[go: up one dir, main page]

JP4049720B2 - High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium - Google Patents

High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium Download PDF

Info

Publication number
JP4049720B2
JP4049720B2 JP2003292198A JP2003292198A JP4049720B2 JP 4049720 B2 JP4049720 B2 JP 4049720B2 JP 2003292198 A JP2003292198 A JP 2003292198A JP 2003292198 A JP2003292198 A JP 2003292198A JP 4049720 B2 JP4049720 B2 JP 4049720B2
Authority
JP
Japan
Prior art keywords
coefficient
discrete frequency
sequence
numbered
odd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003292198A
Other languages
Japanese (ja)
Other versions
JP2005063137A (en
Inventor
末廣 島内
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003292198A priority Critical patent/JP4049720B2/en
Publication of JP2005063137A publication Critical patent/JP2005063137A/en
Application granted granted Critical
Publication of JP4049720B2 publication Critical patent/JP4049720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Complex Calculations (AREA)

Description

この発明は、高速畳み込み近似方法、この方法を実施する装置、プログラム、記憶媒体に関し、特に、デジタル信号と有限長インパルス応フィルタとの畳み込み演算を近似的に高速に実行する高速畳み込み近似方法、この方法を実施する装置、プログラム、記憶媒体に関する。   The present invention relates to a high-speed convolution approximation method, an apparatus, a program, and a storage medium for performing the method, and in particular, a high-speed convolution approximation method for performing a convolution operation between a digital signal and a finite-length impulse response filter at approximately high speed. The present invention relates to an apparatus, a program, and a storage medium for executing the method.

デジタル信号と有限長インパルス応答フィルタ(FIRフィルタ)との畳み込み演算を高速に実行することは、反響消去の如く大規模な畳み込み演算を必要とする適応信号処理を効率的に実現する上において有用である。この畳み込み演算は、一例として非特許文献1に記載されるoverlap-save手法に基づいて実現することができる。
このoverlap-save手法による高速畳み込み演算装置の従来例を図7を参照して説明する。
High-speed execution of a convolution operation between a digital signal and a finite impulse response filter (FIR filter) is useful in efficiently realizing adaptive signal processing that requires a large-scale convolution operation such as echo cancellation. is there. This convolution operation can be realized based on the overlap-save method described in Non-Patent Document 1 as an example.
A conventional example of a high-speed convolution operation device using this overlap-save method will be described with reference to FIG.

図7において、101はインパルス応答周波数特性保持部である。このインパルス応答周波数特性保持部101は、有限の長さL以下のフィルタインパルス応答の配列hの後半に全体として長さ2Lとなる様に零配列を結合して得られる配列に(高速)離散フーリエ変換(FFTまたはDFT)を適用して得た2L個の係数を保持する部位である。   In FIG. 7, reference numeral 101 denotes an impulse response frequency characteristic holding unit. This impulse response frequency characteristic holding unit 101 has a (fast) discrete Fourier transform into an array obtained by combining zero arrays so that the overall length becomes 2L in the second half of the array h of filter impulse responses having a finite length L or less. This is a part that holds 2L coefficients obtained by applying transformation (FFT or DFT).

102は入力信号周波数特性保持部である。この入力信号周波数特性保持部102は、入力信号xの過去2L点に遡り蓄積された配列を、離散周波数変換して得られた2L個の係数を保持する部位である。
103は合成信号周波数特性生成部である。この合成信号周波数特性生成部103は、インパルス応答周波数特性保持部101が保持する係数と、入力信号周波数特性保持部102が保持する係数とを各離散周波数毎に乗算して2L個の合成信号周波数変換係数を生成する部位である。
104は合成信号配列逆変換部である。この合成信号配列逆変換部104は、合成信号周波数特性生成部103において生成された合成信号周波数変換係数を、例えば、逆(高速)離散フーリエ変換(IFFT、IDFT)により、逆離散周波数変換する部位である。
105は窓かけ重畳部である。この窓かけ重畳部105は、合成信号配列逆変換部104から得られる2L点の合成信号の配列に、前半L点を零倍、後半L点をl倍する2L点の窓関数を乗じ、後半L点の合成信号を得、L点過去の入力信号に対して、同様に得られている合成信号の配列の後半L点と結合する部位であり、これにより出力信号yを得る。
Reference numeral 102 denotes an input signal frequency characteristic holding unit. The input signal frequency characteristic holding unit 102 is a part that holds 2L coefficients obtained by performing discrete frequency conversion on an array that has been accumulated back to the past 2L points of the input signal x.
Reference numeral 103 denotes a combined signal frequency characteristic generation unit. The synthesized signal frequency characteristic generation unit 103 multiplies the coefficient held by the impulse response frequency characteristic holding unit 101 and the coefficient held by the input signal frequency characteristic holding unit 102 for each discrete frequency to obtain 2L synthesized signal frequencies. This is a part for generating a conversion coefficient.
Reference numeral 104 denotes a composite signal array inverse transform unit. The composite signal array inverse transform unit 104 performs inverse discrete frequency transform on the composite signal frequency transform coefficient generated by the composite signal frequency characteristic generation unit 103 by, for example, inverse (high-speed) discrete Fourier transform (IFFT, IDFT). It is.
Reference numeral 105 denotes a window overlay. The windowing superimposing unit 105 multiplies the 2L-point composite signal array obtained from the composite signal array inverse transform unit 104 by a 2L-point window function that multiplies the first half L point by zero and the second half L point by 1 times. A combined signal of point L is obtained, and this is a part that is combined with the latter half point L of the array of combined signals obtained in the same manner with respect to the input signal in the past of point L, thereby obtaining output signal y.

図8を参照するに、これも図7の従来例とほぼ同様の他の従来例であり、合成信号周波数特性生成部103と合成信号配列逆変換部104との間に信号処理部106を接続、介在させてここにおいて雑音除去その他の信号処理を実現したものに相当する。なお、この信号処理を実施することにより出力歪みを生ずる場合があるが、窓かけ重畳部105で滑らかに1ステップ前の出力信号と重畳させることにより、この歪みは低減することができる。この滑らかな重畳の仕方自体は、類似技術として当該特許出願人の出願に関わる特許文献1に記載されている。
特開2003−132026号明細書 J.J.Shynk,''Frequency-domain and .multi-rate adaptive filtering,"IEEE Signal Processing Mag.,vol.9,no.1,pp.14-37,Jan.1992.
Referring to FIG. 8, this is another conventional example that is almost the same as the conventional example of FIG. 7, and a signal processing unit 106 is connected between the synthesized signal frequency characteristic generating unit 103 and the synthesized signal array inverse transform unit 104. In this case, it corresponds to the one that realizes noise removal and other signal processing. Although this signal processing may cause output distortion, this distortion can be reduced by causing the windowing superimposing unit 105 to smoothly superimpose the output signal one step before. This smooth superposition method itself is described in Patent Document 1 related to the application of the patent applicant as a similar technique.
JP 2003-132026 A JJShynk, `` Frequency-domain and .multi-rate adaptive filtering, '' IEEE Signal Processing Mag., Vol. 9, no. 1, pp. 14-37, Jan. 1992.

図7に示されるoverlap-save手法による高速畳み込み演算装置は、窓かけ重畳部105により、合成信号の前半L点に零を乗じていることから理解される様に、実際に必要な逆変換後の合成信号はL点である。それにもかかわらず、合成信号配列逆変換部104において、2L点の逆変換を行っているが、離散周波数変換における巡回畳み込みの影響を排除し、本来必要とされている線形畳み込みと出力を得るに、逆変換を2L点で行うことは避けられない。   As can be understood from the fact that the fast convolution operation device based on the overlap-save method shown in FIG. 7 multiplies the first half L point of the synthesized signal by the windowing superimposing unit 105, it is actually necessary after the inverse transformation. The combined signal is point L. Nevertheless, the composite signal array inverse transform unit 104 performs inverse transformation of 2L points, but eliminates the influence of cyclic convolution in discrete frequency transformation, and obtains the linear convolution and output that are originally required. It is inevitable that the inverse transformation is performed at the 2L point.

この発明は、上述した2L点の逆変換をL点の逆変換に置き換えても、精度の劣化が少ない高速畳み込み近似方法、この方法を実施する装置、プログラム、記憶媒体を提供するものである。特に、図8.により図示説明される他の従来例は、合成信号周波数特性生成部103と合成信号配列逆変換部104との間に信号処理部106を付加し、ここにおいて雑音除去その他の信号処理を実施した際に生じる出力歪みを抑えるに、窓かけ重畳部105において、滑らかに、1ステップ前の出力信号と重畳させる場合に、より適した高速畳み込み近似方法、この方法を実施する装置、プログラム、記憶媒体を提供するものである。   The present invention provides a high-speed convolution approximation method with little degradation in accuracy even when the above-described 2L point inverse transform is replaced with an L point inverse transform, and an apparatus, program, and storage medium for executing this method. In particular, another conventional example illustrated and described with reference to FIG. 8 adds a signal processing unit 106 between the combined signal frequency characteristic generating unit 103 and the combined signal array inverse transform unit 104, where noise removal and other signals are added. In order to suppress output distortion caused when processing is performed, the windowing superimposing unit 105 smoothly superimposes the output signal one step before, and a more suitable high-speed convolution approximation method, an apparatus for performing this method, A program and a storage medium are provided.

請求項1:入力されたディジタル信号列と、有限長インパルス応答列との畳み込み演算を高速に近似する高速畳み込み近似方法において、前記有限長インパルス応答列に基づいて2L点の離散周波数変換係数を求め、前記ディジタル信号列に基づいて2L点の離散周波数変換係数を求め、前記有限長インパルス応答列の離散周波数変換係数と前記ディジタル信号列の離散周波数変換係数とを対応する離散周波数毎に乗算して2L点の合成信号周波数変換係数を生成し、前記合成信号周波数変換係数からなる要素数2Lの配列において最も低い離散周波数を偶数番目とし、前記合成信号周波数係数からなる配列中の奇数番目の離散周波数に対応する係数からなる要素数Lの奇数番目離散周波数係数配列の最も低い離散周波数に対応する係数から順に0、1、2、...、L−1番目とするとき、0番目の要素は、前記奇数番目離散周波数係数配列の0番目の係数の虚部に相当する値を実部としたものであり、l(ただし、lは1、2、...、L−1とする)番目の要素は、前記奇数番目離散周波数係数配列のL−1番目の係数の実部の値から前記奇数番目離散周波数係数配列のl番目の係数の実部の値を差し引いた値の1/2に相当する値を虚部とし、前記奇数番目離散周波数係数配列のl番目の係数の虚部の値と前記奇数番目離散周波数係数配列のL−1番目の係数の虚部の値との和の1/2に相当する値を実部としたものである、要素数Lの新たな配列を求め、この新たな配列と、前記合成信号周波数変換係数において偶数番目の離散周波数に対応する係数からなる配列とを加算することにより、要素数の加算配列を得て、前記加算配列の逆離散周波数変換を実行し、前記加算配列の逆離散周波数変換結果の信号列に窓かけ処理した後、同様に過去に窓かけ処理された信号との重畳処理を行なって近似畳み込み演算出力信号列を生成する高速畳み込み近似方法を構成した。 In a high-speed convolution approximation method for fast approximation of a convolution operation between an input digital signal sequence and a finite-length impulse response sequence, a 2L point discrete frequency transform coefficient is obtained based on the finite-length impulse response sequence. the calculated discrete frequency transform coefficients of 2L point based on the digital signal sequence, by multiplying the discrete frequency transform coefficients of the digital signal sequence and the discrete frequency transform coefficients of the finite impulse response series for each corresponding discrete frequency generates a composite signal frequency transform coefficients of 2L point, the discrete frequency sequence Te odor lowest of the combined signal consisting of a frequency conversion coefficient element number 2L and even-numbered, odd-numbered sequence consisting of the combined signal frequency coefficients from coefficients corresponding to the lowest discrete frequencies of the odd-numbered discrete frequency coefficient array in the number of elements it consists coefficients corresponding to the discrete frequencies L To 0, 1, 2,. . . , L−1, the 0th element is the real part of the value corresponding to the imaginary part of the 0th coefficient of the odd-numbered discrete frequency coefficient array, and l (where l is 1) , 2,..., L−1) element is the l th coefficient of the odd numbered discrete frequency coefficient array from the value of the real part of the L−1 number coefficient of the odd numbered discrete frequency coefficient array The value corresponding to 1/2 of the value obtained by subtracting the value of the real part of the odd-numbered discrete frequency coefficient array is the imaginary part, and the value of the imaginary part of the l-th coefficient of the odd-numbered discrete frequency coefficient array and L− of the odd-numbered discrete frequency coefficient array a value corresponding to 1/2 of the sum of the values of the imaginary part of the first factor is obtained by the real part, search of a new sequence number of elements L, and this new arrangement, the combined signal frequency conversion by adding the even-numbered consists coefficients corresponding to discrete frequency sequence in coefficients, elements To obtain an addition sequence of L, then perform an inverse discrete frequency transform of the addition sequence, after the windowing the signal sequence of inverse discrete frequency transform result of the addition sequence processing, similarly windowed processed signals to past and A high-speed convolution approximation method for generating an approximate convolution operation output signal sequence by performing the superimposing process is constructed.

そして、請求項2:入力されたディジタル信号列と有限長インパルス応答列との畳み込み演算を高速に近似する高速畳み込み近似装置において、前記有限長インパルス応答列の2L点の離散周波数変換係数を保持するインパルス応答周波数特性保持部101と、前記ディジタル信号列の2L点の離散周波数変換係数を保持する入力信号周波数特性保持部102と、前記有限長インパルス応答列の離散周波数変換係数と前記ディジタル信号列の離散周波数変換係数とを対応する離散周波数毎に乗算して2L点の合成信号周波数変換係数を生成する合成信号周波数特性生成部103と、前記合成信号周波数変換係数からなる要素数2Lの配列において最も低い離散周波数を偶数番目とし、前記合成信号周波数係数からなる配列中の奇数番目の離散周波数に対応する係数からなる要素数Lの奇数番目離散周波数係数配列の最も低い離散周波数に対応する係数から順に0、1、2、...、L−1番目とするとき、0番目の要素は、前記奇数番目離散周波数係数配列の0番目の係数の虚部に相当する値を実部としたものであり、l(ただし、lは1、2、...、L−1とする)番目の要素は、前記奇数番目離散周波数係数配列のL−1番目の係数の実部の値から前記奇数番目離散周波数係数配列のl番目の係数の実部の値を差し引いた値の1/2に相当する値を虚部とし、前記奇数番目離散周波数係数配列のl番目の係数の虚部の値と前記奇数番目離散周波数係数配列のL−1番目の係数の虚部の値との和の1/2に相当する値を実部としたものである、要素数Lの新たな配列を得る奇数成分虚数部抽出部107と、この新たな配列と、前記合成信号周波数変換係数において偶数番目の離散周波数に対応する係数からなる配列とを加算することにより、要素数Lの加算配列を得て、前記加算配列の逆離散周波数変換を実行する加算配列逆変換部108と、前記加算配列逆変換部108から得られる信号列に窓かけ処理した後、同様に過去に窓かけ処理された信号との重畳処理を行い、近似畳み込み演算出力信号列を生成する窓かけ重畳部105’と、を具備する高速畳み込み近似装置を構成した。 Then, according to claim 2 in the fast convolution approximation apparatus for approximating a fast convolution operation between the input digital signal sequence and finite impulse response series, holds a discrete frequency transform coefficients 2L point of the finite impulse response series the impulse response frequency characteristic holding unit 101, an input signal frequency characteristic holding unit 102 for holding the discrete frequency transform coefficients 2L point of said digital signal sequence, discrete frequency transform coefficients of the finite impulse response series with the digital signal sequence Te sequence smell of discrete and frequency transform coefficient by multiplying for each corresponding discrete frequency synthetic signal frequency characteristic generation unit 103 for generating a composite signal frequency transform coefficients of 2L point, the composite signal composed of a frequency conversion coefficient element number 2L and even-numbered the lowest discrete frequencies, the odd-numbered discrete sequence consisting of the combined signal frequency coefficients 0,1,2 from the coefficient in the order corresponding to the lowest discrete frequencies of the odd-numbered discrete frequency coefficient array element number L consisting of coefficients corresponding to the wave number,. . . , L−1, the 0th element is the real part of the value corresponding to the imaginary part of the 0th coefficient of the odd-numbered discrete frequency coefficient array, and l (where l is 1) , 2,..., L−1) element is the l th coefficient of the odd numbered discrete frequency coefficient array from the value of the real part of the L−1 number coefficient of the odd numbered discrete frequency coefficient array The value corresponding to 1/2 of the value obtained by subtracting the value of the real part of the odd-numbered discrete frequency coefficient array is the imaginary part, and the value of the imaginary part of the l-th coefficient of the odd-numbered discrete frequency coefficient array and L− of the odd-numbered discrete frequency coefficient array The odd-numbered component imaginary part extraction unit 107 that obtains a new array of the number of elements L, which is a real part of a value corresponding to ½ of the sum of the imaginary part value of the first coefficient, and this new an array consists of coefficients corresponding to the even-numbered discrete frequencies in the combined signal frequency transform coefficient sequence By adding, to give the addition sequence of the number of elements L, an adder array inverse transform unit 108 to perform inverse discrete frequency transform of the addition sequence, windowing the signal sequence obtained from the adder array inverse transform unit 108 After the processing, a high-speed convolution approximation apparatus including a windowing superimposing unit 105 ′ that similarly performs a convolution process with a signal subjected to windowing processing in the past and generates an approximate convolution operation output signal sequence is configured.

また、請求項3:コンピュータを請求項2記載の高速畳み込み近似装置の各構成部として機能させるための高速畳み込み近似プログラムを構成した。 A third aspect of the present invention provides a high-speed convolution approximation program for causing a computer to function as each component of the high-speed convolution approximation apparatus according to the second aspect.

更に、請求項4:請求項3に記載される高速畳み込み近似プログラムを記憶した記憶媒体を構成した。   Further, a storage medium storing the high-speed convolution approximation program according to claim 4 is configured.

この発明による高速畳み込み近似方法、この方法を実施する装置、プログラム、記憶媒体は、所望の畳み込み演算を、各離散周波数領域において乗算、または、より小さな次数の畳み込み演算として実行した後、従来技術より、少ない点数で逆離散周波数変換して近似的に出力を得ることにより、演算量少なく、畳み込み結果を近似的に出力することができる。また、合成信号周波数特性生成部の出力に奇数成分虚数部抽出部の処理を与えることと、窓掛け部における窓係数の選定により、近似誤差の影響を最大限抑えた、精度のよい出力を得ることができる。   The high-speed convolution approximation method according to the present invention, the apparatus, the program, and the storage medium for executing the method perform the desired convolution operation in each discrete frequency domain, or after executing it as a lower-order convolution operation. By performing inverse discrete frequency conversion with a small number of points and obtaining an output approximately, the result of convolution can be output approximately with a small amount of computation. In addition, by giving the output of the odd component imaginary part extraction unit to the output of the composite signal frequency characteristic generation unit and selecting the window coefficient in the windowing unit, a highly accurate output with the effect of approximation error being suppressed to a maximum is obtained. be able to.

発明を実施するための最良の形態を図1の実施例を参照して説明する。
図1の実施例において、インパルス応答周波数特性保持部101、入力信号周波数特性保持部102、合成信号周波数特性生成部103は、先の従来例と同様の構成を有している。
図1の実施例の先の従来例と異なる点は、合成信号周波数特性生成部103から得られる2L個の合成信号周波数変換係数に、周波数の低い方から0,1,2,....,2L−1と番号を付与し、奇数番目の係数に対して、奇数成分虚数部抽出部部107を設ける点である。奇数成分虚数部抽出部107は、以下の通りに実現される。奇数番目の係数の配列をYo(l)、(l=0,1,2,....,L−1)とする。Yo(l)に対して、
Z(0)=imag(Yo(0))
Z(l)=j(−Yo(l)+Yo(L−l)* )/2、
但し、l=1,2,....,L−1)・・・・・・・(式1)
として、Z(l)、(l=0,1,2,....,L−1)を得、これを奇数成分虚数部抽出部107の出力とする。ここで、j2=−1、imag(x+jy)=y、(x、y
は実数)、*は共役を表す。
The best mode for carrying out the invention will be described with reference to the embodiment of FIG.
In the embodiment of FIG. 1, the impulse response frequency characteristic holding unit 101, the input signal frequency characteristic holding unit 102, and the combined signal frequency characteristic generation unit 103 have the same configuration as that of the previous example.
1 differs from the prior art example of the embodiment of FIG. 1 in that 2L synthesized signal frequency conversion coefficients obtained from the synthesized signal frequency characteristic generation unit 103 are 0, 1, 2,. . . . , 2L-1 and a number, and an odd-numbered component imaginary part extraction unit 107 is provided for odd-numbered coefficients. The odd component imaginary part extraction unit 107 is realized as follows. Assume that the odd-numbered coefficient array is Yo (l), (l = 0, 1, 2,..., L−1). For Yo (l)
Z (0) = image (Yo (0))
Z (l) = j (-Yo (l) + Yo (L-1) * ) / 2,
( Where l = 1, 2,..., L-1 ) (1)
Z (l), (l = 0, 1, 2,..., L−1) is obtained, and this is used as the output of the odd component imaginary part extraction unit 107. Where j 2 = −1, imag (x + jy) = y, (x, y
Is a real number), * represents a conjugate.

この実施例は、更に、加算配列逆変換部108を具備している。ここで、合成信号周波数特性生成部103から得られる2L個の合成信号周波数変換係数の内の偶数番目の係数の配列をYe(l)、(l=0,1,2,....,L−1)とし、これと先のZ(l)とをこの加算配列逆変換部108に入力する。この加算配列逆変換部108において、Z(l)とYe(l)とを対応するl毎に加算して得られるS(l)=Z(l)+Ye(l)、(l=0,1,2,....,L−1)をL点に対して逆離散周波数変換を施し、S(l)の逆変換信号s(k)、(k=0,1,2,....,L−1)を出力する。この実施例の窓かけ重畳部105’は、[特許文献1]の構成と同様であり、加算配列逆変換部108の出力s(k)に対して、窓係数w(k)、(k=0,1,2,....,L−1))を乗じてs(k)w(k)を得、前半L/2点については、1ステップ過去のs(k)w(k)の後半L/2点と加算してL/2点の出力信号yを出力する。また、現ステップで得られたs(k)w(k)の後半のL/2点については、次のステップにおいて得られるs(k)w(k)の前半L/2点に加算する信号として記憶保持される。以降、このステップが繰り返される。ここで、処理されるステップの間隔はL/2として説明したが、この間隔は、必ずしも、L/2でなければならないという訳ではない。   This embodiment further includes an addition array inverse transform unit 108. Here, the array of even-numbered coefficients among the 2L synthesized signal frequency conversion coefficients obtained from the synthesized signal frequency characteristic generation unit 103 is represented by Ye (l), (l = 0, 1, 2,... L-1), and this Z (l) is input to the addition array inverse transform unit 108. In this addition array inverse transform unit 108, S (l) = Z (l) + Ye (l), (l = 0, 1) obtained by adding Z (l) and Ye (l) for each corresponding l. , 2,..., L-1) is subjected to inverse discrete frequency transformation on the L point, and the inverse transformed signal s (k) of S (l), (k = 0, 1, 2,. , L-1). The windowing superimposing unit 105 ′ of this embodiment is the same as the configuration of [Patent Document 1], and the window coefficients w (k) and (k = 0, 1, 2, ..., L-1)) to obtain s (k) w (k), and for the first half L / 2 points, s (k) w (k) of one step in the past The output signal y at the L / 2 point is output by adding the latter L / 2 point. Also, for the L / 2 point in the second half of s (k) w (k) obtained in the current step, the signal added to the first half L / 2 point in s (k) w (k) obtained in the next step Is stored and retained. Thereafter, this step is repeated. Here, the interval of the steps to be processed has been described as L / 2, but this interval does not necessarily have to be L / 2.

ここで、上述した高速畳み込み近似装置の実施例の動作原理について説明する。
合成信号周波数特性生成部103において生成される合成信号周波数特性をY(l)、(l=0,1,2,....,2L−1)とすると、図2に示される様に、偶数番目の成分と、奇数番目の成分に分離した配列の和として表現される。元のY(l)、(l=0,1,2,....,2L−1)からなる配列の逆離散周波数変換は、前半L個の要素yc(k)、(k=0,1,2,....,L−1)と後半L個の要素yl(k)、(k=0,1,2,....,L−1)とで、異なる意味を持つ。即ち、yl(k)は高速畳み込み近似装置への入力信号xとフィルタインパルス応答hとの線形畳み込み演算と完全に一致する信号であるが、yc(k)は、巡回畳み込みの影響を受けた不要な信号である。図7の従来例の窓かけ重畳部105において、yc(k)に零を乗じてその影響を完全に抑圧していた。また、図2においては、Y(l)、(l=0,1,2,....,2L−1)の偶数番目成分のみを残し、奇数番目を零とした配列の逆離散周波数変換は、或るL点の信号列a(k)、(k=0,1,2,....,L−1)を2つ並べて、2L点とした配列になっている。同様に、Y(l)、(l=0,1,2,....,2L−1)の奇数番目成分のみを残し、偶数番目を零とした配列の逆離散周波数変換は、或るL点の信号列b(k)、(k=0,1,2,....,L−1)とその符号を反転させた−b(k)、(k=0,1,2,....,L−1)とを結合し、2L点とした配列となっている。ここで、yc(k)=a(k)−b(k)、yl(k)=a(k)+b(k)の関係が成り立つ。
Here, the operation principle of the embodiment of the high-speed convolution approximation apparatus described above will be described.
Assuming that the combined signal frequency characteristic generated by the combined signal frequency characteristic generation unit 103 is Y (l), (l = 0, 1, 2,..., 2L−1), as shown in FIG. It is expressed as the sum of an even numbered component and an odd numbered component. The inverse discrete frequency transform of the array consisting of the original Y (l), (l = 0, 1, 2,..., 2L−1) is performed using the first half L elements yc (k), (k = 0, 1, 2,..., L-1) and the latter half L elements yl (k), (k = 0, 1, 2,..., L-1) have different meanings. That is, yl (k) is a signal that completely matches the linear convolution operation of the input signal x and the filter impulse response h to the high-speed convolution approximation device, but yc (k) is unnecessary due to the influence of the cyclic convolution. It is a serious signal. In the conventional window overlap unit 105 of FIG. 7, yc (k) is multiplied by zero to completely suppress the influence. Also, in FIG. 2, an inverse discrete frequency transform of an array in which only even-numbered components of Y (l), (l = 0, 1, 2,..., 2L−1) are left and odd-numbered are zero. Is an array in which two L signal sequences a (k) and (k = 0, 1, 2,..., L−1) are arranged to be 2L points. Similarly, an inverse discrete frequency transform of an array in which only odd-numbered components of Y (l), (l = 0, 1, 2,..., 2L−1) are left and even-numbered is zero is L-point signal sequence b (k), (k = 0, 1, 2,..., L−1) and −b (k), (k = 0, 1, 2,. .., L-1) are combined to form a 2L point. Here, the relationship yc (k) = a (k) −b (k), yl (k) = a (k) + b (k) holds.

さて、この実施例においては、L点の逆離散周波数変換により、yl(k)のみを求めることを考える。図3をも参照するに、Y(l)、(l=0,1,2,....,2L−1)の偶数番目の成分のみにより再構成したL点のYe(l)、(l=0,1,2,....,L−1)の、逆離散周波数変換は、a(k)、(k=0,1,2,....,L−1)そのものである。一方、Y(l)、(l=0,1,2,....,2L−1)の奇数番目の成分のみにより再構成したL点のYo(l)、(l=0,1,2,....,L−1)の、逆離散周波数変換は、b(k)、(k=0,1,2,....,L−1)の各要素にexp(−j(πk)/L)、(k=0,1,2,....,L−1)が乗じられたものとなり、b(k)そのものではない。そこで、この実施例は、exp(−j(πk)/L)・b(k)の虚数部に着目した。この虚数部であるsin((.πk)/L)・b(k)を用い、a(k)+b(k)、即ち、yl(k)の近似を、a(k)+sin((.πk)/L)・b(k)として得るというものである。sin((.πk)/L)の概形は図4の通りである。このため、逆離散周波数変換がsin((.πk)/L)・b(k)と一致する様に、予めYo(l)に対して、図1の奇数成分虚数部抽出部107において(式1)による前述の処理を行っている。この原理に基づいた数学的に等価な変形は、全てこの発明の意図した実施例となる。{a(k)+b(k)}と、{a(k)+sin((.πk)/L)・b(k)}との間の誤差は、{1−sin((.πk)/L)・b(k)}であり、図5に示される様な{1−sin((.πk)/L)}の形状に沿った誤差分布をとる。即ち、k=0,1,2,....,L−1の両端に誤差が集中する。しかし、窓かけ重畳部105’において、L/2点毎に.1ステップ前の出力と重ね合わせるために窓係数を乗じるので、その誤差の影響は更に低減されることになる。例えば、窓係数をハニング窓{0.5−0.5cos((2πk)/L)}、(k=0,1,2,....,L−1)とすれば、図6に示す誤差分布となり、誤差の絶対的な大きさも低減されることが認識される。   Now, in this embodiment, it is considered that only yl (k) is obtained by inverse discrete frequency transformation at point L. Referring also to FIG. 3, Y (l), Y (l) of L point reconstructed by only the even-numbered components of Y (l), (l = 0, 1, 2,..., 2L−1), ( l = 0, 1, 2,..., L-1), the inverse discrete frequency transform is a (k), (k = 0, 1, 2,..., L-1) itself. is there. On the other hand, Yo (l) of L point reconstructed only by odd-numbered components of Y (l), (l = 0, 1, 2,..., 2L−1), (l = 0, 1, 2,..., L-1) is an inverse discrete frequency transform that uses exp (−j for each element of b (k), (k = 0, 1, 2,..., L−1). (Πk) / L), (k = 0, 1, 2,..., L−1) and not b (k) itself. Therefore, this embodiment focuses on the imaginary part of exp (−j (πk) / L) · b (k). Using sin ((. Πk) / L) · b (k) which is the imaginary part, an approximation of a (k) + b (k), that is, yl (k) is expressed as a (k) + sin ((. Πk ) / L) · b (k). The outline of sin ((. πk) / L) is as shown in FIG. For this reason, the odd component imaginary part extraction unit 107 of FIG. 1 preliminarily calculates Yo (l) so that the inverse discrete frequency transform matches sin ((. Πk) / L) · b (k) (expression The above-described processing according to 1) is performed. All mathematically equivalent variations based on this principle are intended embodiments of the invention. The error between {a (k) + b (k)} and {a (k) + sin ((. Πk) / L) · b (k)} is {1-sin ((. Πk) / L ) · B (k)}, and takes an error distribution along the shape of {1-sin ((. Πk) / L)} as shown in FIG. That is, k = 0, 1, 2,. . . . , L-1 are concentrated at both ends. However, since the windowing superimposing unit 105 'multiplies the window coefficient in order to superimpose the output of the previous step every L / 2 points, the influence of the error is further reduced. For example, if the window coefficient is a Hanning window {0.5-0.5 cos ((2πk) / L)}, (k = 0, 1, 2,..., L−1), it is shown in FIG. It will be appreciated that there will be an error distribution and the absolute magnitude of the error will be reduced.

図1の窓かけ重畳部105’で用いる窓係数としては、先のハニング窓以外に、k=0,1,2,....,L−1の範囲の両端に近づく程小さくなる分布を持った任意の形状の窓係数を採用することができる。
そして、入力信号周波数特性保持部102に保持された入力信号の周波数特性は、2L点より少ない入力信号の配列に、零要素を加えて2L点の配列を構成し、離散周波数変換を行った結果とすることができる。また、窓かけ重畳部105’において、出力される配列の大きさはステップの間隔に依存し、L/2より少ない場合も、多い場合も、この発明の実施例に含まれる。
As the window coefficients used in the windowing superimposing unit 105 ′ in FIG. 1, k = 0, 1, 2,. . . . , L-1 having a distribution that becomes smaller as it approaches the both ends of the range of L-1, can be employed.
The frequency characteristic of the input signal held in the input signal frequency characteristic holding unit 102 is a result of performing discrete frequency conversion by adding a zero element to an input signal array having fewer than 2L points to form an array of 2L points. It can be. Further, the size of the output array in the window superimposing unit 105 ′ depends on the step interval, and the case where it is smaller or larger than L / 2 is included in the embodiment of the present invention.

更に、フィルタインパルス応答の配列hがLよりも長い場合においても、以下の通りにこの発明を実施することができる。ここで、フィルタインパルス応答の配列hの長さが、NL+M(N、Mは、N≧1、0≦M<Lを満たす整数)とする。このとき、インパルス応答周波数特性保持部101は、hを長さL毎に分割し、N個の長さLの配列と1個の長さMの配列を得、それらそれぞれに対して、長さ2Lとなる様に零配列を結合し、離散周波数変換することにより得られる、N+1組の長さ2Lの周波数特性配列を保持する。一方、入力信号周波数特性保持部102は、現在のステップの入力信号周波数特性の配列と合わせて、Nステップ過去までの入力信号周波数特性の配列を保持、即ち、合計N+1組の長さ2Lの入力信号周波数特性の配列を保持する。これに対して、合成信号周波数特性生成部103は、インパルス応答周波数特性保持部101および入力信号周波数特性保持部102に保持されたN+1組の周波数特性配列それぞれの対応した配列毎に周波数番号毎の乗算処理を行い、得られたN+1組の乗算結果の配列を周波数番号毎に加算し、2L個の合成信号周波数変換係数を生成する。この合成信号周波数変換係数を用い、以下、上述した処理を行えば、フィルタインパルス応答の配列hがLよりも長い場合においても、この発明を実施することができる。   Furthermore, even when the filter impulse response array h is longer than L, the present invention can be implemented as follows. Here, the length of the array h of filter impulse responses is NL + M (N and M are integers satisfying N ≧ 1 and 0 ≦ M <L). At this time, the impulse response frequency characteristic holding unit 101 divides h into lengths L to obtain N length L arrays and one length M array. N + 1 sets of frequency characteristic arrays having a length of 2L, which are obtained by combining zero arrays so as to be 2L and performing discrete frequency conversion, are held. On the other hand, the input signal frequency characteristic holding unit 102 holds the arrangement of the input signal frequency characteristics up to the past N steps together with the arrangement of the input signal frequency characteristics of the current step, that is, a total of N + 1 sets of length 2L inputs. Holds an array of signal frequency characteristics. On the other hand, the synthesized signal frequency characteristic generation unit 103 is provided for each frequency number for each corresponding array of N + 1 sets of frequency characteristic arrays held in the impulse response frequency characteristic holding unit 101 and the input signal frequency characteristic holding unit 102. Multiplication processing is performed, and the obtained array of N + 1 sets of multiplication results is added for each frequency number to generate 2L synthesized signal frequency conversion coefficients. If this combined signal frequency conversion coefficient is used and the processing described above is performed, the present invention can be implemented even when the filter impulse response array h is longer than L.

なお、入力信号xおよびフィルタインパルス応答の配列hが実数であるとすると、離散フーリエ変換を離散周波数変換に用いた場合、その変換係数の配列の対称性により、省略可能な計算が前述に含まれていることは自明であり、そのような計算省略を行った実施例もこの発明に含まれる。   Assuming that the array h of the input signal x and the filter impulse response is a real number, when the discrete Fourier transform is used for the discrete frequency transform, a calculation that can be omitted is included in the foregoing because of the symmetry of the array of transform coefficients. It is obvious that the embodiment omits such calculation and is also included in the present invention.

実施例を説明する図。The figure explaining an Example. 合成信号周波数特性の性質を説明する図。The figure explaining the property of a synthetic signal frequency characteristic. 実施例において着目する合成信号周波数特性の性質を説明する図。The figure explaining the property of the synthetic | combination signal frequency characteristic noticed in an Example. exp(−j(πk)/L)・b(k)の虚数部の形状を示す図。The figure which shows the shape of the imaginary part of exp (-j ((pi) k) / L) * b (k). {a(k)+b(k)}と{a(k)+sin((.πk)/L)・b(k)}との間の誤差の形状を示す図。The figure which shows the shape of the difference | error between {a (k) + b (k)} and {a (k) + sin ((. (Pi) k) / L) * b (k)}. {a(k)+b(k)}と{a(k)+sin((.πk)/L)・b(k)}との間の窓掛け後の誤差の形状を示す図。The figure which shows the shape of the error after windowing between {a (k) + b (k)} and {a (k) + sin ((. (Pi) k) / L) * b (k)}. 従来例を説明する図。The figure explaining a prior art example. 他の従来例を説明する図。The figure explaining another prior art example.

符号の説明Explanation of symbols

101 インパルス応答周波数特性保持部 102 入力信号周波数特性保持部
103 合成信号周波数特性生成部 105’窓かけ重畳部
107 奇数成分虚数部抽出部 108 加算配列逆変換部
h 有限長インパルス応答列 x 入力信号
101 Impulse Response Frequency Characteristic Holding Unit 102 Input Signal Frequency Characteristic Holding Unit 103 Synthetic Signal Frequency Characteristic Generating Unit 105 'Window Overlaying Unit 107 Odd Component Imaginary Part Extracting Unit 108 Addition Array Inverse Conversion Unit h Finite-length Impulse Response Sequence x Input Signal

Claims (4)

入力されたディジタル信号列と、有限長インパルス応答列との畳み込み演算を高速に近似する高速畳み込み近似方法において、
前記有限長インパルス応答列に基づいて2L点の離散周波数変換係数を求め、
前記ディジタル信号列に基づいて2L点の離散周波数変換係数を求め、
前記有限長インパルス応答列の離散周波数変換係数と前記ディジタル信号列の離散周波数変換係数とを対応する離散周波数毎に乗算して2L点の合成信号周波数変換係数を生成し、
前記合成信号周波数変換係数からなる要素数2Lの配列において最も低い離散周波数を偶数番目とし、前記合成信号周波数係数からなる配列中の奇数番目の離散周波数に対応する係数からなる要素数Lの奇数番目離散周波数係数配列の最も低い離散周波数に対応する係数から順に0、1、2、...、L−1番目とするとき、
0番目の要素は、
前記奇数番目離散周波数係数配列の0番目の係数の虚部に相当する値を実部としたものであり、
l(ただし、lは1、2、...、L−1とする)番目の要素は、
前記奇数番目離散周波数係数配列のL−1番目の係数の実部の値から前記奇数番目離散周波数係数配列のl番目の係数の実部の値を差し引いた値の1/2に相当する値を虚部とし、
前記奇数番目離散周波数係数配列のl番目の係数の虚部の値と前記奇数番目離散周波数係数配列のL−1番目の係数の虚部の値との和の1/2に相当する値を実部としたものである、
要素数Lの新たな配列を求め、
この新たな配列と、前記合成信号周波数変換係数において偶数番目の離散周波数に対応する係数からなる配列とを加算することにより、要素数の加算配列を得て、前記加算配列の逆離散周波数変換を実行し、
前記加算配列の逆離散周波数変換結果の信号列に窓かけ処理した後、同様に過去に窓かけ処理された信号との重畳処理を行なって近似畳み込み演算出力信号列を生成する、
ことを特徴とする高速畳み込み近似方法。
In a high-speed convolution approximation method that approximates a convolution operation between an input digital signal sequence and a finite impulse response sequence at high speed,
Determined discrete frequency transform coefficients of 2L point based on the finite impulse response series,
Based on the digital signal sequence, a 2L point discrete frequency conversion coefficient is obtained,
Generates a composite signal frequency transform coefficients of 2L point by multiplying the discrete frequency transform coefficients of the digital signal sequence and the discrete frequency transform coefficients of the finite impulse response series for each corresponding discrete frequency,
The synthesized signal frequency consists transform coefficients Te sequence odor number of elements 2L and even numbered the lowest discrete frequencies, the composite signal composed of coefficients corresponding to the odd-numbered discrete frequency in the sequence consisting of the frequency coefficient number of elements L , 0, 1, 2,... In order from the coefficient corresponding to the lowest discrete frequency in the odd-numbered discrete frequency coefficient array. . . , L-1
The 0th element is
A value corresponding to the imaginary part of the 0th coefficient of the odd-numbered discrete frequency coefficient array is a real part,
l (where l is 1, 2, ..., L-1)
A value corresponding to ½ of a value obtained by subtracting the real part value of the l-th coefficient of the odd-numbered discrete frequency coefficient array from the real part value of the (L−1) -th coefficient of the odd-numbered discrete frequency coefficient array. Imaginary part,
A value corresponding to ½ of the sum of the value of the imaginary part of the l-th coefficient of the odd-numbered discrete frequency coefficient array and the value of the imaginary part of the (L-1) th coefficient of the odd-numbered discrete frequency coefficient array is realized. Is a part,
Find a new array with element number L ,
By adding the this new arrangement, the sequence consisting of coefficients corresponding to the even-numbered discrete frequencies in the combined signal frequency transform coefficients, with the addition sequence of a main prime L, inverse discrete frequency transform of the adding sequence Run
After the windowing in the signal sequence of inverse discrete frequency transform result of the addition sequence processing, similarly to produce an operational output signal sequence convolution approximation by performing superimposition processing the windowed processed signals in the past,
A fast convolution approximation method characterized by that.
入力されたディジタル信号列と有限長インパルス応答列との畳み込み演算を高速に近似する高速畳み込み近似装置において、
前記有限長インパルス応答列の2L点の離散周波数変換係数を保持するインパルス応答周波数特性保持部と、
前記ディジタル信号列の2L点の離散周波数変換係数を保持する入力信号周波数特性保持部と、
前記有限長インパルス応答列の離散周波数変換係数と前記ディジタル信号列の離散周波数変換係数とを対応する離散周波数毎に乗算して2L点の合成信号周波数変換係数を生成する合成信号周波数特性生成部と、
前記合成信号周波数変換係数からなる要素数2Lの配列において最も低い離散周波数を偶数番目とし、前記合成信号周波数係数からなる配列中の奇数番目の離散周波数に対応する係数からなる要素数Lの奇数番目離散周波数係数配列の最も低い離散周波数に対応する係数から順に0、1、2、...、L−1番目とするとき、
0番目の要素は、
前記奇数番目離散周波数係数配列の0番目の係数の虚部に相当する値を実部としたものであり、
l(ただし、lは1、2、...、L−1とする)番目の要素は、
前記奇数番目離散周波数係数配列のL−1番目の係数の実部の値から前記奇数番目離散周波数係数配列のl番目の係数の実部の値を差し引いた値の1/2に相当する値を虚部とし、
前記奇数番目離散周波数係数配列のl番目の係数の虚部の値と前記奇数番目離散周波数係数配列のL−1番目の係数の虚部の値との和の1/2に相当する値を実部としたものである、
要素数Lの新たな配列を求める奇数成分虚数部抽出部と、
この新たな配列と、前記合成信号周波数変換係数において偶数番目の離散周波数に対応する係数からなる配列とを加算することにより、要素数Lの加算配列を得て、前記加算配列の逆離散周波数変換を実行する加算配列逆変換部と、
前記加算配列逆変換部から得られる信号列に窓かけ処理した後、同様に過去に窓かけ処理された信号との重畳処理を行い、近似畳み込み演算出力信号列を生成する窓かけ重畳部と、
を具備することを特徴とする高速畳み込み近似装置。
In a high-speed convolution approximation device that approximates a convolution operation between an input digital signal sequence and a finite-length impulse response sequence at high speed,
An impulse response frequency characteristic storage unit storing discrete frequency transform coefficients 2L point of the finite impulse response series,
An input signal frequency characteristic holding unit that holds discrete frequency conversion coefficients at 2L points of the digital signal sequence;
A synthetic signal frequency characteristic generation unit for generating a composite signal frequency transform coefficients of the finite impulse response series of discrete frequency transform coefficients and the digital signal sequence of discrete frequency transform coefficients and the multiplied for each corresponding discrete frequency 2L point ,
The synthesized signal frequency consists transform coefficients Te sequence odor number of elements 2L and even numbered the lowest discrete frequencies, the composite signal composed of coefficients corresponding to the odd-numbered discrete frequency in the sequence consisting of the frequency coefficient number of elements L , 0, 1, 2,... In order from the coefficient corresponding to the lowest discrete frequency in the odd-numbered discrete frequency coefficient array. . . , L-1
The 0th element is
A value corresponding to the imaginary part of the 0th coefficient of the odd-numbered discrete frequency coefficient array is a real part,
l (where l is 1, 2, ..., L-1)
A value corresponding to ½ of a value obtained by subtracting the real part value of the l-th coefficient of the odd-numbered discrete frequency coefficient array from the real part value of the (L−1) -th coefficient of the odd-numbered discrete frequency coefficient array. Imaginary part,
A value corresponding to ½ of the sum of the imaginary part value of the l-th coefficient of the odd-numbered discrete frequency coefficient array and the imaginary part value of the (L−1) -th coefficient of the odd-numbered discrete frequency coefficient array is realized. Is a part,
An odd component imaginary part extraction unit for obtaining a new array of the number of elements L ;
By adding the this new arrangement, the sequence consisting of coefficients corresponding to the even-numbered discrete frequencies in the combined signal frequency transform coefficients, with the addition sequence of the number of elements L, inverse discrete frequency transform of the adding sequence An addition array inverse transform unit for executing
After the windowing in the signal sequence obtained from the addition sequence inverse converter process performs superimposition processing with similarly windowed processed signals in the past, and windowing superimposing unit for generating an approximate convolution operation output signal sequence,
The high-speed convolution approximation apparatus characterized by comprising.
コンピュータを請求項2記載の高速畳み込み近似装置の各構成部として機能させるための高速畳み込み近似プログラム。A high-speed convolution approximation program for causing a computer to function as each component of the high-speed convolution approximation device according to claim 2. 請求項3に記載される高速畳み込み近似プログラムを記憶した記憶媒体。   A storage medium storing the high-speed convolution approximation program according to claim 3.
JP2003292198A 2003-08-12 2003-08-12 High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium Expired - Fee Related JP4049720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292198A JP4049720B2 (en) 2003-08-12 2003-08-12 High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292198A JP4049720B2 (en) 2003-08-12 2003-08-12 High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium

Publications (2)

Publication Number Publication Date
JP2005063137A JP2005063137A (en) 2005-03-10
JP4049720B2 true JP4049720B2 (en) 2008-02-20

Family

ID=34369616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292198A Expired - Fee Related JP4049720B2 (en) 2003-08-12 2003-08-12 High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium

Country Status (1)

Country Link
JP (1) JP4049720B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151213B2 (en) * 2014-04-25 2017-06-21 日本電信電話株式会社 Echo canceling device, echo canceling method, program
JP6154777B2 (en) * 2014-04-25 2017-06-28 日本電信電話株式会社 High-speed convolution approximation device, high-speed convolution approximation method, program
WO2024028966A1 (en) 2022-08-02 2024-02-08 三菱電機株式会社 Signal processing device and signal processing method

Also Published As

Publication number Publication date
JP2005063137A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP2005148274A (en) Signal analyzing method and signal composing method for complex index modulation filter bank, and program therefor and recording medium therefor
JP2005148274A5 (en)
CN1197242C (en) Digit filter design
CN109561437B (en) Method and device for processing signal
JP4127094B2 (en) Reverberation generator and program
JP4049720B2 (en) High-speed convolution approximation method, apparatus for implementing this method, program, and storage medium
Sekhar et al. Radix-2 decimation-in-frequency algorithm for the computation of the real-valued FFT
JPS6146872B2 (en)
CN102142905A (en) Method and device for compensating chromatic dispersion in optical communication system
JP6154777B2 (en) High-speed convolution approximation device, high-speed convolution approximation method, program
CN104467844A (en) Time-interleaved analog-digital converter and method
JP4814899B2 (en) Acoustic signal filter, filtering method therefor, program, and recording medium
WO2013125173A1 (en) Digital filter circuit, digital-filter application method, and storage medium containing digital-filter application program
US20230051509A1 (en) Method and system for implementing a modal processor
JP3949089B2 (en) Reverberation elimination method, apparatus for implementing this method, program, and storage medium
WO2013094308A1 (en) Digital filter circuit and digital filter processing method
JP6087760B2 (en) Sound field recording / reproducing apparatus, method, and program
US10943330B2 (en) Image processing filter
JP2021128307A (en) Audio signal processor, audio signal processing system, audio signal processing method, and program
KR20220024761A (en) Low latency audio filter bank with improved frequency resolution
Yadav et al. Design of Modified RNS-PPA Based FIR Filter for High-Speed Application
JP6662413B2 (en) Signal processing device, signal processing method, and signal processing program
JP7567716B2 (en) Estimation method, estimation program, deep neural network device, and estimation device
WO2016117304A1 (en) Digital filter circuit, signal processing device, and digital filter processing method
Chakraborty et al. A Multiplierless VLSI architecture of QR decomposition based 2D wiener filter for 1D/2D signal processing with high accuracy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees