[go: up one dir, main page]

JP4048848B2 - Foreign object detection device in container and foreign object detection method in container - Google Patents

Foreign object detection device in container and foreign object detection method in container Download PDF

Info

Publication number
JP4048848B2
JP4048848B2 JP2002189012A JP2002189012A JP4048848B2 JP 4048848 B2 JP4048848 B2 JP 4048848B2 JP 2002189012 A JP2002189012 A JP 2002189012A JP 2002189012 A JP2002189012 A JP 2002189012A JP 4048848 B2 JP4048848 B2 JP 4048848B2
Authority
JP
Japan
Prior art keywords
container
illumination light
foreign matter
foreign
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189012A
Other languages
Japanese (ja)
Other versions
JP2004028930A (en
Inventor
輝美 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002189012A priority Critical patent/JP4048848B2/en
Publication of JP2004028930A publication Critical patent/JP2004028930A/en
Application granted granted Critical
Publication of JP4048848B2 publication Critical patent/JP4048848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内に混入した異物を検出する容器内異物検出装置および容器内異物検出方法に関するものである。
【0002】
【従来の技術】
飲料水などを封止した容器内へ混入する異物の主たるものは、容器を成形製作する段階での容器材料の破片とか内容物の液体を充填する装置の部品や部品破片である。容器内に異物が混入することは殆ど発生しないが、人体への悪影響の可能性があることから、発生頻度に関わらず確実に除去することが求められる。
【0003】
従来の全数検査としては人の目視に頼ったものであるが、このとき特に検出が難しく存在状態が最も多いのが沈澱異物である。これは、容器成形の都合から底部では厚みが変化し段差もあることから、容器底部自体が複雑な形状のレンズのごとくなっているためである。
【0004】
人の目視に代えて、液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内に混入した異物を検出する従来技術として、特開平7−181145号公報に記載のものがある。
【0005】
この従来技術は透明容器から光透過法で映像を得るもので、容器形状が原因である光の屈折や反射によって発生する光量の不均一な分布による明暗を無くし、内部の異物を画像処理で抽出できるように光学的補正素子を光照射系内に組み込んでいる。
【0006】
その光学的補正素子としては、容器3の蓋側に撮像カメラ2aを配置し底部側に照明光光源1aを配置した光照射系について、図17に示すように気体より大きく容器材料と同程度の光学的密度が大きい光透過性物体からなる光学的補正素子7aを容器3の底部に取り付けたり、図18に示すように光学的補正液体7bを容器3の底部に介在させたりしている。
【0007】
【発明が解決しようとする課題】
しかしながら、図17に示す例においては、容器3と雌型状の光学的補正素子7aの密着性が問題となる。隙間が仮に1(μm)発生すれば隙間部分における気体層で光屈折が発生し、期待する効果は小さくなる。容器表面には、容器製造工程上での切断によって生じる形状の異なる突起や搬送時の表面傷あるいは印刷文字などが多数あり、容器毎に異なる数(μm)〜数10(μm)の微小な表面凹凸が存在し、隙間の発生原因となっている。不確定に発生する表面凹凸に対し雌型の光学的補正素子7aを個別に準備できず、多くとも数種類程度であることから、容器毎に隙間零となる完全密着は困難である。
【0008】
容器と光学的補正素子とを機械的に圧縮し隙間を解消しようとしても、軽量化や材料使用量低減の面から容器は極力厚みを小さくするように成形製作されており、容器の強度を考慮した圧縮力の限界があるため、圧縮による完全密着も困難である。
【0009】
図18に示す例においては、光学的補正液体中や容器外表面に微小な気泡が形成され光学的外乱となることがあり、外乱処理の手法が新たに加わることによる検査時間の増大、また検査精度の安定性低下を招いてしまう。食品分野や医療分野で使われる容器については、光学的補正液体7bの衛生的管理も必要で装置運用コストも増大する。
【0010】
またエネルギが高く極端に短い波長で透過時の直線性が高いエックス線方式の例では、通常異物と容器が持つエックス線透過率が同程度であるため、金属以外の異物の抽出が困難である。
【0011】
それゆえ本発明の目的は、容器の形状からくる光の屈折や反射などによって発生する光量の不均一な分布による映像内明暗差を抑制し、容器内部に混入した異物を安定的に正しく検出することができる容器内異物検出装置および容器内異物検出方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成する本発明方法の特徴とするところは、搬送コンベアで異物検出位置に搬送された容器であって液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出装置において、容器の蓋側に光量可変に照明光を照射する照明光照射手段を配置し、容器の底部側に前記撮像手段を配置するとともに、照明光の光量を変化させた複数回の光照射映像において、画面内の全域に対して同じ閾値を用いて決定した黒色物体の面積減少率に基づき容器内の異物を判断する制御部を設けたことにある。
【0013】
また、上記の目的を達成する本発明方法の特徴とするところは、液体が封入された透明な容器を搬送コンベアで異物検出位置に搬送し、この容器に照明光照射手段から照明光を照射し、照明光を照射した時の容器を撮像手段が撮像して得た映像から容器内の異物を検出する容器内異物検出方法において、前記照明光照射手段から光量を変化させて複数回照射して前記撮像手段が撮像し、この撮像手段が撮像した映像において、画面内の全域に対して同じ閾値を用いて決定した黒色物体の面積減少率を演算し、この面積減少率が予め定めた値よりも小さければ容器内の異物として検出することにある。
【0014】
【発明の実施の形態】
以下、図に示す実施形態に基づいて、本発明を説明する。
【0015】
図1乃至図3は第一の実施形態を示しており、透明なPET製の容器3は搬送コンベア11上を順次連続して搬送される。搬送コンベア11の容器搭載部33は、透明アクリル材料を使用している。他に塩化ビニールやガラス等の透明で化学的機械的に強い材料でも良い。容器3には、主に薬品や飲料である液体の内容物が既に充填されており、さらに容器蓋4で封止されている。
【0016】
異物検出はこの容器蓋4で封止された直後に実施する。通常、異物検出を実施する工程では容器表面に光学的障害となる印刷物などは存在せず、異物検出において良品となった容器に対してのみ印刷物などを貼る場合が多い。また、本実施形態で対象とする容器と内容物(容器内に封入してある液体)はともに透明なものであるが、無色透明に限らず、有色透明、また一般の環境光では不透明とされる場合であっても、光透過の度合いに応じて異物検出の対象とすることができる。
【0017】
異物混入が確認された容器3は容器搬送コンベア11上から取り除くか、後工程において排出するように容器3の目立つ位置に目印となる不良識別マークを付加しておく。
【0018】
搬送コンベア11上の異物検査位置12では、ハロゲンランプを持つ照明光源6からの光をライトガイド5を経由して照明光照射部(照明光照射手段)1から容器3の上部に照射する。照明光源6としてはハロゲンランプの他に蛍光燈,LED,EL,白熱灯,メタルハライドランプ,赤外光ランプ,紫外光ランプなどの中から選択して使う。
【0019】
ライトガイド5の内部は数百本程度の光ファイバを束ねた状態であり、照明光照射部1で光ファイバを分け、各光ファイバの先端を直下を向けてリング状に固定されている。光ファイバの先端では光は一定の広がり角度を持つため、図2に示すごとく照明光照射部1と距離が大きくなるに従い、リング状から徐々に円状の透過照明光10となる。このとき、照明光照射部1では光ファイバの先端がリング状配置であることから、不透明な材料の場合もある容器蓋4の影を容器の底側に投影することはなく、異物検出における障害とはならない。容器蓋4の影が容器の底側に投影される影響を一層避けるために、照明光照射部1におけるリング状配置直径は容器蓋4より大きくしておくことが良い。
【0020】
搬送コンベア11の下方には、容器搭載個所33を通して容器3を撮像する撮像カメラ(撮像手段)2を配置してある。この実施形態では、容器3は底が容器搭載個所33に接しており、容器蓋4側上に照明光照射部1を配置している。
【0021】
搬送コンベア11の上では対象とする容器3が異物検出位置12に到着したことを容器有無検知センサ13で検知する。容器有無検知センサ13の種類としては図示する反射光式のほかにも、透過光式、超音波式を用いても良い。
【0022】
容器有無検知センサ13における検知結果は、図3の検出装置制御部30に示すI/Oインタフェース23を介して主演算器19で把握し、シャッタ信号制御部16及び撮像カメラコントローラ15により撮像カメラ2のシャッタ信号に反映する。シャッタ信号に基づいて撮像カメラ2で容器3の映像を撮像し、撮像カメラコントローラ15からカメラインターフェース17を介して画像処理を行なう画像情報処理部20の記憶装置に一旦蓄積し、プログラム上で異物を抽出する処理を行なう。撮像画像や撮像画像に対して既に処理を施した映像は画像処理モニタ18に表示する。また、装置の起動、停止、エラーは操作スイッチ31や表示ランプ32で管理し、これらの管理や映像の画像処理を含めた装置全体の稼動状況管理を主演算器19と主記憶部21で担っている。この装置全体の稼動状況はモニタ22に表示する。
【0023】
図1に戻って、異物検査位置12やその周囲は遮光カバー34で囲み、容器3および撮像カメラ2への光学的外乱となる周囲からの光を遮断し、安定した異物の検出を行なうようにしている。
【0024】
図4は容器3に混入にした異物8の状態を示している。前述のように一番多いのが底部3aに沈澱した異物8aであり、次に多いのが液面に浮上した異物8bと液中に浮遊する異物8cである。
【0025】
以下、沈澱異物8aの検出について、説明する。
図5は、沈澱異物8aを撮像カメラ2で得た映像の一例を示している。
図5において、白地の略円形は容器3の輪郭を示し、その輪郭内において実線円で囲んだ9は沈澱異物(物体)8aの影(画像)であり、その他の薄墨の個所は容器3の形状に由来して照射光が散乱し光量が低下した暗部領域(画像)である。しかしながら、容器蓋4の影はなく、沈澱異物8aを明確に捉えることができている。異物の影9と暗部領域は、形状で区別できる。
【0026】
次に画像処理により沈澱異物8aの影9をより明確に把握する第二の実施形態について説明する。
この実施形態は、照明光照射部1で出力を変えて、少なくとも2回映像を得るものである。具体的には、光量を増大させ、撮像カメラ2にとっては輝度が高くて映像が白くなってしまうハレーション現象を積極的に発生させる。
【0027】
図5の例で、I−I線に沿った異物が存在する位置での輝度分布を図6(a)に示す。
図6(a)のI−I線での輝度分布は、通常の照明では図6(a)のごとくなり、異物箇所で輝度が小さくなるのみならず、容器底部3aの形状に由来する暗部発生のため異物以外の箇所でも輝度が小さくなっている。このことは、一定の輝度閾値で映像の濃淡を区切った二値化画像、または濃淡画像によるパターンマッチング処理において、本来の異物画像9以外の暗部も異物と認識してしまい、誤った検出結果となってしまう。
【0028】
そこで、照明光照射部1の出力を大きくすることで、図7に示す映像を得る。
このとき、照明光照射部1の出力は、容器底部3aでの輝度が撮像カメラ2の感度限界を超える値となるような照明光源1の出力値としておく。すると、I−I線での輝度分布は図6(b)のごとく撮像カメラ2の感度限界を超えた飽和状態となる。
【0029】
図7において、異物の影(画像)は照明光が異物で遮られるため輝度は小さいままである。しかし、図6(a)で現れていた容器底部3aの形状に由来する暗部領域(影)の輝度は、本実施形態においては輝度が向上し閾値を超えて暗部領域は消えてしまう。この状態における輝度の閾値で画像の濃淡を区切った二値化画像による処理をする。
【0030】
この時の輝度閾値は、容器形状,液体種類,異物種類などによって、事前に適切な値を導き出しておく。閾値以上の輝度の部分を白色、閾値未満の輝度の部分を黒色で示した二値化画像を図8に示す。図8の黒色物体9bが検出異物である。
異物以外の輝度値に多少の大小があっても、すべて閾値以上であり異物個所での輝度値とは無関係となることから、容器底部3aの形状に由来する暗部の影響を見かけ上無くし、異物8を確実に検出することができる。
【0031】
最終的に認識する輝度は、撮像カメラ2とカメラインターフェース17の両方を介することになるので、いずれか一方で、輝度の感度限界を超えれば良い。
撮像カメラ2の方は感度限界を超えない範囲で、カメラインターフェース17側の調整で撮像データの輝度限度を超える設定としても全く同様の効果が発生する。また、特に撮像カメラ2の感度限界を超える場合は、撮像カメラ2の寿命を考慮する必要があり若干超える程度、具体的には5%から10%超える程度が望ましい。
【0032】
容器3の外径の違いに対応させる第三,第四の実施形態について説明する。
図9は第三の実施形態になる照明光照射部(照明光照射手段)1を示している。
この実施形態では、照明光照射部1における光ファイバ先端を同心円周状に中心から外側まで全体にわたって配置している。中心からの距離に応じて光ファイバ束をグループ分けしている。
【0033】
図9の例では、2列分を1グループとしてグループ分けし、ライトガイド5として一組みにしている。各グループ毎の光ファイバ束の他端は、異なる照明光源に接続している。図6では外側から第二のグループにつながる照明光源内ハロゲンランプの電源を入れて点灯し、残りのグループにつながる照明光源内ハロゲンランプの電源を切ってすべて消灯している例である。
【0034】
容器3の外径が大きい場合には外側の光ファイバグループのみから透過照明光10を照射させ、容器3の外径が小さい場合には内側の光ファイバグループから透過照明光10を照射させることで、搬送コンベア11上を搬送される容器3の外径の違いに対してライトガイドの付け替え無しに対応できる。なお、照明光源の点灯、消灯回数が照明光源の寿命に影響する場合は、個別に用意する照明光源を常時点灯させたままで、照明光源とライトガイドの間に別途シャッタを設置し、個別に入切することで同様の機能を満足させても良い。
【0035】
図10は、第四の実施形態を示している。
この実施形態では、径が異なる2個の照明光照射部(照明光照射手段)1a,1bを設けている。
搬送コンベア11上の異物検査位置12に、ハロゲンランプを持つ照明光源6a,6bからライトガイド5a,5bを介して各照明光照射部1a,1bから成る2組みを容器3上に設置し、透過照明光10を容器3の上部から照射する。ライトガイド5a,5bの内部はライトガイド5と同様に数百本程度の光ファイバを束ねた状態であり、照明光照射部1a,1bで光ファイバを分け、図2の構成と同様にしてあり、各透過照明光10は容器蓋4や照明光照射部1と重ならないように配置している。
【0036】
透過照明光10の照射,非照射は、照明光源6a,6b内の各ハロゲンランプ電源の入切、もしくは照明光照射部1a,1bとライトガイド5a,5bの間に設けた図示しないシャッタの入切によって選択できるようにしている。照明光照射部1a,1bが発する各透過照明光10の光量は、容器の形状に応じて同一か異なるものにする。
【0037】
これらの実施形態では、容器の大きさに対処して異物を検出するだけでなく、光量増加を行なう第二の実施形態にも利用して、異物を検出することができる。
【0038】
次に、光量増加により異物検出を行なう第五の実施形態について説明する。
搬送コンベア11上で、容器有無検知センサ13により容器3が異物検査位置12に到着した時点で、まず第一回の透過照明光照射を行ない、異物と容器形状からくる暗部を含めて画面内のすべてに対して一定の閾値以下を黒色物体として二値化し、その各黒色物体の面積を一旦記憶する。黒色物体は、異物と容器3の形状からくる暗部の両者を含んだもので、記憶した画像を図11(a)に示しており、多くの黒色物体からなる画像となる。
【0039】
次に光量を多くした第二回目の透過照明光照射をして、同様に画面内の全域に対して同じ閾値を用いてその閾値以下を黒色物体として、その各黒色物体の面積を記憶する。図11(b)に示すように二回目の映像では黒色物体が小さく、少ない画像となる。
【0040】
各映像における黒色物体は透過照明光の光量の違いから、第一回目の映像における黒色物体の画像は面積が大きく、第二回目の透過照明光照射では面積が小さく数も少なくなる。この場合の面積減少率は映像画面内の黒色物体毎に異なるが、光を透過する容器底部3aでの容器形状からくる暗部では面積減少率が大きくなるか、または完全に減少して消失する。一方、光を遮断する異物箇所では面積減少率が小さくなる。この面積減少率が小さい黒色物体の画像だけを異物と判定し、本来の異物として検出できる。
【0041】
図11の例では、面積減少率が20%以下を異物と判定した結果、図8の画像と同様となった。面積減少率は通常10%〜30%を判断基準とすれば良い。
【0042】
上記の実施形態は、搬送コンベア11の搬送速度を上げたことに合わせて撮像カメラ2のシャッタ速度を上げた場合に、感度限界を超える撮像カメラ2への光量が得られない状態での異物検出に有効であり、この実施形態はより小さなサイズの異物の検出を可能とし、検出精度を向上させたい場合にも有効である。
【0043】
透過照明光10の光量の段階的切り替えは、前述の同一位置における加算方式、切り替え方式、また異なる異物検査位置12での実施、のいずれでも良い。また、本実施形態では光量の差をニ段階としたが、容器形状からくる暗部と異物とが重なるために二値化画像において同一の黒色物体となる場合には、光量の差を三段階以上の多段階で実施して平均値で面積減少率と取り扱い、さらに黒色物体の数の変化も確認しながら比較することで、検出精度を一層向上できる。
【0044】
次に、異物か否かの画像処理による検出方法について述べる。
元の映像は図5と同様のもので、実際は同一の濃淡画像全体にわたって処理を施すが、図12では図5のI−I線に沿った位置近辺での輝度分布で説明する。
【0045】
この実施形態では同一の黒色物体(特定の画像)に対して異なる3つの輝度閾値を設定し、閾値以上の輝度の部分を白色、閾値未満の輝度の部分を黒色で示し、濃淡画像全体にわたって濃淡を区切った二値化画像を3つ得ることができる。3つの輝度閾値は、容器形状、液体種類、異物種類によって、事前に適切な値を導き出しておく。
【0046】
第一の閾値V1によって二値化した画像内の黒色物体毎に面積を算出する。図12における左側の拡大図に示す物体(特定の画像)では面積A1になり、図12における右側の拡大図に示す物体(特定の画像)では面積B1となる。同様に、第二、第三の閾値V2、V3によっても濃淡画像を二値化し、面積A2、B2、及びA3、B3を算出する。A1に対するA2の減少割合とA2に対するA3の減少割合の平均値Aと、B1に対するB2の減少割合とB2に対するB3の減少割合の平均値Bを算出する。これを、全黒色物体について算出し、その平均面積減少割合の大小で異物であるか否かを判定する。
【0047】
図12の例では、A=12%、B=48%の平均面積減少割合となり、面積減少割合が25%以下を異物と判定して抽出し、Aに相当する黒色物体が異物と判定できた。面積減少割合は通常10%〜30%を基準として、異物か否かを判断すれば良い。
【0048】
この実施形態では、同一の黒色物体の画像に対して複数の二値化画像を得ており、照明系の切り替えを行なっていないため、処理時間を抑え検出精度も向上できる。
【0049】
レンズを付加しより小さなサイズの異物の検出を可能とする本発明の第七の実施形態を図13に示す。
この実施形態では、図13に示すように、主にレンズ光軸に平行な光線のみを撮像カメラ2で捉えることができるテレセントリック光学系14を組み込んだ。
【0050】
テレセントリック光学系14は、図14に示すように、レンズ24の焦点位置25に絞り26を設置しており、レンズ24の光軸に沿った光線26やレンズ24の光軸に平行な光線27は焦点位置25を通るが、レンズ24の光軸に斜めに入射した光線28は焦点位置25を通らず絞り26に遮られしまう。
【0051】
その結果、光量を増加しても透過照明光10のうち異物外周付近から回り込んで入射する分が減少し異物輪郭付近の輝度の上昇を抑え、撮像カメラ2は等寸で撮像でき(図6において、L2=L1)、小さな異物サイズまで認識できる。
【0052】
なお、図14では物体側のみでなく像側にもレンズ24aを設置して、両側をテレセントリック光学系14とした。焦点位置25通過後の光線もレンズ24aの光軸に平行な光線となり、さらに小さな異物サイズまで認識できるようにしている。しかし、要求される異物サイズによってはレンズ24aの組み込みを無くし、レンズ24のみにすることができる。
【0053】
以上沈澱異物の検出について説明したが、次に液面に浮上している異物の検出をする第八の実施形態を図15で説明する。
図5における容器3内の液面部に浮上した異物8bのうち不透明な材質の容器蓋4付近に存在するものは、容器蓋4により遮られて検出できないことがある。
【0054】
この実施形態では、透明アクリル製容器搭載部33に開口33aを設けてあり、容器3を倒立させて、照明光照射部1を搬送コンベア11の下に配置し,倒立した容器3の下側から照射する。撮像カメラ2aは倒立した容器3の上側に設置し、第一の実施形態と同様に透過式照明光をライトガイド5を介して照射して撮像する。
【0055】
この場合、容器3の容器底部の形状が撮像上の障害となる場合は、容器3を鉛直倒立より角度をもって斜め倒立の姿勢で、障害を少ない状態にして撮像する。
これにより、液が容器蓋4付近まで満たされた容器3の液面に浮上する異物を検出することができる。
【0056】
次に、図5の容器3で液中に浮遊する異物8cを検出する第九の実施形態を図16で説明する。
中間に浮遊する異物8cは、撮像カメラまでの距離が大きくなりすぎ、また中間部の容器側壁内面に付着する状態の異物は図2の構成における撮像カメラでは検出不可となることから、図1や図15に示した撮像カメラ2で同時に撮像することは困難である。
【0057】
そこでこの実施形態では、図示を省略した図1や図15に示した照明光照射部と撮像カメラのほかに、照明光源からの光をライトガイド5を経由して照明光照射部(照明光照射手段)1bから容器3の側面に照射する。このとき、ライトガイド5は容器3の幅値に応じて1本または複数本設置する。撮像カメラ(撮像手段)2bは照明光照射部1bと容器3を挟む形に側面に配置しておく。また、容器3の側面形状が画像処理上の光学的外乱となる場合には、より散乱光を増すために、ライトガイド5と容器3との間に図示しない拡散板を設置しても良い。これにより、容器3内の中間部に浮遊する異物を検出することができる。
【0058】
さらに図示しないが、異物検出と容器3の外観検査、液面検査も同時に行なうことについて説明する。
同時検査は、異物検査、外観検査、液面検査の3者から任意に組み合わせて良い。元々撮像カメラ2を備えており、特別な部品を追加することなく外観不良および液面異常の検査が可能である。外観の不良とは、容器の変形,容器の成形製作時の厚み異常,突起発生による形状の異常,内容物の漏れなどが該当する。
液面の異常とは、液体充填不良,容器3の破損に伴う液体漏れ,容器3への大型異物混入に伴う見かけ容積の増加などの液体容量不良による液面の変動が該当する。
【0059】
外観の不良がある場合には、透過照明光10の光の進行を変えてしまうことから、正常な場合に比べて画像内での暗部が変わり、前述のすべての実施形態においても検査装置制御部30で特別な内部処理をしなくとも、検査装置の動作上は異物が混入しているかのごとく搬送コンベア11上から排出される。また、液面の異常を判断するには、図16に示す第九の実施形態における異物検査用光学系を流用し、主演算器19における画像情報記憶部20に蓄積した異物抽出用データを取り扱うプログラムで実行する。即ち、これは、液中の光吸収量の方が気体中の光吸収量よりも大きい性質から、輝度が線状で変換する位置を容器3に対する相対位置で算出することで判断する。
【0060】
第八,第九の実施形態でも第二や第六の実施形態における画像処理を利用することができ、第八の実施形態に第三や第四の実施形態における照明光照射部1を利用することができる。
【0061】
図2,図9,図10のリング状照明光照射部はリング状蛍光灯から直接照明光を照射するようにしてあってもよい。
【0062】
以上容器内異物検出装置について説明したが、本装置は容器検査装置に組み込んで実施することができ、異物を検出した容器は即刻生産ラインから除去するか、マーキングを施しておいて、後工程で除去するようにしても良い。
【0063】
【発明の効果】
以上説明したように本発明によれば、容器の形状からくる光の屈折や反射などによって発生する光量の不均一な分布による映像内明暗差を抑制し、容器内部に混入した異物を安定的に正しく検出することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である容器内異物検出装置を示す概略図である。
【図2】図1の実施形態における透過照明光の照射状況を示す図である。
【図3】図1の実施形態における検出装置制御部のブロック構成を示す図である。
【図4】容器内における異物の存在状況を示す図である。
【図5】図1の実施形態における撮像カメラで得た容器の映像を示す図である。
【図6】本発明の第二の実施形態である容器内異物検出方法に係わる図5におけるI−I線に沿った位置での映像の輝度を示す図である。
【図7】図5の映像について画像処理を施して異物の状況を示した図である。
【図8】図5の映像を得た容器について撮像カメラの感度を越える光量の照明光を照射して得た映像に対し画像処理を施して異物の状況を示した図である。
【図9】本発明の第三の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図10】本発明の第四の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図11】本発明の第五の実施形態である容器内異物検出方法に係わる撮像カメラで得た映像に対し画像処理を施して異物の状況を示した図である。
【図12】本発明の第六の実施形態である容器内異物検出方法に係わる図5におけるI−I線に沿った位置での映像の輝度を示す図である。
【図13】本発明の第七の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図14】図13に示す照明光照射部での照明光照射状況を示す図である。
【図15】本発明の第八の実施形態である容器内異物検出装置の構成を示す図である。
【図16】本発明の第九の実施形態である容器内異物検出装置の構成を示す図である。
【図17】従来技術を示す図である。
【図18】従来技術を示す図である。
【符号の説明】
1,1a,1b…照明光照射部
2,2a,2b…撮像カメラ
3…容器
3a…容器底部
4…容器蓋
5,5a,5b…ライトガイド
6,6a,6b…照明光源
8、8a〜8c…異物
9,9a…異物画像
9b…二値化画像における検出異物
10,10a,10b…透過照明光
11…搬送コンベア
12…異物検査位置
13…容器有無検知センサ
15…撮像カメラコントローラ
16…シャッタ信号制御部
17…カメラインターフェース
18…画像処理モニタ
19…主演算器
20…画像情報記憶部
21…主記憶部
22…モニタ
23…I/Oインターフェース
30…検査装置制御部
31…操作スイッチ
32…表示ランプ
33…容器搭載部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-container foreign matter detection device and a foreign matter detection method for detecting foreign matter mixed in a container from an image of the container obtained by imaging means by illuminating a transparent container in which a liquid is enclosed. It is.
[0002]
[Prior art]
The main foreign substances mixed in a container sealed with drinking water or the like are a part of a container material or a part of a part filled with a liquid of contents at the stage of forming and manufacturing the container. Although almost no foreign matter is mixed in the container, there is a possibility of adverse effects on the human body. Therefore, it is required to remove it reliably regardless of the frequency of occurrence.
[0003]
The conventional 100% inspection relies on human visual inspection. At this time, it is particularly difficult to detect and the foreign substances that are present in the most state are precipitated foreign matters. This is because the container bottom itself is like a lens having a complicated shape because the thickness changes and has a step at the bottom for convenience of container molding.
[0004]
Japanese Laid-Open Patent Application No. 7-181145 is a conventional technique for irradiating a transparent container filled with liquid with illumination light instead of human observation and detecting foreign matter mixed in the container from an image of the container obtained by the imaging means. Some are described in the publication.
[0005]
This conventional technology obtains an image from a transparent container by the light transmission method, eliminates the brightness and darkness due to the uneven distribution of the amount of light generated by the refraction and reflection of light caused by the container shape, and extracts internal foreign matter by image processing An optical correction element is incorporated in the light irradiation system so as to be able to.
[0006]
As the optical correction element, the light irradiation system in which the imaging camera 2a is disposed on the lid side of the container 3 and the illumination light source 1a is disposed on the bottom side is larger than the gas and similar to the container material as shown in FIG. An optical correction element 7a made of a light transmissive object having a high optical density is attached to the bottom of the container 3, or an optical correction liquid 7b is interposed at the bottom of the container 3 as shown in FIG.
[0007]
[Problems to be solved by the invention]
However, in the example shown in FIG. 17, the adhesion between the container 3 and the female optical correction element 7a becomes a problem. If the gap is 1 (μm), light refraction occurs in the gas layer in the gap, and the expected effect is reduced. There are many protrusions with different shapes generated by cutting in the container manufacturing process, surface scratches during printing, printed characters, etc. on the container surface, and the number of microsurfaces that vary from container to container (μm) to several tens (μm) Concavities and convexities are present, causing gaps. The female optical correction element 7a cannot be individually prepared for the irregular surface irregularities, and since there are at most several types, it is difficult to achieve complete contact with zero gap for each container.
[0008]
Even if the container and the optical correction element are mechanically compressed to eliminate the gap, the container is molded and manufactured to reduce the thickness as much as possible from the viewpoint of weight reduction and material usage reduction. Due to the limitation of the compression force, complete adhesion by compression is difficult.
[0009]
In the example shown in FIG. 18, there are cases where minute bubbles are formed in the optical correction liquid or on the outer surface of the container, resulting in an optical disturbance, and the inspection time increases due to the addition of a new disturbance processing method. The stability of accuracy will be reduced. For containers used in the food and medical fields, sanitary management of the optical correction liquid 7b is necessary, and the operation cost of the apparatus increases.
[0010]
Further, in the example of the X-ray system having high energy and extremely short wavelength and high linearity at the time of transmission, it is difficult to extract foreign matters other than metal because the foreign matter and the X-ray transmittance of the container are approximately the same.
[0011]
Therefore, an object of the present invention is to suppress a difference in light and darkness in an image due to a non-uniform distribution of the amount of light generated by refraction or reflection of light coming from the shape of the container, and stably and correctly detect foreign matters mixed inside the container. An object of the present invention is to provide a container foreign matter detection device and a container foreign matter detection method.
[0012]
[Means for Solving the Problems]
A feature of the method of the present invention that achieves the above object is that the container transported to the foreign object detection position by the transport conveyor and irradiated with illumination light to a transparent container filled with liquid was obtained by the imaging means. In a container foreign matter detection device that detects a foreign matter in a container from an image of the container, an illumination light irradiating means for irradiating illumination light with a variable amount of light is arranged on the lid side of the container, and the imaging means is arranged on the bottom side of the container. With Lighting light Multiple images of light irradiation with varying light intensity The same threshold is used for the entire area in the screen. A control unit for determining foreign matter in the container based on the area reduction rate of the black object is provided.
[0013]
In addition, the method of the present invention that achieves the above object is characterized in that a transparent container filled with a liquid is transported to a foreign object detection position by a transport conveyor, and the container is irradiated with illumination light from illumination light irradiation means. In the container foreign matter detection method for detecting the foreign matter in the container from the image obtained by the imaging means picking up the container when the illumination light is irradiated, the illumination light irradiation means irradiates a plurality of times by changing the light amount. The imaging means takes an image, and the image taken by the imaging means The same threshold is used for the entire area in the screen. The area reduction rate of the black object is calculated, and if the area reduction rate is smaller than a predetermined value, it is detected as a foreign substance in the container.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiments shown in the drawings.
[0015]
1 to 3 show a first embodiment, and transparent PET containers 3 are sequentially and continuously conveyed on a conveyor 11. The container mounting portion 33 of the transport conveyor 11 uses a transparent acrylic material. In addition, a transparent and chemically mechanically strong material such as vinyl chloride or glass may be used. The container 3 is already filled with a liquid content, which is mainly a medicine or beverage, and is further sealed with a container lid 4.
[0016]
Foreign matter detection is performed immediately after sealing with the container lid 4. Usually, in the process of detecting foreign matter, there is no printed matter that becomes an optical obstacle on the surface of the container, and the printed matter is often affixed only to a container that has become non-defective in foreign matter detection. In addition, the container and contents (liquid sealed in the container) targeted in the present embodiment are both transparent, but are not limited to colorless and transparent, and are colored and transparent, and are opaque in general ambient light. Even if it is a case, it can be set as the object of foreign object detection according to the degree of light transmission.
[0017]
The container 3 in which foreign matter is confirmed to be mixed is removed from the container transport conveyor 11 or a defect identification mark as a mark is added to a conspicuous position of the container 3 so as to be discharged in a subsequent process.
[0018]
At a foreign matter inspection position 12 on the transport conveyor 11, light from an illumination light source 6 having a halogen lamp is irradiated onto an upper portion of the container 3 from an illumination light irradiation unit (illumination light irradiation means) 1 through a light guide 5. The illumination light source 6 is selected from a fluorescent lamp, LED, EL, incandescent lamp, metal halide lamp, infrared lamp, ultraviolet lamp, etc. in addition to a halogen lamp.
[0019]
The inside of the light guide 5 is in a state where several hundred optical fibers are bundled, and the optical fibers are divided by the illumination light irradiation unit 1 and fixed in a ring shape with the tip of each optical fiber facing directly below. Since the light has a constant spread angle at the tip of the optical fiber, as the distance from the illumination light irradiation unit 1 increases as shown in FIG. At this time, since the tip of the optical fiber is arranged in a ring shape in the illumination light irradiation unit 1, the shadow of the container lid 4, which may be an opaque material, is not projected on the bottom side of the container, and obstacles in foreign object detection It will not be. In order to further avoid the influence of the shadow of the container lid 4 being projected on the bottom side of the container, the ring-shaped arrangement diameter in the illumination light irradiation unit 1 is preferably made larger than that of the container lid 4.
[0020]
An imaging camera (imaging means) 2 that images the container 3 through the container mounting portion 33 is disposed below the conveyor 11. In this embodiment, the bottom of the container 3 is in contact with the container mounting portion 33, and the illumination light irradiation unit 1 is disposed on the container lid 4 side.
[0021]
On the conveyor 11, the container presence / absence detection sensor 13 detects that the target container 3 has arrived at the foreign object detection position 12. As the type of the container presence / absence detection sensor 13, in addition to the reflected light type shown in the figure, a transmitted light type or an ultrasonic type may be used.
[0022]
The detection result in the container presence / absence detection sensor 13 is grasped by the main computing unit 19 via the I / O interface 23 shown in the detection device control unit 30 of FIG. This is reflected in the shutter signal. Based on the shutter signal, the imaging camera 2 captures an image of the container 3, temporarily stores it in the storage device of the image information processing unit 20 that performs image processing from the imaging camera controller 15 via the camera interface 17, and removes foreign matter on the program. Perform the extraction process. The captured image and the video that has already been processed are displayed on the image processing monitor 18. In addition, the start, stop, and error of the apparatus are managed by the operation switch 31 and the display lamp 32, and the operation status management of the entire apparatus including the management and image processing of the video is performed by the main arithmetic unit 19 and the main storage unit 21. ing. The operating status of the entire apparatus is displayed on the monitor 22.
[0023]
Returning to FIG. 1, the foreign matter inspection position 12 and its surroundings are surrounded by a light shielding cover 34 to block light from the surroundings, which is an optical disturbance to the container 3 and the imaging camera 2, so that stable foreign matter detection is performed. ing.
[0024]
FIG. 4 shows a state of the foreign matter 8 mixed in the container 3. As described above, foreign matter 8a precipitated on the bottom 3a is the largest, and foreign matter 8b floating on the liquid surface and foreign matter 8c floating on the liquid are the next most common.
[0025]
Hereinafter, detection of the precipitated foreign matter 8a will be described.
FIG. 5 shows an example of an image obtained by the imaging camera 2 with the precipitated foreign matter 8a.
In FIG. 5, the substantially circular white background indicates the outline of the container 3, and 9 surrounded by a solid circle in the outline is a shadow (image) of the precipitated foreign matter (object) 8 a, and the other thin ink spots are those of the container 3. This is a dark area (image) where the irradiation light is scattered due to the shape and the amount of light is reduced. However, there is no shadow of the container lid 4 and the precipitated foreign matter 8a can be clearly captured. The shadow 9 and the dark area of the foreign object can be distinguished by shape.
[0026]
Next, a second embodiment for more clearly grasping the shadow 9 of the precipitated foreign matter 8a by image processing will be described.
In this embodiment, the illumination light irradiation unit 1 changes the output to obtain an image at least twice. Specifically, the amount of light is increased, and for the imaging camera 2, a halation phenomenon in which the luminance is high and the image becomes white is actively generated.
[0027]
In the example of FIG. 5, the luminance distribution at the position where the foreign matter exists along the line II is shown in FIG.
The luminance distribution along the line I-I in FIG. 6A is as shown in FIG. 6A in normal illumination, and not only the luminance is reduced at the foreign material part, but also a dark portion generated due to the shape of the container bottom 3a. For this reason, the brightness is reduced even in places other than foreign matter. This is because a dark image other than the original foreign object image 9 is recognized as a foreign object in a binary image obtained by dividing the gray level of a video with a certain luminance threshold, or in a pattern matching process using a gray image, and an erroneous detection result turn into.
[0028]
Therefore, the image shown in FIG. 7 is obtained by increasing the output of the illumination light irradiation unit 1.
At this time, the output of the illumination light irradiation unit 1 is set to an output value of the illumination light source 1 such that the luminance at the container bottom 3a exceeds the sensitivity limit of the imaging camera 2. Then, the luminance distribution on the line I-I becomes a saturated state exceeding the sensitivity limit of the imaging camera 2 as shown in FIG.
[0029]
In FIG. 7, the brightness (image) of the foreign object remains small because the illumination light is blocked by the foreign object. However, the brightness of the dark area (shadow) derived from the shape of the container bottom 3a that appeared in FIG. 6A is improved in the present embodiment, exceeds the threshold value, and the dark area disappears. In this state, processing is performed with a binarized image in which the density of the image is divided by the threshold value of luminance.
[0030]
The brightness threshold at this time is derived in advance according to the container shape, liquid type, foreign material type, and the like. FIG. 8 shows a binarized image in which a portion having a luminance equal to or higher than the threshold is white and a portion having a luminance lower than the threshold is black. A black object 9b in FIG. 8 is a detected foreign matter.
Even if the brightness values other than the foreign matter are somewhat large and small, they are all equal to or greater than the threshold value and are irrelevant to the brightness value at the foreign matter location. Therefore, the influence of the dark part derived from the shape of the container bottom 3a is apparently eliminated. 8 can be reliably detected.
[0031]
Since the luminance finally recognized is via both the imaging camera 2 and the camera interface 17, it is only necessary to exceed the luminance sensitivity limit.
In the case of the imaging camera 2, the same effect is produced even if the setting of exceeding the luminance limit of the imaging data is made by adjustment on the camera interface 17 side within a range not exceeding the sensitivity limit. In particular, when the sensitivity limit of the imaging camera 2 is exceeded, it is necessary to consider the life of the imaging camera 2, and it is desirable that the lifetime be slightly exceeded, specifically about 5% to 10%.
[0032]
Third and fourth embodiments corresponding to differences in the outer diameter of the container 3 will be described.
FIG. 9 shows an illumination light irradiation unit (illumination light irradiation means) 1 according to the third embodiment.
In this embodiment, the tip of the optical fiber in the illumination light irradiation unit 1 is arranged concentrically from the center to the outside. The optical fiber bundles are grouped according to the distance from the center.
[0033]
In the example of FIG. 9, two rows are grouped as one group, and the light guide 5 is made into one set. The other end of the optical fiber bundle for each group is connected to a different illumination light source. FIG. 6 shows an example in which the halogen lamps in the illumination light source connected to the second group are turned on from the outside and turned on, and all the halogen lamps in the illumination light source connected to the remaining groups are turned off and all are turned off.
[0034]
When the outer diameter of the container 3 is large, the transmitted illumination light 10 is irradiated only from the outer optical fiber group, and when the outer diameter of the container 3 is small, the transmitted illumination light 10 is irradiated from the inner optical fiber group. It is possible to cope with the difference in the outer diameter of the containers 3 conveyed on the conveyor 11 without changing the light guide. If the number of times the illumination light source is turned on or off affects the life of the illumination light source, install a separate shutter between the illumination light source and the light guide while keeping the separately prepared illumination light source always on. The same function may be satisfied by cutting.
[0035]
FIG. 10 shows a fourth embodiment.
In this embodiment, two illumination light irradiation units (illumination light irradiation means) 1a and 1b having different diameters are provided.
Two sets of illumination light irradiation units 1a and 1b are installed on the container 3 through the light guides 5a and 5b from the illumination light sources 6a and 6b having halogen lamps at the foreign matter inspection position 12 on the transport conveyor 11, and transmitted. Illumination light 10 is irradiated from above the container 3. The inside of the light guides 5a and 5b is a state in which several hundred optical fibers are bundled in the same manner as the light guide 5, and the optical fibers are divided by the illumination light irradiation units 1a and 1b, and the configuration is the same as in FIG. Each transmitted illumination light 10 is arranged so as not to overlap the container lid 4 and the illumination light irradiation unit 1.
[0036]
Irradiation or non-irradiation of the transmitted illumination light 10 is performed by turning on / off each halogen lamp power source in the illumination light sources 6a, 6b, or by entering a shutter (not shown) provided between the illumination light irradiation units 1a, 1b and the light guides 5a, 5b. You can select by turning off. The light quantity of each transmitted illumination light 10 emitted from the illumination light irradiation units 1a and 1b is the same or different depending on the shape of the container.
[0037]
In these embodiments, not only the foreign matter is detected in response to the size of the container, but also the second embodiment in which the amount of light is increased can be used to detect the foreign matter.
[0038]
Next, a fifth embodiment in which foreign matter detection is performed by increasing the amount of light will be described.
When the container 3 arrives at the foreign object inspection position 12 by the container presence / absence detection sensor 13 on the transport conveyor 11, the first transmission illumination light irradiation is performed, and the dark area resulting from the foreign object and the container shape is included in the screen. For all, binarize below a certain threshold value as a black object, and temporarily store the area of each black object. The black object includes both a foreign object and a dark part resulting from the shape of the container 3, and the stored image is shown in FIG. 11A, and is an image composed of many black objects.
[0039]
Next, the second transmitted illumination light irradiation with an increased amount of light is performed, and similarly, the same threshold value is used for the entire area within the screen, and the area below each threshold is stored as a black object. As shown in FIG. 11B, in the second image, the black object is small and there are few images.
[0040]
The black object in each image has a large area because of the difference in the amount of transmitted illumination light, and the area of the black object in the first image is small and the number is small in the second illumination illumination light irradiation. In this case, the area reduction rate differs for each black object in the video screen. However, the area reduction rate increases or disappears completely in the dark part of the container shape at the container bottom 3a that transmits light. On the other hand, the area reduction rate is small at a foreign object portion that blocks light. Only an image of a black object having a small area reduction rate can be determined as a foreign object and detected as an original foreign object.
[0041]
In the example of FIG. 11, as a result of determining that the area reduction rate is 20% or less as a foreign object, the image is the same as the image of FIG. The area reduction rate may normally be 10% to 30%.
[0042]
In the above-described embodiment, when the shutter speed of the imaging camera 2 is increased in accordance with the increase in the conveyance speed of the conveyance conveyor 11, foreign object detection in a state where the amount of light to the imaging camera 2 exceeding the sensitivity limit cannot be obtained. This embodiment is effective for detecting a foreign substance having a smaller size and improving detection accuracy.
[0043]
The stepwise switching of the light quantity of the transmitted illumination light 10 may be any of the above-described addition method, switching method, and implementation at different foreign substance inspection positions 12 at the same position. In this embodiment, the difference in the amount of light is two-staged. However, when the dark portion coming from the container shape and the foreign object overlap each other and the same black object is obtained in the binarized image, the difference in the amount of light is three or more. The detection accuracy can be further improved by carrying out the process in multiple stages, comparing the area reduction rate with the average value, and further confirming the change in the number of black objects.
[0044]
Next, a method for detecting whether or not a foreign object is detected by image processing will be described.
The original video is the same as that shown in FIG. 5 and is actually processed over the same grayscale image. In FIG. 12, the luminance distribution in the vicinity of the position along the line II in FIG. 5 will be described.
[0045]
In this embodiment, three different luminance thresholds are set for the same black object (specific image), a portion having a luminance equal to or higher than the threshold is indicated in white, and a portion having a luminance lower than the threshold is indicated in black. It is possible to obtain three binarized images obtained by dividing. For the three luminance thresholds, appropriate values are derived in advance according to the container shape, the liquid type, and the foreign material type.
[0046]
The area is calculated for each black object in the image binarized by the first threshold value V1. The object (specific image) shown in the left enlarged view in FIG. 12 has an area A1, and the object (specific image) shown in the right enlarged view in FIG. 12 has an area B1. Similarly, the grayscale image is also binarized by the second and third threshold values V2 and V3, and the areas A2, B2, and A3, B3 are calculated. The average value A of the decrease ratio of A2 with respect to A1 and the decrease ratio of A3 with respect to A2, and the average value B of the decrease ratio of B2 with respect to B1 and the decrease ratio of B3 with respect to B2 are calculated. This is calculated for all black objects, and it is determined whether the average area reduction rate is a foreign object or not.
[0047]
In the example of FIG. 12, the average area reduction rate is A = 12% and B = 48%, and the area reduction rate of 25% or less is determined as foreign matter and extracted, and the black object corresponding to A can be judged as foreign matter. . What is necessary is just to judge whether an area reduction rate is a foreign material on the basis of 10%-30% normally.
[0048]
In this embodiment, since a plurality of binarized images are obtained for the same black object image and the illumination system is not switched, the processing time can be reduced and the detection accuracy can be improved.
[0049]
FIG. 13 shows a seventh embodiment of the present invention in which a lens is added to enable detection of a foreign substance having a smaller size.
In this embodiment, as shown in FIG. 13, a telecentric optical system 14 capable of capturing only light rays parallel to the lens optical axis with the imaging camera 2 is incorporated.
[0050]
As shown in FIG. 14, the telecentric optical system 14 has a diaphragm 26 at the focal position 25 of the lens 24, and the light beam 26 along the optical axis of the lens 24 and the light beam 27 parallel to the optical axis of the lens 24 are A light beam 28 passing through the focal position 25 but obliquely incident on the optical axis of the lens 24 is blocked by the diaphragm 26 without passing through the focal position 25.
[0051]
As a result, even if the amount of light is increased, the amount of incident light that enters the outer periphery of the foreign object in the transmitted illumination light 10 is reduced, and an increase in luminance near the outer contour of the foreign object is suppressed, so that the imaging camera 2 can capture an image with the same size (FIG. , L2 = L1), even a small foreign object size can be recognized.
[0052]
In FIG. 14, the lens 24a is installed not only on the object side but also on the image side, and the telecentric optical system 14 is used on both sides. The light beam after passing through the focal position 25 also becomes a light beam parallel to the optical axis of the lens 24a, so that even a smaller foreign object size can be recognized. However, depending on the required foreign material size, the incorporation of the lens 24a can be eliminated and only the lens 24 can be provided.
[0053]
The detection of precipitated foreign matter has been described above. Next, an eighth embodiment for detecting foreign matter floating on the liquid surface will be described with reference to FIG.
Of the foreign matter 8b floating on the liquid surface portion in the container 3 in FIG. 5, the foreign substance 8b existing in the vicinity of the container cover 4 made of an opaque material may be blocked by the container cover 4 and cannot be detected.
[0054]
In this embodiment, an opening 33 a is provided in the transparent acrylic container mounting portion 33, the container 3 is inverted, the illumination light irradiation unit 1 is disposed under the transport conveyor 11, and from the lower side of the inverted container 3. Irradiate. The imaging camera 2a is installed on the upper side of the inverted container 3, and irradiates the transmissive illumination light through the light guide 5 as in the first embodiment to capture an image.
[0055]
In this case, when the shape of the container bottom part of the container 3 becomes an obstacle in imaging, the container 3 is imaged in an obliquely inverted posture at an angle with respect to the vertical inversion with less obstacles.
Thereby, the foreign substance which floats on the liquid level of the container 3 filled with the liquid to the container lid 4 vicinity can be detected.
[0056]
Next, a ninth embodiment for detecting the foreign matter 8c floating in the liquid with the container 3 of FIG. 5 will be described with reference to FIG.
The foreign matter 8c floating in the middle is too far away from the imaging camera, and the foreign matter attached to the inner surface of the container side wall in the middle cannot be detected by the imaging camera in the configuration of FIG. It is difficult to capture images simultaneously with the imaging camera 2 shown in FIG.
[0057]
Therefore, in this embodiment, in addition to the illumination light irradiation unit and the imaging camera shown in FIG. 1 and FIG. 15 (not shown), the light from the illumination light source is transmitted through the light guide 5 to the illumination light irradiation unit (illumination light irradiation). Means: The side surface of the container 3 is irradiated from 1b. At this time, one or more light guides 5 are installed according to the width value of the container 3. The imaging camera (imaging means) 2b is arranged on the side surface so as to sandwich the illumination light irradiation unit 1b and the container 3. Further, when the side surface shape of the container 3 is an optical disturbance in image processing, a diffusion plate (not shown) may be installed between the light guide 5 and the container 3 in order to increase scattered light. Thereby, the foreign substance which floats in the intermediate part in the container 3 is detectable.
[0058]
Further, although not shown in the drawings, it will be described that foreign matter detection, appearance inspection and liquid level inspection of the container 3 are simultaneously performed.
The simultaneous inspection may be arbitrarily combined from the three types of foreign matter inspection, appearance inspection, and liquid level inspection. The image pickup camera 2 is originally provided, and an appearance defect and liquid level abnormality can be inspected without adding special parts. Appearance defects include deformation of the container, abnormal thickness at the time of forming the container, abnormal shape due to protrusions, and leakage of contents.
The abnormality of the liquid level corresponds to fluctuations in the liquid level due to liquid capacity failure such as liquid filling failure, liquid leakage due to breakage of the container 3, and increase in apparent volume due to large foreign matter mixing into the container 3.
[0059]
When there is a defect in the appearance, the progress of the light of the transmitted illumination light 10 is changed, so that the dark part in the image changes compared to the normal case, and the inspection apparatus control unit also in all the above-described embodiments Even if no special internal processing is performed at 30, the inspection apparatus is discharged from the conveyor 11 as if foreign matter is mixed. Further, in order to determine the abnormality of the liquid level, the foreign matter inspection optical system in the ninth embodiment shown in FIG. 16 is used to handle the foreign matter extraction data accumulated in the image information storage unit 20 in the main computing unit 19. Run it programmatically. That is, this is determined by calculating the position where the luminance is converted into a linear shape relative to the container 3 because the light absorption amount in the liquid is larger than the light absorption amount in the gas.
[0060]
In the eighth and ninth embodiments, the image processing in the second and sixth embodiments can be used, and the illumination light irradiation unit 1 in the third and fourth embodiments is used in the eighth embodiment. be able to.
[0061]
The ring-shaped illumination light irradiation unit in FIGS. 2, 9, and 10 may be configured to directly irradiate illumination light from a ring-shaped fluorescent lamp.
[0062]
Although the foreign object detection device in the container has been described above, the present device can be implemented by being incorporated in the container inspection device, and the container in which the foreign material has been detected can be removed from the production line immediately or subjected to marking in a later process. You may make it remove.
[0063]
【The invention's effect】
As described above, according to the present invention, the contrast in the image due to the uneven distribution of the amount of light generated by the refraction or reflection of light coming from the shape of the container is suppressed, and the foreign matter mixed in the container is stably prevented. It can be detected correctly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an in-container foreign object detection apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing an irradiation state of transmitted illumination light in the embodiment of FIG.
FIG. 3 is a diagram showing a block configuration of a detection device control unit in the embodiment of FIG. 1;
FIG. 4 is a diagram showing the presence of foreign matter in a container.
5 is a view showing an image of a container obtained by the imaging camera in the embodiment of FIG.
6 is a diagram showing the luminance of an image at a position along the line II in FIG. 5 according to the foreign substance detection method in a container according to the second embodiment of the present invention.
7 is a diagram showing the state of a foreign object by performing image processing on the video in FIG. 5;
8 is a diagram showing the state of a foreign object by performing image processing on an image obtained by irradiating illumination light having a light amount exceeding the sensitivity of an imaging camera with respect to the container that obtained the image of FIG.
FIG. 9 is a diagram showing a configuration of an illumination light irradiation unit in a container foreign matter detection device according to a third embodiment of the present invention.
FIG. 10 is a diagram illustrating a configuration of an illumination light irradiation unit in a container foreign matter detection device according to a fourth embodiment of the present invention.
FIG. 11 is a diagram illustrating the state of foreign matter by performing image processing on an image obtained by an imaging camera according to the foreign matter detection method in a container according to the fifth embodiment of the present invention.
12 is a diagram showing the luminance of an image at a position along the line II in FIG. 5 according to the foreign substance detection method in a container according to the sixth embodiment of the present invention.
FIG. 13 is a diagram illustrating a configuration of an illumination light irradiation unit in a container foreign matter detection device according to a seventh embodiment of the present invention.
14 is a diagram showing an illumination light irradiation state in the illumination light irradiation unit shown in FIG.
FIG. 15 is a diagram showing a configuration of an in-container foreign object detection device according to an eighth embodiment of the present invention.
FIG. 16 is a diagram showing a configuration of a container foreign matter detecting device according to a ninth embodiment of the present invention.
FIG. 17 is a diagram showing a conventional technique.
FIG. 18 is a diagram showing a conventional technique.
[Explanation of symbols]
1, 1a, 1b ... Illumination light irradiation unit
2, 2a, 2b ... Imaging camera
3 ... Container
3a ... Bottom of container
4 ... Container lid
5, 5a, 5b ... Light guide
6, 6a, 6b ... Illumination light source
8, 8a to 8c ... foreign matter
9, 9a ... Foreign object image
9b ... Foreign matter detected in the binarized image
10, 10a, 10b ... Transmitted illumination light
11 ... Conveyor
12 ... Foreign substance inspection position
13 ... Container presence / absence detection sensor
15 ... Imaging camera controller
16: Shutter signal control unit
17 ... Camera interface
18. Image processing monitor
19 ... Main arithmetic unit
20: Image information storage unit
21 ... Main memory
22 ... Monitor
23 ... I / O interface
30 ... Inspection device control unit
31 ... Operation switch
32 ... Indicator lamp
33 ... Container mounting part

Claims (5)

搬送コンベアで異物検出位置に搬送された容器であって液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出装置において、容器の蓋側に光量可変に照明光を照射する照明光照射手段を配置し、容器の底部側に前記撮像手段を配置するとともに、前記照明光の光量を変化させた複数回の光照射映像において、画面内の全域に対して同じ閾値を用いて決定した黒色物体の面積減少率に基づき容器内の異物を判断する制御部を設けたことを特徴とする容器内異物検出装置。Intra-container foreign-matter detecting device for irradiating illumination light to a transparent container filled with liquid that has been transported to a foreign-matter detection position by a transport conveyor and detecting foreign matter in the container from the image of the container obtained by the imaging means The illumination light irradiating means for irradiating illumination light in a variable amount of light is disposed on the lid side of the container, the imaging means is disposed on the bottom side of the container, and the light irradiation is performed a plurality of times by changing the light amount of the illumination light. Oite the image, container foreign object detection apparatus, characterized in that the provided control unit for determining the foreign material in the vessel based on the area reduction ratio of the black object was determined using the same threshold against the whole area of the screen. 前記照明光照射手段はリング状であり、容器における蓋の外周側から照明光を照射可能に配置したことを特徴とする請求項1に記載の容器内異物検出装置。  The in-container foreign matter detection device according to claim 1, wherein the illumination light irradiation means has a ring shape and is arranged so as to be able to irradiate illumination light from an outer peripheral side of a lid of the container. 前記照明光照射手段は同心でリング状に配置した複数の照射ユニットを有し、各照射ユニットにおける照射の点滅を切り替える手段を設けたことを特徴とする請求項1に記載の容器内異物検出装置。  The in-container foreign matter detection device according to claim 1, wherein the illumination light irradiation means includes a plurality of irradiation units concentrically arranged in a ring shape, and includes means for switching blinking of irradiation in each irradiation unit. . 前記照明光照射手段から前記撮像手段に至る光線を平行に揃える光学手段を設けたことを特徴とする請求項1に記載の容器内異物検出装置。  The in-container foreign matter detection device according to claim 1, further comprising an optical unit that aligns light beams from the illumination light irradiation unit to the imaging unit in parallel. 液体が封入された透明な容器を搬送コンベアで異物検出位置に搬送し、この容器に照明光照射手段から照明光を照射し、照明光を照射した時の容器を撮像手段が撮像して得た映像から容器内の異物を検出する容器内異物検出方法において、前記照明光照射手段から照明光の光量を変化させて複数回照射して前記撮像手段が撮像し、この撮像手段が撮像した映像において、画面内の全域に対して同じ閾値を用いて決定した黒色物体の面積減少率を演算し、この面積減少率が予め定めた値よりも小さければ容器内の異物として検出することを特徴とする容器内異物検出方法。A transparent container filled with liquid was transported to a foreign object detection position by a transport conveyor, and the container was irradiated with illumination light from the illumination light irradiation means, and the imaging means captured the container when the illumination light was irradiated. In the container foreign matter detection method for detecting a foreign matter in a container from an image, the imaging means picks up images by changing the amount of illumination light from the illumination light irradiation means and irradiates a plurality of times. The area reduction rate of the black object determined using the same threshold value is calculated for the entire area in the screen, and if the area reduction rate is smaller than a predetermined value, it is detected as a foreign object in the container. A method for detecting foreign matter in a container.
JP2002189012A 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container Expired - Fee Related JP4048848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189012A JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189012A JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Publications (2)

Publication Number Publication Date
JP2004028930A JP2004028930A (en) 2004-01-29
JP4048848B2 true JP4048848B2 (en) 2008-02-20

Family

ID=31183542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189012A Expired - Fee Related JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Country Status (1)

Country Link
JP (1) JP4048848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352989B1 (en) * 2008-11-11 2020-05-06 Technobis Group B.V. Sample analysis apparatus and a method of analysing a sample

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071392A (en) * 2004-09-01 2006-03-16 Hitachi Industries Co Ltd Container foreign matter detection device
JP4696201B2 (en) * 2005-03-31 2011-06-08 キリンテクノシステム株式会社 Inspection device
JP2006292598A (en) * 2005-04-13 2006-10-26 Hitachi Industries Co Ltd Container foreign matter detection method and apparatus
JP2007064905A (en) * 2005-09-02 2007-03-15 Hitachi Plant Technologies Ltd Container foreign matter detection method and apparatus
JP4813437B2 (en) * 2007-09-18 2011-11-09 株式会社日立情報制御ソリューションズ Foreign object detection device and foreign object detection method in container
WO2009041016A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Inspection apparatus and inspection method
EP2453233A1 (en) * 2010-11-16 2012-05-16 Roche Diagnostics GmbH Method and apparatus for detecting foam on a liquid surface in a vessel
JP5282205B2 (en) * 2010-11-19 2013-09-04 キリンテクノシステム株式会社 Inspection device
JP5891684B2 (en) * 2011-03-25 2016-03-23 株式会社湯山製作所 Mixed injection device
TWI582408B (en) 2011-08-29 2017-05-11 安美基公司 Methods and apparati for nondestructive detection of undissolved particles in a fluid
EA038813B1 (en) * 2012-08-20 2021-10-22 Амген Инк. Methods and apparatus for nondestructive detection of undissolved particles in a fluid
JP6615656B2 (en) * 2016-03-15 2019-12-04 グローリー株式会社 Money handling equipment
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
JP7248284B2 (en) * 2019-02-08 2023-03-29 株式会社大道産業 Foreign matter detection device, foreign matter detection method, and foreign matter detection program
JP7262766B2 (en) * 2019-07-17 2023-04-24 株式会社大道産業 foreign object detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352989B1 (en) * 2008-11-11 2020-05-06 Technobis Group B.V. Sample analysis apparatus and a method of analysing a sample

Also Published As

Publication number Publication date
JP2004028930A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4048848B2 (en) Foreign object detection device in container and foreign object detection method in container
AU693157B2 (en) Optical inspection of container dimensional parameters
JPH02275346A (en) Inspection of finished portion of container
JP4154523B2 (en) Container foreign matter detection device
JP4743552B2 (en) Foreign matter inspection method, foreign matter inspection device, and illumination device for foreign matter inspection
CN113924476B (en) Method and device for optically inspecting containers
US10922810B2 (en) Automated visual inspection for visible particulate matter in empty flexible containers
JP6409178B2 (en) Container inspection method and inspection apparatus
CN114127545A (en) Method and apparatus for optically inspecting containers
JPH11337504A (en) Inspection method and apparatus for discriminating defects in glass sheet
CN112697810B (en) Method and device for optical inspection of containers
JP3767695B2 (en) Empty bottle inspection system
JP4284646B2 (en) Foreign matter inspection device and illumination device for foreign matter inspection
JP4523474B2 (en) Defect inspection device and PTP packaging machine
JP2010091530A (en) Method and apparatus for inspecting foreign substance
JP2017166903A (en) Defect inspection device and defect inspection method
JP2017083381A (en) Cylindrical body visual inspection device and visual inspection method
JP2004257937A (en) Foreign matter inspection device and inspection method
JP2005017003A (en) Vial inspection system
JP4580122B2 (en) Detecting foreign matter in liquid
JPH04118546A (en) Bottle inspection device
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JPH04216445A (en) Device for inspecting bottle
JP2005257492A (en) Container foreign matter detection device
JP3986534B2 (en) Empty bottle inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees