまり、駆動軸10の回転速度が一定であると判断された場合(定速)には、補正トルク指令値RTQによる制御は必要ないので、flagは0とされる。
【0105】
続いて、図7のタイミングチャートを用いて、本発明のトルク変動制御装置の動作について説明する。
【0106】
図7において、(a)はスロットル開度を示しており、(b)は駆動軸10の回転速度NEを、(c)はNEの一回微分値dNEを、(d)はNEの2階微分値ddNEを、(e)は、加算器50(図4)からモータ制御コントローラ51(図4)に送信されるモータ3を制御するためのトルク指令値を、(f)は、タイミング演算手段73で評価される前記したflagの値をそれぞれ示している。
【0107】
図7(a)よりわかるように、t0からスロットル1が開かれ始め加速が開始する。すると、駆動軸10の回転速度NEは増加するが、前記したようにモータ3及びエンジン2の駆動力と路面の反力とで駆動軸10がねじれ振動を発生するために、回転速度NEも極大値Pを取った後に減少して極小値Bを取り振動しながら増加する。この極大値Pが相対的に駆動軸10の回転トルクが過剰な部分であるとみなせ、極小値Bが相対的に駆動軸10の回転トルクが不足している部分であるとみなせる。
1階微分値dNE及び2階微分値ddNEは、このNEの変化に対応して値が変化する。
【0108】
1階微分値dNE(図7(c))が減少して所定値L(負値)を下回り、且つ、ddNE(図7(d))が0以上となった時点t1において、図5、図6で見たように、タイミング演算手段73において、flagが1となり、回転速度NEの極小値Bで発生している相対的なトルク不足を補うために、正の補正トルク指令値RTQが、トルク指令値に対して加算される(図4)。図7(e)において、t1とt2の間においてトルク指令値が急激に大きな値となっているが(斜線部)、これが、加えられた正の補正トルク指令値RTQを表している。尚、加えられる補正トルク指令値RTQの値は、前記したようにddNEに所定のゲインKを乗じることで求められている。
【0109】
そして、dNEが所定値U(正値)を上回った時点t2で、図5、図6で見たように、タイミング演算手段73において、flagが0となり、補正トルク指令値RTQの加算が終了する。
【0110】
ここで、注目すべきは、補正トルク指令値RTQを加算する開始時刻t1と補正トルク指令値RTQの加算終了時刻t2とが回転速度NEの極小値Bの幅と略一致していること及び、t2以降は、回転速度NEの振動が収まっていることである。
【0111】
このように、本発明のトルク変動制御装置は、相対的にトルクが不足している回転速度NEの極小値Bにおいて、適切なタイミングと大きさで補正トルク指令値RTQをモータ3を介して駆動軸10に加えたので、その後の回転速度NEの振動が抑制されている。つまり、ドライバーが受ける違和感が解消ないし大幅に低減される。この際、加速性能が低下することがない。ちなみに、本実施の形態の車両のように、トルク変動の違和感を受けやすいマニュアルの変速機を備えた車両でも、顕著にトルク変動を低減ないし解消することができる。
【0112】
以上、本発明の実施の形態を説明したが、本発明はこの実施の形態の記述にのみ限定されるものではなく、本発明の技術的思想を具現化する種々の変更が可能である。
【0113】
【実施例】
続いて、本発明のトルク変動制御装置の実施例について説明する。
実施例として、本発明のトルク変動制御装置を搭載したハイブリッド車両において、スロットルを急激に開放(加速)したときの車体に掛かる加速度とエンジン回転速度とを測定し、図8(a)に示した。
【0114】
また、比較例として、本発明のトルク変動制御装置を搭載しない以外は、実施例と同様の車両を用い、同条件でスロットルを開放(加速)したときの車体に掛かる加速度と駆動軸の回転速度を測定し、図8(b)に示した。
【0115】
両者を比較すると、加速開始直後(図中丸囲み)において、比較例においては、車体に掛かる加速度及び駆動軸の回転速度が単振動的に変動しているが、本発明のトルク変動制御装置を搭載した実施例においては、加速開始直後に車体に掛かる加速度及び駆動軸の回転速度の振動が収まり、駆動軸の回転速度が直線的に増加していることがわかる。
【0116】
このように本発明のトルク変動制御装置を用いることにより、急激なトルク変動時に発生する単振動的なトルク変動を抑制することが可能となる。これにより、商品性能が格段に向上する。
尚、本発明は、モータだけを搭載する電気自動車、燃料電池電気自動車にも適用できる。またトルクコンバータやCVT等を搭載した車両にも適用できる。また、回転速度は、変速機のドリブン側のものでもよく、この場合、回転速度は車速パルスに相当するものになる。
【0117】
【発明の効果】
本発明は、前記のように構成したので、以下のような顕著な効果を奏する。
本発明のトルク変動制御装置は、駆動軸の回転速度の変動に基づいて、急加速/急減速時に車両に発生する単振動的なトルク変動を検出し、このトルク変動に対して逆位相の補正駆動トルク量(補正トルク指令値)を出力することで駆動軸の駆動トルク量(駆動トルク量)を補正するので、単振動的なトルク変動を抑制することが可能となる(請求項1)。
さらに、補正駆動トルク量設定手段は、トルク変動検出手段がトルク変動を検出したとき、2階微分値に基づいて前記逆位相の補正駆動トルク量を設定するので、車両の加速/減速時に発生する単振動的なトルク変動を効果的に抑制することが可能となる(請求項2)。
【0118】
本発明のトルク変動制御装置は、駆動軸の回転速度の1階微分値及び2階微分値より、単振動的なトルク変動の発生を検知する。このトルク変動において、相対的に駆動トルク量が不足していると判断される場面では、2階微分値に所定のゲインを乗じた正の補正駆動トルク量をモータに加算することで、不足している駆動トルク量を補い、相対的に駆動トルク量が過剰であると判断される場面では、2階微分値に所定のゲインを乗じた負の補正駆動トルク量をモータに加算することで、過剰な駆動トルク量を補う。このような制御を行うことにより、急加速や急減速の場面においても、車両に発生する単振動的なトルク変動を抑制することが可能となる(請求項3,4)。
【0119】
本発明のトルク変動制御装置は、出力指令値が、その時々のバッテリ温度等で決定されるモータの駆動トルク量の上限値を越えてしまうような場合には、出力指令値をモータの駆動トルク量の上限値に規制するので、バッテリが過剰に放電したり、過剰に充電されることを防止できる(請求項5,6)。
【0120】
本発明のトルク変動制御装置は、エンジンとモータとを有するハイブリッド車に好適に用いられる。特に、車両の加速時において、何らかの原因で駆動軸の単振動的なトルク変動が収まらない場合には、エンジンの点火時期を遅角することにより、エンジンの応答性を低下させることでトルク変動を抑制することが可能である(請求項7)。
【0121】
本発明のトルク変動制御装置は、2階微分値に所定のゲインを乗じることにより補正駆動トルク量の大きさを決定するので、簡便に補正駆動トルク量を求めることが可能となる(請求項8)。
【0122】
本発明のトルク変動制御装置は、1階微分値をローパスフィルタを通過させた後に2階微分値を演算するので、1階微分値に含まれる高周波雑音成分を除去することが可能となり、比較的小さい周波数である単振動的なトルク変動を抽出することが可能となる(請求項9)。
【0123】
本発明のトルク変動制御装置は、モータの駆動トルク量の上限をバッテリ温度及びインバータ温度により制限するので、その時々の温度条件に応じてトルク変動の制御を行うことができる(請求項10)。
本発明のトルク変動制御プログラムは、車両の駆動軸の回転速度の2階微分値に基づいて補正駆動トルク量設定手段がモータの駆動トルク量に加算する補正駆動トルク量を設定する。さらに、タイミング設定手段が、1階微分値及び/又は2階微分値に基づいて適切なタイミングで前記した補正駆動トルク量をモータの駆動トルク量に加算するので、車両の加速/減速時に発生する単振動的なトルク変動を効果的に抑制することが可能となる(請求項11)。
【図面の簡単な説明】
【図1】モータに対し加速指令が発せられている状態におけるモータの回転速度の時間変化を模式図である。
【図2】モータに対し減速指令が発せられている状態におけるモータの回転速度の時間変化を模式図である。
【図3】本発明のトルク変動制御装置が用いられるハイブリッド車の機能ブロック図である。
【図4】本発明のトルク変動制御装置の機能ブロック図である。
【図5】本発明のトルク変動制御装置の処理フローを示した流れ図である。
【図6】タイミング演算手段で行われる単振動的なトルク変動の検出フローを示した流れ図である。
【図7】本発明のトルク変動制御装置の動作を示したタイミングチャートである。
【図8】本発明のトルク変動制御装置の実施例(a)と比較例(b)を示したグラフである。
【図9】ドライブシャフトの物理的モデル(a)と、加速/減速により発生するドライブシャフトのねじれ振動(b)の様子を描いた模式図である。
【符号の説明】
1 スロットル
2 エンジン
3 モータ
4 駆動輪
5 エンジンECU
6 モータECU
7 PDU
8 バッテリ
9 トルク変動制御装置
10 駆動軸
11 回転速度センサ
50 加算器
51 モータ制御コントローラ
52 ダンパ制御コントローラ
70 第1微分演算手段
71 ローパスフィルタ
72 第2微分演算手段
73 タイミング演算手段
74 ゲイン乗算器
75 ゲイン記憶手段
76 乗算器

Claims (11)

  1. 車両を駆動する駆動軸に回転トルクを与えるモータと、
    前記モータを駆動トルク量に基づいて駆動制御するモータ制御手段と、
    前記駆動軸又は前記モータの回転軸の回転速度を検出する回転速度検出手段と、を備える車両におけるトルク変動制御装置であって、
    前記回転速度の変化に基づいて車両に発生するトルク変動を検出するトルク変動検出手段と、
    前記トルク変動に対して逆位相の補正駆動トルク量を設定する補正駆動トルク量設定手段と、を備え
    前記トルク変動検出手段は、前記回転速度の1階微分値を演算する第1微分演算手段と、前記回転速度の2階微分値を演算する第2微分演算手段と、を有し、前記1階微分値と前記2階微分値に基づいて前記補正駆動トルク量設定手段が補正駆動トルク量を出力する前記トルク変動におけるタイミングを検出することを特徴とするトルク変動制御装置。
  2. 前記補正駆動トルク量設定手段は、前記トルク変動検出手段が前記トルク変動を検出したとき、前記2階微分値に基づいて前記逆位相の補正駆動トルク量を設定することを特徴とする請求項1に記載のトルク変動制御装置。
  3. 前記トルク変動検出手段は前記1階微分値が所定値以下であり、且つ、前記2階微分値が0以上の場合を、前記補正駆動トルク量を出力するトルク変動におけるタイミングとし、
    前記補正駆動トルク量設定手段が正の補正駆動トルク量を設定し、
    前記モータ制御手段が前記モータの駆動トルク量を前記正の補正駆動トルク量で補正することを特徴とする請求項1又は請求項2に記載のトルク変動制御装置。
  4. 前記トルク変動検出手段は前記1階微分値が所定値以上であり、且つ、前記2階微分値が0以下の場合を、前記補正駆動トルク量を出力するトルク変動におけるタイミングとし、
    前記補正駆動トルク量設定手段が負の補正駆動トルク量を設定し、
    前記モータ制御手段が前記モータの駆動トルク量を前記負の補正駆動トルク量で補正することを特徴とする請求項1又は請求項2に記載のトルク変動制御装置。
  5. 前記モータの駆動トルク量を前記正の補正駆動トルク量で補正する際に、前記モータの駆動トルク量が上限値となる場合には、前記駆動トルク量の上限値で前記モータを駆動することを特徴とする請求項3に記載のトルク変動制御装置。
  6. 前記モータの駆動トルク量を前記負の補正駆動トルク量で補正する際に、前記モータの駆動トルク量が上限値となる場合には、前記駆動トルク量の上限値で前記モータを駆動することを特徴とする請求項4に記載のトルク変動制御装置。
  7. 前記車両が前記駆動軸に接続するエンジンを有し、トルク変動が検出された場合に、エンジンの点火時期の遅角量を増加させることを特徴とする請求項1から請求項3、又は請求項5の何れか一項に記載のトルク変動制御装置。
  8. 前記補正駆動トルク量は、前記2階微分値に所定のゲインを乗じて設定されることを特徴とする請求項1から請求項7の何れか一項に記載のトルク変動制御装置。
  9. 前記第2微分演算手段は前記1階微分値をローパスフィルタを通過させた後に前記2階微分値を演算し、前記ローパスフィルタ通過に伴う遅延を、前記2階微分値を所定進角することで補正することを特徴とする請求項1から請求項8の何れか一項に記載のトルク変動制御装置。
  10. 前記モータの駆動トルク量の上限は、バッテリ温度及び/又はインバータ温度により制限されることを特徴とする請求項1から請求項9の何れか一項に記載のトルク変動制御装置。
  11. 駆動力発生用のモータを備える車両に搭載されるコンピュータを、入力した車両の駆動軸又はモータの回転軸の回転速度を微分して1階微分値を演算する第1微分演算手段、前記第1微分演算手段の微分値をさらに微分して2階微分値を演算する第2微分演算手段、前記2階微分値に所定のゲインを乗じて補正駆動トルク量を設定する補正駆動トルク量設定手段、前記1階微分値及び/又は前記2階微分値に基づいて前記モータの駆動トルク量を前記補正駆動トルク量で補正するタイミングを設定するタイミング設定手段、として機能させることを特徴とする車両のトルク変動制御プログラム。
JP2002082941A 2002-03-25 2002-03-25 トルク変動制御装置及びトルク変動制御プログラム Expired - Fee Related JP4062666B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002082941A JP4062666B2 (ja) 2002-03-25 2002-03-25 トルク変動制御装置及びトルク変動制御プログラム
US10/394,174 US6859693B2 (en) 2002-03-25 2003-03-24 Torque variation control device and computer program
DE10313338A DE10313338B4 (de) 2002-03-25 2003-03-25 Vorrichtung zum Steuern/Regeln einer Drehmomentschwankung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082941A JP4062666B2 (ja) 2002-03-25 2002-03-25 トルク変動制御装置及びトルク変動制御プログラム

Publications (2)

Publication Number Publication Date
JP2003284207A JP2003284207A (ja) 2003-10-03
JP4062666B2 true JP4062666B2 (ja) 2008-03-19

Family

ID=28035774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082941A Expired - Fee Related JP4062666B2 (ja) 2002-03-25 2002-03-25 トルク変動制御装置及びトルク変動制御プログラム

Country Status (3)

Country Link
US (1) US6859693B2 (ja)
JP (1) JP4062666B2 (ja)
DE (1) DE10313338B4 (ja)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042848B2 (ja) * 2002-11-14 2008-02-06 株式会社ジェイテクト 電動式ステアリングの制御装置
JP3958220B2 (ja) * 2003-01-16 2007-08-15 株式会社豊田中央研究所 トルク伝達装置
JP4529429B2 (ja) * 2003-12-05 2010-08-25 トヨタ自動車株式会社 ハイブリッド燃料電池システム
EP1721383A1 (en) * 2004-03-05 2006-11-15 In Motion Technologies Pty Ltd Method and apparatus for controlling an electric motor
JP4581606B2 (ja) * 2004-09-30 2010-11-17 セイコーエプソン株式会社 印刷装置及びその印刷制御方法
DE102005041663A1 (de) * 2005-09-02 2007-03-15 Robert Bosch Gmbh Momentüberwachung für einen Hybridantrieb
JP4774975B2 (ja) * 2005-12-15 2011-09-21 トヨタ自動車株式会社 電動機の制御装置
DE102007008477B4 (de) * 2006-02-22 2018-10-04 Mitsubishi Fuso Truck And Bus Corp. Steuerverfahren für ein hybrid-elektrisches Fahrzeug
JP2007326449A (ja) * 2006-06-07 2007-12-20 Mazda Motor Corp ハイブリッド自動車
JP4424335B2 (ja) * 2006-07-18 2010-03-03 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5309019B2 (ja) * 2007-04-26 2013-10-09 株式会社ブリヂストン 防振装置
JP4358264B2 (ja) * 2007-08-08 2009-11-04 株式会社日本自動車部品総合研究所 ハイブリッド車両
JP2009106021A (ja) * 2007-10-22 2009-05-14 Toyota Motor Corp 回転電機制御装置
JP5088103B2 (ja) * 2007-11-09 2012-12-05 トヨタ自動車株式会社 車両の制御装置
JP2009177860A (ja) * 2008-01-21 2009-08-06 Toyota Motor Corp 車両の制御装置およびそれを備える車両
JP4978802B2 (ja) * 2008-02-22 2012-07-18 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
DE102008054699A1 (de) * 2008-12-16 2010-06-24 Robert Bosch Gmbh Verfahren zur Reduktion einer Antriebsleistung eines Fahrzeugantriebs
JP2010236502A (ja) * 2009-03-31 2010-10-21 Mitsui Eng & Shipbuild Co Ltd 舶用エンジン制御システム
JP5477030B2 (ja) * 2009-05-22 2014-04-23 日産自動車株式会社 電動車両の制御装置
JP4854780B2 (ja) * 2009-12-15 2012-01-18 本田技研工業株式会社 内燃機関の制御装置
JP5440874B2 (ja) * 2010-09-30 2014-03-12 アイシン・エィ・ダブリュ株式会社 制御装置
CN107070363B (zh) 2011-04-28 2020-11-06 赛伟科有限责任公司 电动机和电动机控制器
WO2013000448A1 (de) 2011-06-28 2013-01-03 Schaeffler Technologies AG & Co. KG Hybridischer antriebsstrang mit aktiver drehschwingungsdämpfung und verfahren zur durchführung der aktiven drehschwingungsdämpfung
KR20130055472A (ko) * 2011-11-18 2013-05-28 현대자동차주식회사 자동차의 구동계 진동 제어장치 및 그 제어방법
AT512550B1 (de) * 2012-03-01 2013-10-15 Seibt Kristl & Co Gmbh Verfahren zur Dämpfung von Schwingungen
JP6017830B2 (ja) * 2012-05-11 2016-11-02 株式会社日本自動車部品総合研究所 ハイブリッド車両の制御装置
JP6225778B2 (ja) * 2013-06-27 2017-11-08 株式会社デンソー トルク伝達装置
DE102013219976A1 (de) * 2013-10-02 2015-04-02 Zf Friedrichshafen Ag Verfahren zum Dämpfen von Antriebsstrangschwingungen in Kraftfahrzeugen
JP6521561B2 (ja) * 2013-10-08 2019-05-29 日産自動車株式会社 車両のクラッチスリップ発進制御装置
KR101461909B1 (ko) * 2013-10-10 2014-11-13 현대자동차주식회사 친환경 자동차의 모터 제어 시스템
DE102013113658B4 (de) 2013-12-06 2022-04-14 Audi Ag Verfahren zum Betreiben eines Triebstranges
JP6334182B2 (ja) * 2014-01-30 2018-05-30 本田技研工業株式会社 車両
JP2015178286A (ja) * 2014-03-18 2015-10-08 株式会社ショーワ 電動パワーステアリング装置、プログラム
CN106143209A (zh) * 2015-04-09 2016-11-23 上海汽车集团股份有限公司 车辆扭转振动控制方法、装置及系统
DE102015212240A1 (de) * 2015-06-30 2017-01-05 Zf Friedrichshafen Ag Aktive Schwingungsdämpfung in einem Antriebsstrang
DE102016200006B4 (de) * 2016-01-04 2024-11-07 Magna Steyr Fahrzeugtechnik Gmbh & Co Kg Verfahren zur Dämpfung von Ruckeln im Antriebsstrang eines Fahrzeugs
DE102016216461A1 (de) * 2016-08-31 2018-03-01 Continental Automotive Gmbh Elektrisches Drehschwingungsberuhigungssystem für Mild Hybrid Fahrzeuge
KR101855773B1 (ko) * 2016-12-13 2018-06-20 현대자동차 주식회사 하이브리드 차량의 진동 제어 장치 및 방법
KR101855780B1 (ko) * 2016-12-13 2018-06-20 현대자동차 주식회사 하이브리드 차량의 진동 제어 장치 및 방법
KR101855774B1 (ko) * 2016-12-13 2018-06-20 현대자동차 주식회사 하이브리드 차량의 진동 제어 장치 및 방법
DE102017214074A1 (de) 2017-08-11 2019-02-14 Robert Bosch Gmbh Verfahren zum Betreiben einer elektrischen Maschine, Vorrichtung, Antriebseinrichtung, Kraftfahrzeug
DE102017129987B4 (de) 2017-12-14 2025-05-08 Schaeffler Technologies AG & Co. KG Verfahren zur Einstellung einer Antiruckel-/Antirupf-Funktion in einem Fahrzeug mit mehreren Aktoren und/oder mehreren Antriebsmaschinen
CN108683378A (zh) * 2018-06-07 2018-10-19 张家港首驱动力科技有限公司 一种利用电机电控系统来对发动机转矩波动补偿的方法
DE102018126877B4 (de) * 2018-10-29 2022-09-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Anti-Ruckel-Eingriff
DE102019115466A1 (de) * 2019-06-07 2020-12-10 Bayerische Motoren Werke Aktiengesellschaft Kraftrad und Verfahren zum Betreiben eines Kraftrades
JP7384144B2 (ja) * 2020-11-13 2023-11-21 トヨタ自動車株式会社 駆動源制御装置
CN116198339B (zh) * 2023-02-13 2025-07-18 潍柴动力股份有限公司 电机的扭矩补偿方法、装置、存储介质和电子设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413752A1 (de) 1984-04-12 1985-10-24 Basf Ag, 6700 Ludwigshafen Verfahren zur herstellung isotroper magnetischer, kobalthaltiger eisenoxide
JPS6161925A (ja) 1984-08-31 1986-03-29 Mazda Motor Corp エンジンのトルク変動制御装置
JPS6161923A (ja) 1984-08-31 1986-03-29 Mazda Motor Corp エンジンのトルク変動制御装置
US5040629A (en) * 1989-05-17 1991-08-20 Koyo Seiko Co., Ltd. Motor-driven power steering apparatus
DE4201861C1 (en) * 1992-01-24 1993-02-04 Robert Bosch Gmbh, 7000 Stuttgart, De Detecting and suppression circuitry for speed changes and jerking vibrations of IC engine - uses microprocessor to register difference in changes of sequential RPM measurement values to distinguish between jerk and desired constant acceleration
JPH0891236A (ja) * 1994-09-21 1996-04-09 Honda Motor Co Ltd 電動パワーステアリング装置
TW308754B (ja) * 1994-12-28 1997-06-21 Yamaha Motor Co Ltd
JP3323976B2 (ja) * 1995-11-06 2002-09-09 株式会社ユニシアジェックス 変速ショック低減装置
JP3746100B2 (ja) * 1996-04-19 2006-02-15 株式会社日立製作所 変速制御装置および制御方法
US5994859A (en) * 1997-04-30 1999-11-30 Ford Motor Company Torsional oscillation compensation in the drivetrain of a motor vehicle
JP3991416B2 (ja) * 1998-01-23 2007-10-17 日本精工株式会社 電動パワーステアリング装置の制御装置
JP3978703B2 (ja) 1999-03-26 2007-09-19 マツダ株式会社 ハイブリッド車両
JP3995835B2 (ja) 1999-07-12 2007-10-24 トヨタ自動車株式会社 電動機を備える車両における動力制御装置
JP2001057714A (ja) 1999-08-09 2001-02-27 Mazda Motor Corp モータ走行車の駆動装置
DE60008993T2 (de) * 1999-09-30 2004-09-02 Nissan Motor Co. Ltd. Vorrichtung zur Steuerung des Übersetzungsverhältnisses für Fahrzeuge
JP3715858B2 (ja) * 2000-01-18 2005-11-16 三菱電機株式会社 電動パワーステアリング装置
EP1352187B1 (de) * 2001-01-12 2006-08-09 ZF Sachs AG Verfahren zur Steuerung einer Mehrfachkupplungseinrichtung und eines Lastschaltgetriebes
JP4638065B2 (ja) * 2001-02-08 2011-02-23 富士重工業株式会社 4輪駆動車の制御装置
JP4660941B2 (ja) * 2001-02-23 2011-03-30 アイシン精機株式会社 電動モータの制御装置
JP2002256913A (ja) * 2001-02-28 2002-09-11 Hitachi Ltd 車両駆動装置
JP3824146B2 (ja) * 2001-03-28 2006-09-20 本田技研工業株式会社 車両用加速制御装置
JP3611116B2 (ja) * 2001-10-10 2005-01-19 三菱電機株式会社 電動パワーステアリング制御装置

Also Published As

Publication number Publication date
US6859693B2 (en) 2005-02-22
JP2003284207A (ja) 2003-10-03
DE10313338B4 (de) 2008-04-10
US20030177846A1 (en) 2003-09-25
DE10313338A1 (de) 2003-10-16

Similar Documents

Publication Publication Date Title
JP4062666B2 (ja) トルク変動制御装置及びトルク変動制御プログラム
JP4270079B2 (ja) 駆動力制御装置
JP4483985B2 (ja) 車両制御装置
JP6234672B2 (ja) 電気自動車のアンチジャーク制御方法及びシステム
US8587237B2 (en) Control device
EP2740642B1 (en) Torque control device
EP2433841B1 (en) Device for controlling electric vehicle
CN100400330C (zh) 车辆稳定性控制系统
EP1493608B1 (en) Control apparatus for hybrid vehicle
JP5347702B2 (ja) 車両のバネ上制振制御装置
US9180868B2 (en) Control device
US7132806B2 (en) Motor control apparatus and motor control method
JP5286921B2 (ja) 車両用制振制御装置
KR20190138118A (ko) 친환경자동차의 구동 토크 지령 생성 장치 및 방법
JP2013009513A (ja) 車両用駆動制御装置
JP2009247157A (ja) 車両の駆動力制御装置
JP2010023731A (ja) ハイブリッド車の回生制御装置
JP5104702B2 (ja) ハイブリッド車の回生制御装置
US8935030B2 (en) Vehicle control device
JP2004100504A (ja) アイドルストップ車両の制御装置
JP2021027643A (ja) 電動車両システム及び電動車両の制御方法
JP2001037006A (ja) 複数の駆動力源を備えた車両の制振装置
JP2009241818A (ja) 車両の駆動力制御装置
JP2002364407A (ja) 車両用制御装置
WO2004022379A1 (ja) 自動車およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees