[go: up one dir, main page]

JP2004028930A - Container foreign matter detecting device and container foreign matter detecting method - Google Patents

Container foreign matter detecting device and container foreign matter detecting method Download PDF

Info

Publication number
JP2004028930A
JP2004028930A JP2002189012A JP2002189012A JP2004028930A JP 2004028930 A JP2004028930 A JP 2004028930A JP 2002189012 A JP2002189012 A JP 2002189012A JP 2002189012 A JP2002189012 A JP 2002189012A JP 2004028930 A JP2004028930 A JP 2004028930A
Authority
JP
Japan
Prior art keywords
container
foreign matter
image
illumination light
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002189012A
Other languages
Japanese (ja)
Other versions
JP4048848B2 (en
Inventor
Terumi Ogawa
小川 輝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002189012A priority Critical patent/JP4048848B2/en
Publication of JP2004028930A publication Critical patent/JP2004028930A/en
Application granted granted Critical
Publication of JP4048848B2 publication Critical patent/JP4048848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】容器の形状からくる光の屈折や反射などによって発生する光量の不均一な分布による映像内明暗差を抑制し、容器内部に混入した異物を安定的に正しく検出することができる容器内異物検出装置および容器内異物検出方法を提供することである。
【解決手段】液体が封入された透明な容器3に照明光を照射し、撮像手段2で得た容器3の映像から容器内の異物を検出する容器内異物検出装置であり、容器3の蓋側に照明光を照射する光源1を配置し、容器3の底部側に撮像手段2を配置してある。
【選択図】 図1
Kind Code: A1 An inside of a container capable of suppressing a light-dark difference in an image due to an uneven distribution of the amount of light generated due to refraction or reflection of light coming from the shape of the container, and stably and correctly detecting foreign matter mixed in the container. It is an object of the present invention to provide a foreign matter detection device and a method for detecting foreign matter in a container.
Kind Code: A1 A container foreign object detection device for irradiating a transparent container 3 in which liquid is enclosed with illumination light and detecting a foreign object in the container from an image of the container 3 obtained by an image pickup means 2. The light source 1 for irradiating the illumination light is arranged on the side, and the imaging means 2 is arranged on the bottom side of the container 3.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内に混入した異物を検出する容器内異物検出装置および容器内異物検出方法に関するものである。
【0002】
【従来の技術】
飲料水などを封止した容器内へ混入する異物の主たるものは、容器を成形製作する段階での容器材料の破片とか内容物の液体を充填する装置の部品や部品破片である。容器内に異物が混入することは殆ど発生しないが、人体への悪影響の可能性があることから、発生頻度に関わらず確実に除去することが求められる。
【0003】
従来の全数検査としては人の目視に頼ったものであるが、このとき特に検出が難しく存在状態が最も多いのが沈澱異物である。これは、容器成形の都合から底部では厚みが変化し段差もあることから、容器底部自体が複雑な形状のレンズのごとくなっているためである。
【0004】
人の目視に代えて、液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内に混入した異物を検出する従来技術として、特開平7−181145号公報に記載のものがある。
【0005】
この従来技術は透明容器から光透過法で映像を得るもので、容器形状が原因である光の屈折や反射によって発生する光量の不均一な分布による明暗を無くし、内部の異物を画像処理で抽出できるように光学的補正素子を光照射系内に組み込んでいる。
【0006】
その光学的補正素子としては、容器3の蓋側に撮像カメラ2aを配置し底部側に照明光光源1aを配置した光照射系について、図17に示すように気体より大きく容器材料と同程度の光学的密度が大きい光透過性物体からなる光学的補正素子7aを容器3の底部に取り付けたり、図18に示すように光学的補正液体7bを容器3の底部に介在させたりしている。
【0007】
【発明が解決しようとする課題】
しかしながら、図17に示す例においては、容器3と雌型状の光学的補正素子7aの密着性が問題となる。隙間が仮に1(μm)発生すれば隙間部分における気体層で光屈折が発生し、期待する効果は小さくなる。容器表面には、容器製造工程上での切断によって生じる形状の異なる突起や搬送時の表面傷あるいは印刷文字などが多数あり、容器毎に異なる数(μm)〜数10(μm)の微小な表面凹凸が存在し、隙間の発生原因となっている。不確定に発生する表面凹凸に対し雌型の光学的補正素子7aを個別に準備できず、多くとも数種類程度であることから、容器毎に隙間零となる完全密着は困難である。
【0008】
容器と光学的補正素子とを機械的に圧縮し隙間を解消しようとしても、軽量化や材料使用量低減の面から容器は極力厚みを小さくするように成形製作されており、容器の強度を考慮した圧縮力の限界があるため、圧縮による完全密着も困難である。
【0009】
図18に示す例においては、光学的補正液体中や容器外表面に微小な気泡が形成され光学的外乱となることがあり、外乱処理の手法が新たに加わることによる検査時間の増大、また検査精度の安定性低下を招いてしまう。食品分野や医療分野で使われる容器については、光学的補正液体7bの衛生的管理も必要で装置運用コストも増大する。
【0010】
またエネルギが高く極端に短い波長で透過時の直線性が高いエックス線方式の例では、通常異物と容器が持つエックス線透過率が同程度であるため、金属以外の異物の抽出が困難である。
【0011】
それゆえ本発明の目的は、容器の形状からくる光の屈折や反射などによって発生する光量の不均一な分布による映像内明暗差を抑制し、容器内部に混入した異物を安定的に正しく検出することができる容器内異物検出装置および容器内異物検出方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成する本発明装置の特徴とするところは、液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出装置において、該容器の蓋側に照明光を照射する光源を配置し、該容器の底部側に撮像手段を配置したことにある。
【0013】
また、上記の目的を達成する本発明方法の特徴とするところは液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出方法において、撮像手段における輝度限界を越えない照明光の光量における第1の映像と撮像手段における輝度限界を越える照明光の光量における第二の映像を得て、第二の映像に設定する任意の閾値を越えない輝度を持つ物体の画像を異物として検出することにある。
【0014】
【発明の実施の形態】
以下、図に示す実施形態に基づいて、本発明を説明する。
【0015】
図1乃至図3は第一の実施形態を示しており、透明なPET製の容器3は搬送コンベア11上を順次連続して搬送される。搬送コンベア11の容器搭載部33は、透明アクリル材料を使用している。他に塩化ビニールやガラス等の透明で化学的機械的に強い材料でも良い。容器3には、主に薬品や飲料である液体の内容物が既に充填されており、さらに容器蓋4で封止されている。
【0016】
異物検出はこの容器蓋4で封止された直後に実施する。通常、異物検出を実施する工程では容器表面に光学的障害となる印刷物などは存在せず、異物検出において良品となった容器に対してのみ印刷物などを貼る場合が多い。また、本実施形態で対象とする容器と内容物(容器内に封入してある液体)はともに透明なものであるが、無色透明に限らず、有色透明、また一般の環境光では不透明とされる場合であっても、光透過の度合いに応じて異物検出の対象とすることができる。
【0017】
異物混入が確認された容器3は容器搬送コンベア11上から取り除くか、後工程において排出するように容器3の目立つ位置に目印となる不良識別マークを付加しておく。
【0018】
搬送コンベア11上の異物検査位置12では、ハロゲンランプを持つ照明光源6からの光をライトガイド5を経由して照明光照射部(照明光照射手段)1から容器3の上部に照射する。照明光源6としてはハロゲンランプの他に蛍光燈,LED,EL,白熱灯,メタルハライドランプ,赤外光ランプ,紫外光ランプなどの中から選択して使う。
【0019】
ライトガイド5の内部は数百本程度の光ファイバを束ねた状態であり、照明光照射部1で光ファイバを分け、各光ファイバの先端を直下を向けてリング状に固定されている。光ファイバの先端では光は一定の広がり角度を持つため、図2に示すごとく照明光照射部1と距離が大きくなるに従い、リング状から徐々に円状の透過照明光10となる。このとき、照明光照射部1では光ファイバの先端がリング状配置であることから、不透明な材料の場合もある容器蓋4の影を容器の底側に投影することはなく、異物検出における障害とはならない。容器蓋4の影が容器の底側に投影される影響を一層避けるために、照明光照射部1におけるリング状配置直径は容器蓋4より大きくしておくことが良い。
【0020】
搬送コンベア11の下方には、容器搭載個所33を通して容器3を撮像する撮像カメラ(撮像手段)2を配置してある。この実施形態では、容器3は底が容器搭載個所33に接しており、容器蓋4側上に照明光照射部1を配置している。
【0021】
搬送コンベア11の上では対象とする容器3が異物検出位置12に到着したことを容器有無検知センサ13で検知する。容器有無検知センサ13の種類としては図示する反射光式のほかにも、透過光式、超音波式を用いても良い。
【0022】
容器有無検知センサ13における検知結果は、図3の検出装置制御部30に示すI/Oインタフェース23を介して主演算器19で把握し、シャッタ信号制御部16及び撮像カメラコントローラ15により撮像カメラ2のシャッタ信号に反映する。シャッタ信号に基づいて撮像カメラ2で容器3の映像を撮像し、撮像カメラコントローラ15からカメラインターフェース17を介して画像処理を行なう画像情報処理部20の記憶装置に一旦蓄積し、プログラム上で異物を抽出する処理を行なう。撮像画像や撮像画像に対して既に処理を施した映像は画像処理モニタ18に表示する。また、装置の起動、停止、エラーは操作スイッチ31や表示ランプ32で管理し、これらの管理や映像の画像処理を含めた装置全体の稼動状況管理を主演算器19と主記憶部21で担っている。この装置全体の稼動状況はモニタ22に表示する。
【0023】
図1に戻って、異物検査位置12やその周囲は遮光カバー34で囲み、容器3および撮像カメラ2への光学的外乱となる周囲からの光を遮断し、安定した異物の検出を行なうようにしている。
【0024】
図4は容器3に混入にした異物8の状態を示している。前述のように一番多いのが底部3aに沈澱した異物8aであり、次に多いのが液面に浮上した異物8bと液中に浮遊する異物8cである。
【0025】
以下、沈澱異物8aの検出について、説明する。
図5は、沈澱異物8aを撮像カメラ2で得た映像の一例を示している。
図5において、白地の略円形は容器3の輪郭を示し、その輪郭内において実線円で囲んだ9は沈澱異物(物体)8aの影(画像)であり、その他の薄墨の個所は容器3の形状に由来して照射光が散乱し光量が低下した暗部領域(画像)である。しかしながら、容器蓋4の影はなく、沈澱異物8aを明確に捉えることができている。異物の影9と暗部領域は、形状で区別できる。
【0026】
次に画像処理により沈澱異物8aの影9をより明確に把握する第二の実施形態について説明する。
この実施形態は、照明光照射部1で出力を変えて、少なくとも2回映像を得るものである。具体的には、光量を増大させ、撮像カメラ2にとっては輝度が高くて映像が白くなってしまうハレーション現象を積極的に発生させる。
【0027】
図5の例で、I−I線に沿った異物が存在する位置での輝度分布を図6(a)に示す。
図6(a)のI−I線での輝度分布は、通常の照明では図6(a)のごとくなり、異物箇所で輝度が小さくなるのみならず、容器底部3aの形状に由来する暗部発生のため異物以外の箇所でも輝度が小さくなっている。このことは、一定の輝度閾値で映像の濃淡を区切った二値化画像、または濃淡画像によるパターンマッチング処理において、本来の異物画像9以外の暗部も異物と認識してしまい、誤った検出結果となってしまう。
【0028】
そこで、照明光照射部1の出力を大きくすることで、図7に示す映像を得る。
このとき、照明光照射部1の出力は、容器底部3aでの輝度が撮像カメラ2の感度限界を超える値となるような照明光源1の出力値としておく。すると、I−I線での輝度分布は図6(b)のごとく撮像カメラ2の感度限界を超えた飽和状態となる。
【0029】
図7において、異物の影(画像)は照明光が異物で遮られるため輝度は小さいままである。しかし、図6(a)で現れていた容器底部3aの形状に由来する暗部領域(影)の輝度は、本実施形態においては輝度が向上し閾値を超えて暗部領域は消えてしまう。この状態における輝度の閾値で画像の濃淡を区切った二値化画像による処理をする。
【0030】
この時の輝度閾値は、容器形状,液体種類,異物種類などによって、事前に適切な値を導き出しておく。閾値以上の輝度の部分を白色、閾値未満の輝度の部分を黒色で示した二値化画像を図8に示す。図8の黒色物体9bが検出異物である。
異物以外の輝度値に多少の大小があっても、すべて閾値以上であり異物個所での輝度値とは無関係となることから、容器底部3aの形状に由来する暗部の影響を見かけ上無くし、異物8を確実に検出することができる。
【0031】
最終的に認識する輝度は、撮像カメラ2とカメラインターフェース17の両方を介することになるので、いずれか一方で、輝度の感度限界を超えれば良い。
撮像カメラ2の方は感度限界を超えない範囲で、カメラインターフェース17側の調整で撮像データの輝度限度を超える設定としても全く同様の効果が発生する。また、特に撮像カメラ2の感度限界を超える場合は、撮像カメラ2の寿命を考慮する必要があり若干超える程度、具体的には5%から10%超える程度が望ましい。
【0032】
容器3の外径の違いに対応させる第三,第四の実施形態について説明する。
図9は第三の実施形態になる照明光照射部(照明光照射手段)1を示している。
この実施形態では、照明光照射部1における光ファイバ先端を同心円周状に中心から外側まで全体にわたって配置している。中心からの距離に応じて光ファイバ束をグループ分けしている。
【0033】
図9の例では、2列分を1グループとしてグループ分けし、ライトガイド5として一組みにしている。各グループ毎の光ファイバ束の他端は、異なる照明光源に接続している。図6では外側から第二のグループにつながる照明光源内ハロゲンランプの電源を入れて点灯し、残りのグループにつながる照明光源内ハロゲンランプの電源を切ってすべて消灯している例である。
【0034】
容器3の外径が大きい場合には外側の光ファイバグループのみから透過照明光10を照射させ、容器3の外径が小さい場合には内側の光ファイバグループから透過照明光10を照射させることで、搬送コンベア11上を搬送される容器3の外径の違いに対してライトガイドの付け替え無しに対応できる。なお、照明光源の点灯、消灯回数が照明光源の寿命に影響する場合は、個別に用意する照明光源を常時点灯させたままで、照明光源とライトガイドの間に別途シャッタを設置し、個別に入切することで同様の機能を満足させても良い。
【0035】
図10は、第四の実施形態を示している。
この実施形態では、径が異なる2個の照明光照射部(照明光照射手段)1a,1bを設けている。
搬送コンベア11上の異物検査位置12に、ハロゲンランプを持つ照明光源6a,6bからライトガイド5a,5bを介して各照明光照射部1a,1bから成る2組みを容器3上に設置し、透過照明光10を容器3の上部から照射する。ライトガイド5a,5bの内部はライトガイド5と同様に数百本程度の光ファイバを束ねた状態であり、照明光照射部1a,1bで光ファイバを分け、図2の構成と同様にしてあり、各透過照明光10は容器蓋4や照明光照射部1と重ならないように配置している。
【0036】
透過照明光10の照射,非照射は、照明光源6a,6b内の各ハロゲンランプ電源の入切、もしくは照明光照射部1a,1bとライトガイド5a,5bの間に設けた図示しないシャッタの入切によって選択できるようにしている。照明光照射部1a,1bが発する各透過照明光10の光量は、容器の形状に応じて同一か異なるものにする。
【0037】
これらの実施形態では、容器の大きさに対処して異物を検出するだけでなく、光量増加を行なう第二の実施形態にも利用して、異物を検出することができる。
【0038】
次に、光量増加により異物検出を行なう第五の実施形態について説明する。 搬送コンベア11上で、容器有無検知センサ13により容器3が異物検査位置12に到着した時点で、まず第一回の透過照明光照射を行ない、異物と容器形状からくる暗部を含めて画面内のすべてに対して一定の閾値以下を黒色物体として二値化し、その各黒色物体の面積を一旦記憶する。黒色物体は、異物と容器3の形状からくる暗部の両者を含んだもので、記憶した画像を図11(a)に示しており、多くの黒色物体からなる画像となる。
【0039】
次に光量を多くした第二回目の透過照明光照射をして、同様に画面内の全域に対して同じ閾値を用いてその閾値以下を黒色物体として、その各黒色物体の面積を記憶する。図11(b)に示すように二回目の映像では黒色物体が小さく、少ない画像となる。
【0040】
各映像における黒色物体は透過照明光の光量の違いから、第一回目の映像における黒色物体の画像は面積が大きく、第二回目の透過照明光照射では面積が小さく数も少なくなる。この場合の面積減少率は映像画面内の黒色物体毎に異なるが、光を透過する容器底部3aでの容器形状からくる暗部では面積減少率が大きくなるか、または完全に減少して消失する。一方、光を遮断する異物箇所では面積減少率が小さくなる。この面積減少率が小さい黒色物体の画像だけを異物と判定し、本来の異物として検出できる。
【0041】
図11の例では、面積減少率が20%以下を異物と判定した結果、図8の画像と同様となった。面積減少率は通常10%〜30%を判断基準とすれば良い。
【0042】
上記の実施形態は、搬送コンベア11の搬送速度を上げたことに合わせて撮像カメラ2のシャッタ速度を上げた場合に、感度限界を超える撮像カメラ2への光量が得られない状態での異物検出に有効であり、この実施形態はより小さなサイズの異物の検出を可能とし、検出精度を向上させたい場合にも有効である。
【0043】
透過照明光10の光量の段階的切り替えは、前述の同一位置における加算方式、切り替え方式、また異なる異物検査位置12での実施、のいずれでも良い。また、本実施形態では光量の差をニ段階としたが、容器形状からくる暗部と異物とが重なるために二値化画像において同一の黒色物体となる場合には、光量の差を三段階以上の多段階で実施して平均値で面積減少率と取り扱い、さらに黒色物体の数の変化も確認しながら比較することで、検出精度を一層向上できる。
【0044】
次に、異物か否かの画像処理による検出方法について述べる。
元の映像は図5と同様のもので、実際は同一の濃淡画像全体にわたって処理を施すが、図12では図5のI−I線に沿った位置近辺での輝度分布で説明する。
【0045】
この実施形態では同一の黒色物体(特定の画像)に対して異なる3つの輝度閾値を設定し、閾値以上の輝度の部分を白色、閾値未満の輝度の部分を黒色で示し、濃淡画像全体にわたって濃淡を区切った二値化画像を3つ得ることができる。3つの輝度閾値は、容器形状、液体種類、異物種類によって、事前に適切な値を導き出しておく。
【0046】
第一の閾値V1によって二値化した画像内の黒色物体毎に面積を算出する。図12における左側の拡大図に示す物体(特定の画像)では面積A1になり、図12における右側の拡大図に示す物体(特定の画像)では面積B1となる。同様に、第二、第三の閾値V2、V3によっても濃淡画像を二値化し、面積A2、B2、及びA3、B3を算出する。A1に対するA2の減少割合とA2に対するA3の減少割合の平均値Aと、B1に対するB2の減少割合とB2に対するB3の減少割合の平均値Bを算出する。これを、全黒色物体について算出し、その平均面積減少割合の大小で異物であるか否かを判定する。
【0047】
図12の例では、A=12%、B=48%の平均面積減少割合となり、面積減少割合が25%以下を異物と判定して抽出し、Aに相当する黒色物体が異物と判定できた。面積減少割合は通常10%〜30%を基準として、異物か否かを判断すれば良い。
【0048】
この実施形態では、同一の黒色物体の画像に対して複数の二値化画像を得ており、照明系の切り替えを行なっていないため、処理時間を抑え検出精度も向上できる。
【0049】
レンズを付加しより小さなサイズの異物の検出を可能とする本発明の第七の実施形態を図13に示す。
この実施形態では、図13に示すように、主にレンズ光軸に平行な光線のみを撮像カメラ2で捉えることができるテレセントリック光学系14を組み込んだ。
【0050】
テレセントリック光学系14は、図14に示すように、レンズ24の焦点位置25に絞り26を設置しており、レンズ24の光軸に沿った光線26やレンズ24の光軸に平行な光線27は焦点位置25を通るが、レンズ24の光軸に斜めに入射した光線28は焦点位置25を通らず絞り26に遮られしまう。
【0051】
その結果、光量を増加しても透過照明光10のうち異物外周付近から回り込んで入射する分が減少し異物輪郭付近の輝度の上昇を抑え、撮像カメラ2は等寸で撮像でき(図6において、L2=L1)、小さな異物サイズまで認識できる。
【0052】
なお、図14では物体側のみでなく像側にもレンズ24aを設置して、両側をテレセントリック光学系14とした。焦点位置25通過後の光線もレンズ24aの光軸に平行な光線となり、さらに小さな異物サイズまで認識できるようにしている。しかし、要求される異物サイズによってはレンズ24aの組み込みを無くし、レンズ24のみにすることができる。
【0053】
以上沈澱異物の検出について説明したが、次に液面に浮上している異物の検出をする第八の実施形態を図15で説明する。
図5における容器3内の液面部に浮上した異物8bのうち不透明な材質の容器蓋4付近に存在するものは、容器蓋4により遮られて検出できないことがある。
【0054】
この実施形態では、透明アクリル製容器搭載部33に開口33aを設けてあり、容器3を倒立させて、照明光照射部1を搬送コンベア11の下に配置し,倒立した容器3の下側から照射する。撮像カメラ2aは倒立した容器3の上側に設置し、第一の実施形態と同様に透過式照明光をライトガイド5を介して照射して撮像する。
【0055】
この場合、容器3の容器底部の形状が撮像上の障害となる場合は、容器3を鉛直倒立より角度をもって斜め倒立の姿勢で、障害を少ない状態にして撮像する。
これにより、液が容器蓋4付近まで満たされた容器3の液面に浮上する異物を検出することができる。
【0056】
次に、図5の容器3で液中に浮遊する異物8cを検出する第九の実施形態を図16で説明する。
中間に浮遊する異物8cは、撮像カメラまでの距離が大きくなりすぎ、また中間部の容器側壁内面に付着する状態の異物は図2の構成における撮像カメラでは検出不可となることから、図1や図15に示した撮像カメラ2で同時に撮像することは困難である。
【0057】
そこでこの実施形態では、図示を省略した図1や図15に示した照明光照射部と撮像カメラのほかに、照明光源からの光をライトガイド5を経由して照明光照射部(照明光照射手段)1bから容器3の側面に照射する。このとき、ライトガイド5は容器3の幅値に応じて1本または複数本設置する。撮像カメラ(撮像手段)2bは照明光照射部1bと容器3を挟む形に側面に配置しておく。また、容器3の側面形状が画像処理上の光学的外乱となる場合には、より散乱光を増すために、ライトガイド5と容器3との間に図示しない拡散板を設置しても良い。これにより、容器3内の中間部に浮遊する異物を検出することができる。
【0058】
さらに図示しないが、異物検出と容器3の外観検査、液面検査も同時に行なうことについて説明する。
同時検査は、異物検査、外観検査、液面検査の3者から任意に組み合わせて良い。元々撮像カメラ2を備えており、特別な部品を追加することなく外観不良および液面異常の検査が可能である。外観の不良とは、容器の変形,容器の成形製作時の厚み異常,突起発生による形状の異常,内容物の漏れなどが該当する。 液面の異常とは、液体充填不良,容器3の破損に伴う液体漏れ,容器3への大型異物混入に伴う見かけ容積の増加などの液体容量不良による液面の変動が該当する。
【0059】
外観の不良がある場合には、透過照明光10の光の進行を変えてしまうことから、正常な場合に比べて画像内での暗部が変わり、前述のすべての実施形態においても検査装置制御部30で特別な内部処理をしなくとも、検査装置の動作上は異物が混入しているかのごとく搬送コンベア11上から排出される。また、液面の異常を判断するには、図16に示す第九の実施形態における異物検査用光学系を流用し、主演算器19における画像情報記憶部20に蓄積した異物抽出用データを取り扱うプログラムで実行する。即ち、これは、液中の光吸収量の方が気体中の光吸収量よりも大きい性質から、輝度が線状で変換する位置を容器3に対する相対位置で算出することで判断する。
【0060】
第八,第九の実施形態でも第二や第六の実施形態における画像処理を利用することができ、第八の実施形態に第三や第四の実施形態における照明光照射部1を利用することができる。
【0061】
図2,図9,図10のリング状照明光照射部はリング状蛍光灯から直接照明光を照射するようにしてあってもよい。
【0062】
以上容器内異物検出装置について説明したが、本装置は容器検査装置に組み込んで実施することができ、異物を検出した容器は即刻生産ラインから除去するか、マーキングを施しておいて、後工程で除去するようにしても良い。
【0063】
【発明の効果】
以上説明したように本発明によれば、容器の形状からくる光の屈折や反射などによって発生する光量の不均一な分布による映像内明暗差を抑制し、容器内部に混入した異物を安定的に正しく検出することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である容器内異物検出装置を示す概略図である。
【図2】図1の実施形態における透過照明光の照射状況を示す図である。
【図3】図1の実施形態における検出装置制御部のブロック構成を示す図である。
【図4】容器内における異物の存在状況を示す図である。
【図5】図1の実施形態における撮像カメラで得た容器の映像を示す図である。
【図6】本発明の第二の実施形態である容器内異物検出方法に係わる図5におけるI−I線に沿った位置での映像の輝度を示す図である。
【図7】図5の映像について画像処理を施して異物の状況を示した図である。
【図8】図5の映像を得た容器について撮像カメラの感度を越える光量の照明光を照射して得た映像に対し画像処理を施して異物の状況を示した図である。
【図9】本発明の第三の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図10】本発明の第四の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図11】本発明の第五の実施形態である容器内異物検出方法に係わる撮像カメラで得た映像に対し画像処理を施して異物の状況を示した図である。
【図12】本発明の第六の実施形態である容器内異物検出方法に係わる図5におけるI−I線に沿った位置での映像の輝度を示す図である。
【図13】本発明の第七の実施形態である容器内異物検出装置における照明光照射部の構成を示す図である。
【図14】図13に示す照明光照射部での照明光照射状況を示す図である。
【図15】本発明の第八の実施形態である容器内異物検出装置の構成を示す図である。
【図16】本発明の第九の実施形態である容器内異物検出装置の構成を示す図である。
【図17】従来技術を示す図である。
【図18】従来技術を示す図である。
【符号の説明】
1,1a,1b…照明光照射部
2,2a,2b…撮像カメラ
3…容器
3a…容器底部
4…容器蓋
5,5a,5b…ライトガイド
6,6a,6b…照明光源
8、8a〜8c…異物
9,9a…異物画像
9b…二値化画像における検出異物
10,10a,10b…透過照明光
11…搬送コンベア
12…異物検査位置
13…容器有無検知センサ
15…撮像カメラコントローラ
16…シャッタ信号制御部
17…カメラインターフェース
18…画像処理モニタ
19…主演算器
20…画像情報記憶部
21…主記憶部
22…モニタ
23…I/Oインターフェース
30…検査装置制御部
31…操作スイッチ
32…表示ランプ
33…容器搭載部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for detecting foreign matter in a container and a method for detecting foreign matter in a container, which irradiates a transparent container filled with liquid with illumination light and detects foreign matter mixed into the container from an image of the container obtained by an imaging unit. It is.
[0002]
[Prior art]
The main foreign substances mixed into the container in which drinking water or the like is sealed are fragments of the container material at the stage of forming and manufacturing the container and parts of the device for filling the contents with the liquid and the component fragments. It is unlikely that foreign matter is mixed in the container, but since there is a possibility of adverse effects on the human body, it is required to reliably remove the foreign matter regardless of the frequency of occurrence.
[0003]
The conventional 100% inspection relies on human visual inspection. At this time, it is particularly difficult to detect, and most of the existing states are precipitated foreign substances. This is because the thickness of the bottom portion changes and there are steps at the bottom for the sake of molding the container, so that the container bottom itself is like a lens having a complicated shape.
[0004]
Japanese Patent Application Laid-Open No. 7-181145 discloses a conventional technique of irradiating a transparent container filled with liquid with illumination light instead of visual observation by a person and detecting foreign matter mixed into the container from an image of the container obtained by an imaging unit. Some are described in the gazette.
[0005]
This conventional technique obtains an image from a transparent container by the light transmission method, eliminates light and darkness due to uneven distribution of the amount of light generated by refraction and reflection of light caused by the shape of the container, and extracts foreign matter inside by image processing An optical correction element is incorporated in the light irradiation system so that it can be performed.
[0006]
As the optical correction element, a light irradiation system in which an imaging camera 2a is disposed on the lid side of the container 3 and an illumination light source 1a is disposed on the bottom side is larger than gas and substantially equal to the container material as shown in FIG. An optical correction element 7a made of a light-transmitting object having a large optical density is attached to the bottom of the container 3, or an optical correction liquid 7b is interposed at the bottom of the container 3 as shown in FIG.
[0007]
[Problems to be solved by the invention]
However, in the example shown in FIG. 17, the adhesion between the container 3 and the female optical correction element 7a poses a problem. If the gap is 1 (μm), light refraction occurs in the gas layer in the gap, and the expected effect is reduced. On the surface of the container, there are a large number of protrusions having different shapes caused by cutting in the container manufacturing process, surface scratches during transportation, printed characters, etc., and a small number of (μm) to several tens (μm) different surfaces for each container. Irregularities are present, causing gaps. Since the female optical correction element 7a cannot be individually prepared for surface irregularities that occur indefinitely, and there are at most several types, it is difficult to achieve perfect close contact with no gap between containers.
[0008]
Even if the gap between the container and the optical correction element is mechanically compressed to eliminate the gap, the container is molded and manufactured to minimize the thickness in order to reduce the weight and the amount of material used. Due to the limitation of the compression force, complete close contact by compression is also difficult.
[0009]
In the example shown in FIG. 18, minute air bubbles may be formed in the optical correction liquid or on the outer surface of the container, resulting in an optical disturbance, and an increase in the inspection time due to the addition of a disturbance processing method, and an increase in the inspection time. This leads to a decrease in accuracy stability. For containers used in the food and medical fields, sanitary management of the optical correction liquid 7b is necessary, and the operating cost of the apparatus increases.
[0010]
In the case of the X-ray method in which the energy is high and the linearity at the time of transmission is extremely short at a very short wavelength, the X-ray transmittance of the container is usually the same as that of the container.
[0011]
Therefore, an object of the present invention is to suppress a difference in brightness in an image due to an uneven distribution of the amount of light generated due to refraction or reflection of light coming from the shape of the container, and to stably correctly detect foreign matter mixed in the container. It is an object of the present invention to provide an apparatus for detecting foreign matter in a container and a method for detecting foreign matter in a container that can perform the method.
[0012]
[Means for Solving the Problems]
A feature of the apparatus of the present invention that achieves the above object is that a transparent container in which a liquid is sealed is irradiated with illumination light, and a foreign object in the container is detected from the image of the container obtained by the imaging means. In the detection device, a light source for irradiating illumination light is arranged on a lid side of the container, and an imaging unit is arranged on a bottom side of the container.
[0013]
A feature of the method of the present invention that achieves the above object is to illuminate a transparent container filled with a liquid with illumination light and detect foreign matter in the container from an image of the container obtained by the imaging means. In the foreign matter detection method, a first image at an amount of illumination light not exceeding the luminance limit in the imaging unit and a second image at an illumination light amount exceeding the luminance limit in the imaging unit are obtained and set as a second image. An object of the present invention is to detect an image of an object having a luminance not exceeding an arbitrary threshold value as a foreign substance.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on an embodiment shown in the drawings.
[0015]
1 to 3 show a first embodiment, in which a transparent PET container 3 is conveyed sequentially and continuously on a conveyor 11. The container mounting portion 33 of the transport conveyor 11 uses a transparent acrylic material. Alternatively, a transparent, chemically and mechanically strong material such as vinyl chloride or glass may be used. The container 3 is already filled with liquid contents, which are mainly medicines and beverages, and is further sealed with a container lid 4.
[0016]
The foreign substance detection is performed immediately after the container lid 4 is sealed. Normally, in the process of detecting foreign matter, there is no printed matter or the like on the surface of the container that becomes an optical obstacle, and the printed matter or the like is often applied only to a container that has become good in foreign matter detection. In addition, the container and the contents (the liquid sealed in the container) which are the objects of the present embodiment are both transparent, but are not limited to colorless and transparent, colored and transparent, and opaque in general environmental light. Even in such a case, the foreign matter can be detected according to the degree of light transmission.
[0017]
The container 3 in which foreign matter has been confirmed is removed from the container conveyor 11 or a defect identification mark serving as a mark is added to a prominent position of the container 3 so as to be discharged in a later process.
[0018]
At a foreign substance inspection position 12 on the conveyor 11, light from an illumination light source 6 having a halogen lamp is emitted from the illumination light irradiation unit (illumination light irradiation means) 1 to the upper part of the container 3 via the light guide 5. As the illumination light source 6, a fluorescent lamp, an LED, an EL, an incandescent lamp, a metal halide lamp, an infrared lamp, an ultraviolet lamp, or the like is used in addition to the halogen lamp.
[0019]
The inside of the light guide 5 is a state in which about hundreds of optical fibers are bundled, and the optical fibers are divided by the illumination light irradiating unit 1 and fixed in a ring shape with the tips of the optical fibers facing directly below. Since the light has a certain spread angle at the tip of the optical fiber, as shown in FIG. 2, as the distance from the illumination light irradiating section 1 increases, the transmitted illumination light 10 gradually changes from a ring shape to a circular shape. At this time, since the tip of the optical fiber is arranged in a ring shape in the illumination light irradiation unit 1, the shadow of the container lid 4, which may be made of an opaque material, is not projected on the bottom side of the container. Does not. In order to further avoid the influence of the shadow of the container lid 4 being projected on the bottom side of the container, the ring-shaped arrangement diameter in the illumination light irradiation unit 1 is preferably set to be larger than that of the container lid 4.
[0020]
An imaging camera (imaging means) 2 that images the container 3 through the container mounting location 33 is disposed below the conveyor 11. In this embodiment, the bottom of the container 3 is in contact with the container mounting location 33, and the illumination light irradiation unit 1 is arranged on the container lid 4 side.
[0021]
On the conveyor 11, the container presence / absence detection sensor 13 detects that the target container 3 has reached the foreign object detection position 12. As the type of the container presence / absence detection sensor 13, a transmitted light type or an ultrasonic type may be used in addition to the reflected light type shown in the figure.
[0022]
The detection result of the container presence / absence detection sensor 13 is grasped by the main arithmetic unit 19 via the I / O interface 23 shown in the detection device control unit 30 of FIG. Of the shutter signal. An image of the container 3 is captured by the imaging camera 2 based on the shutter signal, and is temporarily stored in the storage device of the image information processing unit 20 that performs image processing from the imaging camera controller 15 via the camera interface 17. Perform extraction processing. The captured image and the video that has already been processed are displayed on the image processing monitor 18. The start, stop, and error of the apparatus are managed by the operation switch 31 and the display lamp 32, and the main arithmetic unit 19 and the main storage unit 21 manage these operations and the operation status of the entire apparatus including image processing of video. ing. The operation status of the entire apparatus is displayed on the monitor 22.
[0023]
Returning to FIG. 1, the foreign matter inspection position 12 and its surroundings are surrounded by a light-shielding cover 34 so as to block light from the surroundings, which is an optical disturbance to the container 3 and the imaging camera 2, so that stable foreign matter detection can be performed. ing.
[0024]
FIG. 4 shows a state of the foreign matter 8 mixed in the container 3. As described above, the foreign matter 8a precipitated on the bottom 3a is the most common, and the foreign matter 8b floating on the liquid surface and the foreign matter 8c floating on the liquid are the next most.
[0025]
Hereinafter, detection of the precipitated foreign matter 8a will be described.
FIG. 5 shows an example of an image obtained by the imaging camera 2 of the precipitated foreign matter 8a.
In FIG. 5, a substantially circular white circle indicates the outline of the container 3. In the outline, 9 surrounded by a solid line is a shadow (image) of the precipitated foreign matter (object) 8 a, and the other light black portions are those of the container 3. This is a dark area (image) in which the irradiation light is scattered due to the shape and the amount of light is reduced. However, there is no shadow of the container lid 4, and the precipitated foreign matter 8a can be clearly captured. The shadow 9 of the foreign matter and the dark area can be distinguished by the shape.
[0026]
Next, a second embodiment in which the shadow 9 of the precipitated foreign matter 8a is more clearly grasped by image processing will be described.
In this embodiment, an image is obtained at least twice by changing the output in the illumination light irradiation unit 1. Specifically, the light amount is increased, and the halation phenomenon in which the brightness is high and the image becomes white for the imaging camera 2 is positively generated.
[0027]
FIG. 6A shows a luminance distribution at a position where a foreign substance exists along the line II in the example of FIG.
The luminance distribution along the line I-I in FIG. 6A is as shown in FIG. 6A under normal illumination, and not only the luminance decreases at the foreign matter portion, but also the occurrence of dark areas due to the shape of the container bottom 3a. As a result, the luminance is reduced even at locations other than the foreign matter. This means that, in a pattern matching process using a binarized image in which the shading of an image is divided by a fixed luminance threshold or a shading image, dark portions other than the original foreign image 9 are also recognized as foreign objects, resulting in an incorrect detection result. turn into.
[0028]
Therefore, the image shown in FIG. 7 is obtained by increasing the output of the illumination light irradiation unit 1.
At this time, the output of the illumination light irradiation unit 1 is set to an output value of the illumination light source 1 such that the luminance at the container bottom 3a exceeds the sensitivity limit of the imaging camera 2. Then, the luminance distribution on the II line becomes a saturated state exceeding the sensitivity limit of the imaging camera 2 as shown in FIG.
[0029]
In FIG. 7, the brightness of the shadow (image) of the foreign matter remains small because the illumination light is blocked by the foreign matter. However, in the present embodiment, the brightness of the dark area (shadow) derived from the shape of the container bottom 3a that has appeared in FIG. 6A is improved in the present embodiment, exceeds the threshold, and the dark area disappears. In this state, processing is performed using a binarized image in which shading of the image is divided by the threshold value of luminance.
[0030]
As the luminance threshold at this time, an appropriate value is derived in advance depending on the shape of the container, the type of liquid, the type of foreign matter, and the like. FIG. 8 shows a binarized image in which a portion having a luminance equal to or higher than the threshold is indicated by white, and a portion having a luminance lower than the threshold is indicated by black. The black object 9b in FIG. 8 is a detected foreign matter.
Even if the brightness values other than the foreign matter have some magnitude, they are all greater than or equal to the threshold value and have no relation to the brightness value at the foreign matter portion. Therefore, the influence of the dark part derived from the shape of the container bottom 3a is apparently eliminated, and the foreign matter is removed. 8 can be reliably detected.
[0031]
Since the finally recognized luminance is transmitted through both the imaging camera 2 and the camera interface 17, it is sufficient that one of the two exceeds the luminance sensitivity limit.
In the case of the imaging camera 2, even if the setting exceeds the luminance limit of the imaging data by adjustment on the camera interface 17 side within the range not exceeding the sensitivity limit, exactly the same effect occurs. In particular, when the sensitivity exceeds the sensitivity limit of the imaging camera 2, it is necessary to consider the life of the imaging camera 2, and it is desirable that the lifetime slightly exceeds, specifically, exceeds 5% to 10%.
[0032]
Third and fourth embodiments corresponding to differences in the outer diameter of the container 3 will be described.
FIG. 9 shows an illumination light irradiation unit (illumination light irradiation means) 1 according to the third embodiment.
In this embodiment, the tip of the optical fiber in the illumination light irradiating section 1 is arranged concentrically over the whole from the center to the outside. The optical fiber bundles are grouped according to the distance from the center.
[0033]
In the example of FIG. 9, two rows are grouped as one group, and the light guide 5 is formed as one set. The other end of the optical fiber bundle for each group is connected to a different illumination light source. FIG. 6 shows an example in which the halogen lamp in the illumination light source connected to the second group is turned on from the outside and turned on, and the halogen lamp in the illumination light source connected to the remaining groups is turned off and all are turned off.
[0034]
When the outer diameter of the container 3 is large, the transmitted illumination light 10 is emitted only from the outer optical fiber group, and when the outer diameter of the container 3 is small, the transmitted illumination light 10 is emitted from the inner optical fiber group. Therefore, it is possible to cope with a difference in the outer diameter of the container 3 conveyed on the conveyor 11 without replacing the light guide. If the number of times the illumination light source is turned on and off affects the life of the illumination light source, a separately provided shutter is installed between the illumination light source and the light guide while the individually prepared illumination light source is always turned on, and the illumination light source is individually turned on. The same function may be satisfied by turning off.
[0035]
FIG. 10 shows a fourth embodiment.
In this embodiment, two illumination light irradiation units (illumination light irradiation means) 1a and 1b having different diameters are provided.
At the foreign matter inspection position 12 on the conveyor 11, two sets of illumination light irradiation parts 1 a and 1 b are installed on the container 3 from the illumination light sources 6 a and 6 b having halogen lamps via the light guides 5 a and 5 b and transmitted. The illumination light 10 is irradiated from above the container 3. The inside of the light guides 5a and 5b is a state in which several hundreds of optical fibers are bundled like the light guide 5, and the optical fibers are divided by the illumination light irradiating units 1a and 1b, and the configuration is the same as that of FIG. The transmitted illumination light 10 is arranged so as not to overlap with the container lid 4 and the illumination light irradiation unit 1.
[0036]
Irradiation and non-irradiation of the transmitted illumination light 10 are performed by turning on / off the power of each halogen lamp in the illumination light sources 6a and 6b, or by turning on / off a shutter (not shown) provided between the illumination light irradiation units 1a and 1b and the light guides 5a and 5b. You can select by turning off. The amount of each transmitted illumination light 10 emitted from the illumination light irradiation units 1a and 1b is the same or different depending on the shape of the container.
[0037]
In these embodiments, the foreign matter can be detected not only by detecting the foreign matter according to the size of the container, but also by using the second embodiment in which the light amount is increased.
[0038]
Next, a fifth embodiment in which foreign matter detection is performed by increasing the amount of light will be described. When the container 3 arrives at the foreign object inspection position 12 by the container presence / absence detection sensor 13 on the conveyor 11, first, the first transmission illumination light irradiation is performed, and the foreign matter and the dark portion coming from the container shape are displayed on the screen. For all of them, a value below a certain threshold is binarized as a black object, and the area of each black object is temporarily stored. The black object includes both the foreign matter and the dark part coming from the shape of the container 3, and the stored image is shown in FIG. 11A, which is an image composed of many black objects.
[0039]
Next, the second transmitted illumination light irradiation with the increased light amount is performed, and the same threshold value is similarly used for the entire area of the screen, and the area below each threshold value is set as a black object, and the area of each black object is stored. As shown in FIG. 11B, in the second video, the black object is small and the image is small.
[0040]
Due to the difference in the amount of transmitted illumination light, the black object image in each image has a large area in the first image of the black object, and has a small area and a small number in the second transmission illumination light irradiation. In this case, the area reduction rate differs for each black object in the video screen, but the area reduction rate increases or disappears completely in a dark part coming from the shape of the container at the container bottom 3a that transmits light. On the other hand, the area reduction rate is small at a foreign matter portion that blocks light. Only the image of the black object having a small area reduction rate is determined as a foreign substance, and can be detected as an original foreign substance.
[0041]
In the example of FIG. 11, as a result of determining that the area reduction rate is 20% or less as a foreign substance, the result is the same as the image of FIG. The area reduction rate may be usually set to 10% to 30% as a criterion.
[0042]
In the above-described embodiment, when the shutter speed of the imaging camera 2 is increased in accordance with the increase of the transport speed of the transport conveyor 11, the foreign object detection in a state where the light amount to the imaging camera 2 exceeding the sensitivity limit cannot be obtained. This embodiment is also effective when it is possible to detect a foreign substance having a smaller size and to improve the detection accuracy.
[0043]
The stepwise switching of the light amount of the transmitted illumination light 10 may be any of the above-described addition method at the same position, the switching method, and execution at a different foreign substance inspection position 12. Further, in the present embodiment, the difference in the light amount is set to two stages. However, when the same black object is obtained in the binarized image because the dark portion coming from the container shape and the foreign matter overlap, the difference in the light amount is set to three or more stages. The detection accuracy can be further improved by comparing the area reduction rate with the average value and treating it while checking the change in the number of black objects.
[0044]
Next, a method for detecting whether or not there is a foreign substance by image processing will be described.
The original video is the same as that in FIG. 5, and the processing is actually performed on the entire same grayscale image. However, in FIG. 12, the luminance distribution near the position along the line II in FIG. 5 will be described.
[0045]
In this embodiment, three different brightness thresholds are set for the same black object (specific image), a portion having a brightness equal to or higher than the threshold is indicated by white, a portion having a brightness lower than the threshold is indicated by black, and the entire gray image is shaded. Can be obtained as three binarized images. Appropriate values are derived in advance for the three luminance thresholds according to the shape of the container, the type of liquid, and the type of foreign matter.
[0046]
The area is calculated for each black object in the image binarized by the first threshold V1. The object (specific image) shown in the enlarged view on the left side in FIG. 12 has the area A1, and the object (specific image) shown in the enlarged view on the right side in FIG. 12 has the area B1. Similarly, the grayscale image is binarized by the second and third threshold values V2 and V3, and the areas A2 and B2 and A3 and B3 are calculated. The average value A of the reduction ratio of A2 to A1 and the reduction ratio of A3 to A2, and the average value B of the reduction ratio of B2 to B1 and the reduction ratio of B3 to B2 are calculated. This is calculated for all black objects, and it is determined whether or not it is a foreign object according to the average area reduction ratio.
[0047]
In the example of FIG. 12, the average area reduction ratio is A = 12% and B = 48%, and the area reduction ratio of 25% or less is determined and extracted as a foreign substance, and the black object corresponding to A can be determined as a foreign substance. . The area reduction ratio is usually determined based on 10% to 30% to determine whether or not the foreign matter exists.
[0048]
In this embodiment, a plurality of binarized images are obtained for the image of the same black object, and since the illumination system is not switched, the processing time can be reduced and the detection accuracy can be improved.
[0049]
FIG. 13 shows a seventh embodiment of the present invention in which a lens is added to enable detection of a foreign substance having a smaller size.
In this embodiment, as shown in FIG. 13, a telecentric optical system 14 capable of mainly capturing only light rays parallel to the lens optical axis with the imaging camera 2 is incorporated.
[0050]
As shown in FIG. 14, the telecentric optical system 14 has an aperture 26 at a focal position 25 of a lens 24, and a light ray 26 along the optical axis of the lens 24 and a light ray 27 parallel to the optical axis of the lens 24 The light beam 28 passing through the focal position 25 but obliquely incident on the optical axis of the lens 24 is blocked by the stop 26 without passing through the focal position 25.
[0051]
As a result, even if the amount of light is increased, the amount of the transmitted illumination light 10 that enters around the outer periphery of the foreign matter and decreases is suppressed, the rise in luminance near the outline of the foreign matter is suppressed, and the imaging camera 2 can capture an image of the same size (FIG. 6). In L2 = L1), even a small foreign matter size can be recognized.
[0052]
In FIG. 14, the lens 24a is installed not only on the object side but also on the image side, and the telecentric optical system 14 is provided on both sides. The light beam after passing through the focal position 25 is also a light beam parallel to the optical axis of the lens 24a, so that even smaller foreign matter sizes can be recognized. However, depending on the required foreign matter size, the incorporation of the lens 24a can be eliminated and only the lens 24 can be used.
[0053]
The detection of precipitated foreign matter has been described above. Next, an eighth embodiment for detecting foreign matter floating on the liquid surface will be described with reference to FIG.
Among the foreign substances 8b floating on the liquid surface in the container 3 in FIG. 5, those existing near the container lid 4 made of an opaque material may not be detected because they are blocked by the container lid 4.
[0054]
In this embodiment, an opening 33a is provided in the transparent acrylic container mounting portion 33, the container 3 is inverted, the illumination light irradiating unit 1 is arranged below the transport conveyor 11, and from the lower side of the inverted container 3 Irradiate. The imaging camera 2a is installed above the inverted container 3 and irradiates with transmission illumination light via the light guide 5 to capture an image as in the first embodiment.
[0055]
In this case, when the shape of the container bottom of the container 3 becomes an obstacle in imaging, the container 3 is imaged in an oblique posture with a smaller angle than the vertical inversion and with less obstacles.
This makes it possible to detect a foreign substance floating on the liquid surface of the container 3 filled with the liquid up to the vicinity of the container lid 4.
[0056]
Next, a ninth embodiment for detecting a foreign substance 8c floating in the liquid in the container 3 of FIG. 5 will be described with reference to FIG.
The foreign matter 8c floating in the middle is too large in distance to the imaging camera, and the foreign matter attached to the inner surface of the container side wall in the intermediate part cannot be detected by the imaging camera in the configuration of FIG. It is difficult to simultaneously image with the imaging camera 2 shown in FIG.
[0057]
Therefore, in this embodiment, in addition to the illumination light irradiator and the imaging camera shown in FIGS. 1 and 15 which are not shown, light from an illumination light source is transmitted via a light guide 5 to the illumination light irradiator (illumination light Means) Irradiate the side of the container 3 from 1b. At this time, one or more light guides 5 are provided according to the width value of the container 3. The imaging camera (imaging means) 2b is arranged on the side surface so as to sandwich the illumination light irradiation unit 1b and the container 3. When the side surface shape of the container 3 causes optical disturbance in image processing, a diffuser (not shown) may be provided between the light guide 5 and the container 3 in order to further increase the scattered light. This makes it possible to detect a foreign substance floating in an intermediate portion in the container 3.
[0058]
Although not shown, a description will be given of the case where the foreign substance detection, the appearance inspection of the container 3 and the liquid level inspection are also performed simultaneously.
The simultaneous inspection may be arbitrarily combined from the three of the foreign substance inspection, the appearance inspection, and the liquid level inspection. Originally provided with the imaging camera 2, it is possible to inspect appearance defects and liquid level abnormalities without adding special parts. The poor appearance corresponds to deformation of the container, abnormal thickness during molding and manufacturing of the container, abnormal shape due to projections, leakage of contents, and the like. The abnormal liquid level corresponds to a liquid level fluctuation due to a liquid capacity defect such as a defective liquid filling, a liquid leak due to breakage of the container 3, and an increase in an apparent volume due to mixing of a large foreign substance into the container 3.
[0059]
In the case where there is a defect in appearance, since the progress of the light of the transmitted illumination light 10 is changed, the dark portion in the image is changed as compared with the normal case, and the inspection device control unit is also used in all the embodiments described above. Even if no special internal processing is performed at 30, the inspection apparatus is discharged from the transport conveyor 11 as if foreign matter was mixed in operation. Further, in order to determine the abnormality of the liquid level, the foreign matter inspection optical system according to the ninth embodiment shown in FIG. 16 is diverted, and the foreign matter extraction data accumulated in the image information storage unit 20 of the main arithmetic unit 19 is handled. Run programmatically. That is, this is determined by calculating the position where the luminance is linearly converted from the relative position with respect to the container 3 because the light absorption amount in the liquid is larger than the light absorption amount in the gas.
[0060]
The image processing in the second and sixth embodiments can be used in the eighth and ninth embodiments, and the illumination light irradiation unit 1 in the third and fourth embodiments is used in the eighth embodiment. be able to.
[0061]
The ring-shaped illumination light irradiating section in FIGS. 2, 9, and 10 may be configured to directly irradiate illumination light from a ring-shaped fluorescent lamp.
[0062]
Although the apparatus for detecting foreign matter in a container has been described above, the present apparatus can be implemented by being incorporated into a container inspection apparatus, and the container in which foreign matter is detected is immediately removed from the production line or marked, and used in a subsequent process. It may be removed.
[0063]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress a difference in brightness in an image due to an uneven distribution of the amount of light generated due to refraction or reflection of light coming from the shape of a container, and to stably remove foreign matter mixed in the container. It can be detected correctly.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an apparatus for detecting foreign matter in a container according to an embodiment of the present invention.
FIG. 2 is a diagram showing an irradiation state of transmitted illumination light in the embodiment of FIG.
FIG. 3 is a diagram showing a block configuration of a detection device control unit in the embodiment of FIG. 1;
FIG. 4 is a diagram showing the presence of foreign matter in a container.
FIG. 5 is a diagram showing an image of a container obtained by the imaging camera in the embodiment of FIG.
FIG. 6 is a diagram showing the luminance of an image at a position along the line II in FIG. 5 according to the method for detecting foreign matter in a container according to the second embodiment of the present invention.
FIG. 7 is a diagram showing a situation of foreign matter by performing image processing on the video of FIG. 5;
8 is a diagram showing a situation of a foreign substance by performing image processing on an image obtained by irradiating a container having obtained the image of FIG. 5 with an amount of illumination light exceeding the sensitivity of an imaging camera and performing image processing.
FIG. 9 is a diagram illustrating a configuration of an illumination light irradiation unit in a foreign object detection device in a container according to a third embodiment of the present invention.
FIG. 10 is a diagram showing a configuration of an illuminating light irradiating unit in a foreign object detection device in a container according to a fourth embodiment of the present invention.
FIG. 11 is a diagram showing a state of foreign matter by performing image processing on an image obtained by an imaging camera according to a foreign matter detection method in a container according to a fifth embodiment of the present invention.
FIG. 12 is a diagram showing the luminance of an image at a position along the line II in FIG. 5 relating to the method for detecting foreign matter in a container according to the sixth embodiment of the present invention.
FIG. 13 is a diagram illustrating a configuration of an illumination light irradiation unit in a foreign object detection device in a container according to a seventh embodiment of the present invention.
FIG. 14 is a diagram showing an illumination light irradiation state in an illumination light irradiation unit shown in FIG.
FIG. 15 is a diagram showing a configuration of a foreign matter detection device in a container according to an eighth embodiment of the present invention.
FIG. 16 is a view showing a configuration of a container foreign matter detection device according to a ninth embodiment of the present invention.
FIG. 17 is a diagram showing a conventional technique.
FIG. 18 is a diagram showing a conventional technique.
[Explanation of symbols]
1, 1a, 1b: illumination light irradiation unit
2, 2a, 2b ... imaging camera
3. Container
3a: Container bottom
4: Container lid
5,5a, 5b ... light guide
6,6a, 6b ... Illumination light source
8, 8a to 8c: Foreign matter
9, 9a ... Foreign matter image
9b: Detected foreign matter in the binarized image
10, 10a, 10b ... transmitted illumination light
11 ... conveyor
12: Foreign matter inspection position
13: Container presence detection sensor
15 ... Imaging camera controller
16 Shutter signal control unit
17… Camera interface
18 ... Image processing monitor
19 ... Main arithmetic unit
20: Image information storage unit
21: Main storage unit
22 ... Monitor
23 ... I / O interface
30 ... Inspection device control unit
31 ... Operation switch
32… Indicator lamp
33 ... Container mounting part

Claims (9)

液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出装置において、
該容器の蓋側に照明光を照射する照明光照射手段を配置し、該容器の底部側に撮像手段を配置してあることを特徴とする容器内異物検出装置。
In a container foreign matter detection device that illuminates a transparent container filled with liquid with illumination light and detects foreign matter in the container from the image of the container obtained by the imaging means,
An apparatus for detecting foreign matter in a container, comprising: illuminating light irradiating means for irradiating illuminating light on the lid side of the container; and imaging means on the bottom side of the container.
上記請求項1に記載の容器内異物検出装置において、照明光照射手段は撮像手段における撮像素子の感度を越えるに充分な光量を照射することができ、その光量を制御する手段があることを特徴とする容器内異物検出装置。2. The apparatus for detecting foreign matter in a container according to claim 1, wherein the illuminating light irradiating means is capable of irradiating an amount of light sufficient to exceed the sensitivity of the imaging device in the imaging means, and has means for controlling the amount of light. Device for detecting foreign matter in a container. 上記請求項1に記載の容器内異物検出装置において、照明光照射手段はリング状であり、該容器における蓋の外周側から照明光を照射するものであることを特徴とする容器内異物検出装置。2. The foreign matter detecting device according to claim 1, wherein the illuminating light irradiating means has a ring shape and irradiates the illuminating light from an outer peripheral side of a lid of the container. . 上記請求項1に記載の容器内異物検出装置において、照明光照射手段は同心でリング状に配置した複数の照射ユニットからなり、各照射ユニットにおける照射の点滅を切り替る手段があることを特徴とする容器内異物検出装置。2. The apparatus for detecting foreign matter in a container according to claim 1, wherein the illuminating light irradiating means includes a plurality of irradiating units arranged concentrically and in a ring shape, and has a means for switching blinking of irradiation in each irradiating unit. Device for detecting foreign matter in containers. 上記請求項1に記載の容器内異物検出装置において、さらに、該照明光照射手段から該撮像手段に至る光線を平行に揃える光学手段を設けてあることを特徴とする容器内異物検出装置。2. The apparatus for detecting foreign matter in a container according to claim 1, further comprising an optical unit for aligning light beams from the illumination light irradiation unit to the imaging unit in parallel. 上記請求項1に記載の容器内異物検出装置において、さらに、透過照明光を該容器の側方から照射する照明光側方照射手段と、該容器を該照明光側方照射手段とで挟んだ形で該容器の側方で撮像する撮像手段を設けたことを特徴とする容器内異物検出装置。2. The container foreign matter detection device according to claim 1, further comprising: an illumination light side irradiating means for irradiating transmitted illumination light from a side of the container; and the container sandwiched between the illumination light side irradiating means. An apparatus for detecting foreign matter in a container, further comprising an image pickup means for picking up an image on a side of the container. 液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出方法において、
撮像手段における輝度限界を越えない照明光の光量における第1の映像と撮像手段における輝度限界を越える照明光の光量における第二の映像を得て、第二の映像に設定する任意の閾値を越えない輝度を持つ物体の画像を異物として検出することを特徴とする容器内異物検出方法。
In a container foreign matter detection method of irradiating a transparent container filled with liquid with illumination light and detecting foreign matter in the container from an image of the container obtained by the imaging means,
A first image at an amount of illumination light not exceeding the luminance limit of the imaging means and a second image at an amount of illumination light exceeding the luminance limit at the imaging means are obtained, and an arbitrary threshold set for the second image is obtained. A method for detecting foreign matter in a container, comprising detecting an image of an object having no brightness as a foreign matter.
液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出方法において、
撮像手段における輝度限界を越えない照明光の光量における第一の映像と撮像手段における輝度限界を越える照明光の光量における第二の映像を得て、両映像における同一物体の画像の面積減少率を得て、任意の面積減少率以下のものを異物として検出することを特徴とする容器内異物検出方法。
In a container foreign matter detection method of irradiating a transparent container filled with liquid with illumination light and detecting foreign matter in the container from an image of the container obtained by the imaging means,
Obtain a first image at an amount of illumination light not exceeding the luminance limit in the imaging means and a second image at an illumination light amount exceeding the luminance limit in the imaging means, and determine the area reduction rate of the image of the same object in both images. A method for detecting foreign matter in a container, wherein a foreign matter having an area reduction rate equal to or less than an arbitrary area reduction rate is detected.
液体が封入された透明な容器に照明光を照射し、撮像手段で得た容器の映像から容器内の異物を検出する容器内異物検出方法において、
撮像手段における輝度限界を越えない照明光の光量における映像について輝度に関して任意の閾値を複数設定し、同一物体の画像について各閾値での面積を得て、その画像の面積減少率が任意の面積減少率以下のものを異物として検出することを特徴とする容器内異物検出方法。
In a container foreign matter detection method of irradiating a transparent container filled with liquid with illumination light and detecting foreign matter in the container from an image of the container obtained by the imaging means,
A plurality of arbitrary thresholds are set with respect to luminance for an image at an amount of illumination light that does not exceed the luminance limit in the imaging means, and an area at each threshold is obtained for an image of the same object, and the area reduction rate of the image is an arbitrary area reduction. A method for detecting foreign matter in a container, comprising detecting foreign matter having a rate equal to or less than the rate.
JP2002189012A 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container Expired - Fee Related JP4048848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189012A JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189012A JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Publications (2)

Publication Number Publication Date
JP2004028930A true JP2004028930A (en) 2004-01-29
JP4048848B2 JP4048848B2 (en) 2008-02-20

Family

ID=31183542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189012A Expired - Fee Related JP4048848B2 (en) 2002-06-28 2002-06-28 Foreign object detection device in container and foreign object detection method in container

Country Status (1)

Country Link
JP (1) JP4048848B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071392A (en) * 2004-09-01 2006-03-16 Hitachi Industries Co Ltd Container foreign matter detection device
JP2006284368A (en) * 2005-03-31 2006-10-19 Kirin Techno-System Corp Inspection device
JP2006292598A (en) * 2005-04-13 2006-10-26 Hitachi Industries Co Ltd Container foreign matter detection method and apparatus
JP2007064905A (en) * 2005-09-02 2007-03-15 Hitachi Plant Technologies Ltd Container foreign matter detection method and apparatus
JP2009069099A (en) * 2007-09-18 2009-04-02 Hitachi Information & Control Solutions Ltd Foreign object detection device and foreign object detection method in container
WO2009041016A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Inspection apparatus and inspection method
JP2011033641A (en) * 2010-11-19 2011-02-17 Kirin Techno-System Co Ltd Inspection device
JP2012250016A (en) * 2011-03-25 2012-12-20 Yuyama Manufacturing Co Ltd Co-infusion device
JP2014500955A (en) * 2010-11-16 2014-01-16 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for detecting bubbles on a liquid level in a container
JP2016197131A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
JP2017167722A (en) * 2016-03-15 2017-09-21 グローリー株式会社 Money handling device
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
JP2020128941A (en) * 2019-02-08 2020-08-27 株式会社大道産業 Device, method, and program for detecting foreign matter
JP2021018082A (en) * 2019-07-17 2021-02-15 株式会社大道産業 Detection device of foreign matter
EA038813B1 (en) * 2012-08-20 2021-10-22 Амген Инк. Methods and apparatus for nondestructive detection of undissolved particles in a fluid
JP2024144813A (en) * 2023-03-31 2024-10-15 Necプラットフォームズ株式会社 Inspection device, parameter setting method, and parameter setting program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2002196C2 (en) * 2008-11-11 2010-05-17 Avantium Int Bv SAMPLE ANALYZES APPARATUS AND A METHOD OR ANALYZING A SAMPLE.

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071392A (en) * 2004-09-01 2006-03-16 Hitachi Industries Co Ltd Container foreign matter detection device
JP2006284368A (en) * 2005-03-31 2006-10-19 Kirin Techno-System Corp Inspection device
JP2006292598A (en) * 2005-04-13 2006-10-26 Hitachi Industries Co Ltd Container foreign matter detection method and apparatus
JP2007064905A (en) * 2005-09-02 2007-03-15 Hitachi Plant Technologies Ltd Container foreign matter detection method and apparatus
JP2009069099A (en) * 2007-09-18 2009-04-02 Hitachi Information & Control Solutions Ltd Foreign object detection device and foreign object detection method in container
WO2009041016A1 (en) * 2007-09-28 2009-04-02 Panasonic Corporation Inspection apparatus and inspection method
JP4809481B2 (en) * 2007-09-28 2011-11-09 パナソニック株式会社 Inspection apparatus and inspection method
US8285028B2 (en) 2007-09-28 2012-10-09 Panasonic Corporation Inspection apparatus and inspection method
JP2014500955A (en) * 2010-11-16 2014-01-16 エフ.ホフマン−ラ ロシュ アーゲー Method and apparatus for detecting bubbles on a liquid level in a container
JP2011033641A (en) * 2010-11-19 2011-02-17 Kirin Techno-System Co Ltd Inspection device
JP2012250016A (en) * 2011-03-25 2012-12-20 Yuyama Manufacturing Co Ltd Co-infusion device
US9892523B2 (en) 2011-08-29 2018-02-13 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
TWI708052B (en) * 2011-08-29 2020-10-21 美商安美基公司 Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11803983B2 (en) 2011-08-29 2023-10-31 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2017201335A (en) * 2011-08-29 2017-11-09 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US9842408B2 (en) 2011-08-29 2017-12-12 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197131A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US9922429B2 (en) 2011-08-29 2018-03-20 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11501458B2 (en) 2011-08-29 2022-11-15 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
KR20190132579A (en) * 2011-08-29 2019-11-27 암젠 인크 Methods and apparati for nondestructive detection of undissolved particles in a fluid
US10832433B2 (en) 2011-08-29 2020-11-10 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
KR102168983B1 (en) 2011-08-29 2020-10-22 암젠 인크 Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197130A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Method and apparatus for non-destructive detection of non-dissolved particles in a fluid
EA038813B1 (en) * 2012-08-20 2021-10-22 Амген Инк. Methods and apparatus for nondestructive detection of undissolved particles in a fluid
JP2017167722A (en) * 2016-03-15 2017-09-21 グローリー株式会社 Money handling device
US10539773B2 (en) 2017-02-10 2020-01-21 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10962756B2 (en) 2017-02-10 2021-03-30 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
JP2020128941A (en) * 2019-02-08 2020-08-27 株式会社大道産業 Device, method, and program for detecting foreign matter
JP7248284B2 (en) 2019-02-08 2023-03-29 株式会社大道産業 Foreign matter detection device, foreign matter detection method, and foreign matter detection program
JP2021018082A (en) * 2019-07-17 2021-02-15 株式会社大道産業 Detection device of foreign matter
JP2024144813A (en) * 2023-03-31 2024-10-15 Necプラットフォームズ株式会社 Inspection device, parameter setting method, and parameter setting program

Also Published As

Publication number Publication date
JP4048848B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4048848B2 (en) Foreign object detection device in container and foreign object detection method in container
JP6199042B2 (en) Container inspection equipment
CA2146094C (en) Inspection of translucent containers
JP4154523B2 (en) Container foreign matter detection device
JP2008304487A (en) Machine for testing contour and barrier of bottle
US10922810B2 (en) Automated visual inspection for visible particulate matter in empty flexible containers
JPH11337504A (en) Inspection method and apparatus for discriminating defects in glass sheet
JP6409178B2 (en) Container inspection method and inspection apparatus
JP4523474B2 (en) Defect inspection device and PTP packaging machine
JP2017166903A (en) Defect inspection device and defect inspection method
JP2010091530A (en) Method and apparatus for inspecting foreign substance
KR20060053847A (en) Defect inspection method of glass plate and device
KR20180136421A (en) System and method for defect detection
JP4580122B2 (en) Detecting foreign matter in liquid
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
JPH04118546A (en) bottle inspection equipment
JP5893512B2 (en) Inspection apparatus and inspection method
JP4274006B2 (en) Container foreign matter detection device
JP2002131239A (en) Foreign matter inspection device and foreign matter inspection method
JPH04216445A (en) Device for inspecting bottle
JP4429177B2 (en) Transparent container defect inspection method and apparatus
JP2012137324A (en) Method and apparatus for inspecting foreign substances floating on liquid surface
JP3559392B2 (en) Optical member inspection device
JP2004061452A (en) Foreign matter inspection device and its method
JP2013130489A (en) Illumination device and inspection device of glass bottle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A521 Written amendment

Effective date: 20040811

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A131 Notification of reasons for refusal

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

RD02 Notification of acceptance of power of attorney

Effective date: 20070222

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

RD04 Notification of resignation of power of attorney

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Effective date: 20071119

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101207

LAPS Cancellation because of no payment of annual fees