JP4041194B2 - Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding - Google Patents
Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding Download PDFInfo
- Publication number
- JP4041194B2 JP4041194B2 JP29137797A JP29137797A JP4041194B2 JP 4041194 B2 JP4041194 B2 JP 4041194B2 JP 29137797 A JP29137797 A JP 29137797A JP 29137797 A JP29137797 A JP 29137797A JP 4041194 B2 JP4041194 B2 JP 4041194B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- yield ratio
- low temperature
- low
- stress corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐アンモニア応力腐食割れ性および大入熱溶接における熱影響部の靱性に優れた低降伏比低温用鋼板に関し、詳細にはアンモニアやLPG等の種々のガスを積載する多目的ガス船の低温用圧力タンクに使用可能な低温用鋼板(引張強さ400N/mm2 級以上)に関するものである。
【0002】
【従来の技術】
プロパンを輸送するLPG船の貯槽用低温圧力タンクには、高い低温靱性が要求されていることから、焼きならし型低温用鋼が採用されている。近年、開発された多目的ガス船は、LPGだけではなく、アンモニアやブチレン等を液体状態で積載することから、その低温圧力タンクに使用される鋼材には、下記▲1▼〜▲4▼の特性が要求されている。即ち、
▲1▼アンモニア応力腐食割れが発生しないこと、
▲2▼−55〜−65℃の低温域における靱性に優れていること、
▲3▼溶接工数の簡略化を目的とし、片面1パス溶接において50〜80kJ/cm程度の大入熱溶接を行っても、継手部の靱性が良好であること、
▲4▼降伏比(降伏点/引張強さ)が90%以下(望ましくは88%以下)であるという特性である。
【0003】
LPG船に用いられている従来の焼きならし型低温用鋼板(C量:0.1%程度)を、多目的ガス船の低温圧力タンクに用いると、20kJ/cm以下の小入熱で溶接を行っても、溶接時に急熱急冷を受けた熱影響部(Heat affected zone, 以下、HAZという)にアンモニアによる応力腐食割れが発生したり、また50kJ/cm以上の大入熱溶接を行うと上記HAZの靱性が大幅に低くなるという問題があった。この様に、アンモニアによる応力腐食割れが発生しやすく、HAZの靱性が劣化する理由は、上記焼きならし型低温用鋼板が、強度確保のために多量の合金元素を含有していることにある。
【0004】
近年、制御圧延とその後の加速冷却を組み合わせたTMCP(Thermo Mechanical Control Process) 技術が開発されたことにより、C量を0.07%程度までに制限し従来の焼きならし型鋼板に比べ合金元素量を低減しても、十分な強度を得ることができるようになり、低温用鋼の耐アンモニア応力腐食割れ性と大入熱溶接におけるHAZの靱性(以下、大入熱溶接HAZ靱性という)の向上を図ることが可能となってきたが、安定して上記▲1▼及び▲2▼の特性を満足するまでには至っておらず、予熱や後熱,溶接入熱量に関し緻密な溶接施工管理が行われてきた。
【0005】
また、降伏比が大きい場合には何らかの要因で応力がかかった際に変形するとすぐに破断してしまうことから、降伏比が小さいこと(引張強度に対して降伏点が低く、応力に降伏することにより応力を解放しその後破断しないこと)が求められているが、降伏比を90%以下(望ましくは88%以下)にする技術は確立されておらず、製造後の検査で選別するため多大の歩留り低下を招いていた。
【0006】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであり、引張強さが400N/mm2 級以上で、−60℃前後における低温靱性に優れた鋼板であって、アンモニア応力腐食割れが発生しない低温用鋼板の提供を第1の課題とし、更に50kJ/cm以上の大入熱溶接を行ってもHAZ靱性が良好な低温用鋼板の提供を第2の課題とし、しかも88%以下の低い降伏比を有する低温用鋼板の提供を第3の課題とするものである。
【0007】
【課題を解決するための手段】
上記第1の課題を解決した本発明の耐アンモニア応力腐食割れ性に優れた低温用鋼板とは、C含有量が0.06%以下であることを要旨とするものである。
【0008】
上記第2の課題を解決した本発明の耐アンモニア応力腐食割れ性および大入熱溶接HAZ靱性に優れた低温用鋼板とは、C含有量が0.06%以下であると共に、Ti:0.005〜0.020%、N:0.002〜0.005%を含有することを要旨とするものである。
【0009】
また上記第3の課題を解決した本発明の耐アンモニア応力腐食割れ性および大入熱溶接HAZ靱性に優れた低降伏比型低温用鋼板とは、フェライトを主体とし、フェライト粒界に存在するパーライトが層状に分散された層状パーライト組織[図1(a)参照]を有する低温用鋼板であって、C含有量が0.06%以下であり、Ti:0.005〜0.020%、N:0.002〜0.005%を含有すると共に、上記フェライトの平均粒径が5〜15μmで、且つ層状パーライトの層間隔[図1(b)のh]が30μm以下であることを要旨とする。
【0010】
尚、上記のいずれかの本発明鋼板を用いた溶接部であって、硬さがHv280以下の溶接部は、優れた耐アンモニア応力腐食割れ性を発揮する。
【0011】
本発明鋼板の成分組成としては、C:0.03〜0.06%、Si:0.05〜0.50%、Mn:1.0〜1.8%、Al:0.005〜0.08%、Ti:0.005〜0.020%、N:0.002〜0.005%を含有し、残部Feおよび不可避的不純物とする必要がある。
【0012】
さらに他の元素として、強度上昇を目的とし、
Cu:0.05〜1.0%、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%、
V :0.005〜0.10%、
Nb:0.005〜0.10%
よりなる群から選択される1種以上の元素を含有してもよい。
【0013】
また靱性の向上を目的として、
Ni:0.05〜1.0%
を含有しても良い。
【0014】
更に、HAZ靱性の向上を目的としてZr:0.003〜0.020%、B:0.0002〜0.0020%、Ca:0.001〜0.01%、Mg:0.001〜0.01%、REM(希土類元素;Ce,La,Nd):0.001〜0.01%よりなる群から選択される1種以上を含有してもよい。
【0015】
【発明の実施の形態】
本発明者らは、耐アンモニア応力腐食割れ性が発生しない低温用鋼板であって、50kJ/cm以上の大入熱溶接を行ってもHAZ靱性が良好であり、しかも88%以下の低い降伏比を有する低温用鋼板の開発を目的として、成分組成とミクロ組織に関して鋭意研究を重ねた。
【0016】
その過程において、本発明者らは、C量を0.06%以下にすることで、アンモニア応力腐食割れ(以下、アンモニアSCCということがある)の発生を確実に防止できると同時に、大入熱溶接HAZ靱性も大幅に向上するとの知見を得た。
【0017】
図2は、耐アンモニア応力腐食割れ性及び大入熱溶接HAZ靱性に及ぼすC量の影響を詳細に調査するため、表1に示す化学成分を有する鋼板を用いて、入熱量を種々変化させて溶接継手を作製し、これらの溶接継手について、表2に示す液化アンモニア応力腐食割れ促進試験(環境、応力を加速因子とした)及びJIS Z 3128の溶接継手衝撃試験を実施した結果である。
【0018】
【表1】
【0019】
【表2】
【0020】
図2から明らかな様に、C量を0.06%以下に制御することで、アンモニア応力腐食割れの発生を確実に防止できると同時に、入熱80kJ/cm程度の大入熱溶接HAZ靱性も大幅に向上することがわかった。尚、溶接HAZのアンモニア応力腐食割れを発生させない限界硬さが、Hv280以下であることは、上記の一連の実験の中で本発明者らが初めて突き止めた知見である。
【0021】
従って、本発明におけるC量は、耐アンモニア応力腐食割れ性と大入熱溶接HAZ靱性の確保のため0.06%を上限とし、引張強さ400N/mm2 級以上の母材強度を確保するためには少なくとも0.03%必要であることから、その下限を0.03%とした。
【0022】
一方、本発明者らがC:0.06%以下の低C鋼について引張特性を調査したところ、低C化は引張強さの大幅な低下とそれに伴う降伏比の上昇を招くという問題に直面した。合金化元素を添加することにより引張強さの上昇を図ることは可能である。しかしながら、降伏比を改善することはできなかった。そこで、C:0.06%以下の低C鋼の低降伏比化を図るため種々の圧延条件で鋼板を試作し、引張特性とミクロ組織を調査した。その結果、88%以下の低降伏比と高い低温靱性を有する鋼板の組織は全て、平均フェライト粒径が5〜15μmであり、且つフェライト組織中に層間隔が30μm以下の層状パーライトが分散していることを見出した。
【0023】
図3は、平均フェライト粒径及び層状パーライトの層間隔と、靱性及び降伏比(YR)の関係の調査結果であり、平均フェライト粒径が15〜30μm程度であり、層状パーライトの層間隔が20〜45μmの鋼板の場合[図3(a)]、降伏比は88%以下であったが、衝撃値は50J未満であり靱性が低かった。平均フェライト粒径が5〜15μmであり、且つフェライト組織中に層間隔が30μm以下の層状パーライトが分散する鋼板の場合[図3(b)]、衝撃値80Jの高い靱性と88%以下の低降伏比が得られた。図3(c)の鋼板の場合、フェライト粒径の平均値は、15μm以下であるが、フェライト粒径のばらつきが大きく、層状パーライトの層間隔は10〜40μmと広く、靱性には優れるものの降伏比が高かった。
【0024】
従って本発明では、高靱性(−60℃における衝撃吸収エネルギー:60J以上)と88%以下の低降伏比の確保のため、ミクロ組織を平均フェライト粒径が5〜15μmで、且つ、フェライト組織中に分散する層状パーライトの層間隔を30μm以下に限定した。
【0025】
尚、上記ミクロ組織を得るための製造技術は、従来のTMCP技術より格段に高度な精密制御圧延により可能となるものであり、具体的には例えば厚さ16mm以下の鋼板の場合、加熱温度を1150℃程度とし、図4に示す様に、900〜830℃の圧下率を30〜80%とし、830℃未満の圧下率を10〜45%とすることにより、図3の(b)に示すミクロ組織を得ることができる。また上記圧下率のいずれかが小さ過ぎる場合には、図3(a)に示す比較的粗大なミクロ組織となって靱性が低くなり、上記圧下率のいずれかが大き過ぎると、図3(c)に示す微細なミクロ組織となって降伏比が高くなった。
【0026】
また化学成分に関しては、C:0.06%以下の低C鋼において、Ti及びNを、Ti:0.005〜0.020%、N:0.002〜0.005%の範囲で添加することにより、大入熱溶接HAZ靱性を向上させることが可能である。
【0027】
Tiは、TiNを形成して大入熱溶接HAZ靱性を向上させるので、0.005%以上含有させることが推奨される。但し、多過ぎると清浄度が低下するので上限は0.02%とすることが望ましい。
【0028】
Nは、TiやZr等の元素と窒化物を形成して大入熱溶接HAZ靱性を向上させるので0.002%以上添加することが望ましい。但し、多過ぎると、母材の靱性を低下させるので、上限は0.005%とすることが望ましい。
【0029】
更に本発明においては、C:0.06%以下の低C鋼において、少なくともSi,Mn,Alを以下の範囲で含有させることが望ましい。
【0030】
Siは、脱酸に必要な元素であり、0.05%以上含有させることが望ましい。但し、多過ぎると溶接性および靱性を劣化させるので、上限は0.5%とすることが望ましい。
【0031】
Mnは、母材強度と靱性の確保のために必要な元素であり、1.0%以上含有させることが望ましい。但し、多過ぎると、溶接性および大入熱溶接HAZ靱性を劣化させるので、1.8%を上限とすることが望ましい。
【0032】
Alは、脱酸元素であるから、0.005%以上含有させることが望ましい。但し、多過ぎると靱性の劣化をもたらすので上限は0.08%以下とすることが好ましい。
【0033】
この他に、特性の向上を目的として、Cu,Ni,Cr,Mo,V,Nb,Zr,B,Ca,Mgや希土類元素を、板厚や強度レベルに応じて添加しても良い。
【0034】
Cuは、固溶強化および析出強化による強度上昇に有効な元素であるので、0.05%以上含有させることが望ましい。但し、多過ぎると熱間加工性が劣化し、鋼板表面に割れが入り易くなるので上限は1.0%とすることが好ましい。
【0035】
Niは靱性を向上させる元素であるので0.05%以上含有させることが望ましいが、多過ぎるとスケール疵が発生し易くなり、コストアップにもなるので、上限は1.0%とすることが望ましい。
【0036】
CrとMoは、いずれも母材の強度を上昇させる上で有効であり、夫々0.05%以上含有させることが望ましいが、多過ぎると大入熱溶接HAZ靱性を劣化させるので1.0%を上限とすることが望ましい。
【0037】
VとNbはいずれも、析出強化により強度上昇に有効な元素であり、0.005%以上含有させることが望ましいが、多過ぎると大入熱溶接HAZ靱性を劣化させるので、上限は0.10%とすることが望ましい。
【0038】
Zrは、Tiと同様に窒化物を形成して、大入熱溶接HAZ靱性を向上させるので0.003%以上含有させることが望ましいが、多過ぎると清浄度の低下を招くので、上限は0.02%とすることが好ましい。
【0039】
Bは、BNを生成することによりHAZ靱性に有害な固溶Nを固定し、粒界フェライトの生成を抑制する作用を有することから、0.0002%以上含有させることが望ましいが、多過ぎると大入熱溶接HAZ靱性の低下を招くので上限は0.002%とすることが好ましい。
【0040】
Ca,Mgおよび希土類元素は、酸化物,硫化物,酸硫化物を形成してHAZの結晶粒粗大化を防止すると共に、母材の異方性の軽減に有効な元素であり、0.001%以上添加することが望ましいが、多過ぎると清浄度の低下を招くので0.01%を上限とすることが好ましい。
【0041】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の主旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0042】
【実施例】
供試鋼板は、表3に示す化学成分を有する鋼片を用い、表4に示す条件で板厚8〜16mmの鋼板に圧延した。
【0043】
【表3】
【0044】
【表4】
【0045】
これらの鋼板から試験片を採取し、母材引張試験及び衝撃試験,ミクロ組織調査,溶接継手部(入熱量6kJ/cm)のアンモニア応力腐食割れ試験及び溶接継手部(入熱量80kJ/cm)の衝撃試験を行った。結果は表5に示す。
【0046】
【表5】
【0047】
表5から明らかな様に、本発明の鋼板No.1〜7は、いずれもアンモニア応力腐食割れが発生せず、大入熱溶接HAZ靱性は100J以上と良好であり、87%以下の低降伏比を有している。
【0048】
これに対して、比較例No.8は、C量が0.06%を超えているためアンモニア応力腐食割れが発生し、溶接継手衝撃値が40Jと低い。また、比較例9〜13はミクロ組織が本発明の条件を満足していないため、母材衝撃特性(vE60)が40Jと低過ぎるか、降伏比が92%以上と高過ぎる。尚、No.9及びNo.13は、900〜830℃における圧下率が小さ過ぎると共に、830℃未満の圧下率が大き過ぎ、粗大なフェライト粒と微細なフェライト粒の混粒となっていた。No.10とNo.11は900〜830℃における圧下率は適度であるが、830℃未満の圧下率が大き過ぎ細粒となり過ぎており、またNo.12は900〜830℃における圧下率と、830℃未満の圧下率が共に小さ過ぎ、粗粒となっていた。
【0049】
【発明の効果】
本発明は以上の様に構成されているので、耐アンモニア応力腐食割れが発生しない低温用鋼板を提供できるようになり、更に50kJ/cm以上の大入熱溶接を行ってもHAZ靱性が良好な低温用鋼板を提供でき、しかも88%以下の低い降伏比を有する低温用鋼板の提供が可能となった。
【図面の簡単な説明】
【図1】本発明に係るミクロ組織を示す概略説明図であり、(a)はフェライト粒界に層状に分散する層状パーライトを示し、また(b)により層状パーライトの層間隔:hを示す。
【図2】大入熱HAZ靱性値と溶接硬化部硬さに及ぼすC量の影響を示すグラフである。
【図3】C:0.06%鋼の母材引張特性及び衝撃特性と平均フェライト粒径及び層状パーライトの層間隔の関係を示す図である。
【図4】C:0.06%鋼の母材引張特性及び衝撃特性を900〜830℃の圧下率と830℃未満の圧下率で整理して示した図である。
【図5】アンモニア応力腐食割れ試験の試験片を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low yield ratio low temperature steel plate excellent in ammonia stress corrosion cracking resistance and toughness of a heat affected zone in large heat input welding, and more specifically, for a multipurpose gas ship carrying various gases such as ammonia and LPG. The present invention relates to a low-temperature steel plate (tensile strength of 400 N / mm 2 grade or higher) that can be used in a low-temperature pressure tank.
[0002]
[Prior art]
Since low temperature toughness is required for a low temperature pressure tank for a storage tank of an LPG ship that transports propane, a normalizing type low temperature steel is adopted. In recent years, multipurpose gas ships that have been developed are loaded not only with LPG but also with ammonia, butylene, etc. in a liquid state. Therefore, the steel materials used in the low-temperature pressure tank have the following characteristics (1) to (4). Is required. That is,
(1) No ammonia stress corrosion cracking occurs,
(2) Excellent toughness in a low temperature range of −55 to −65 ° C.
(3) For the purpose of simplifying the welding man-hours, the toughness of the joint is good even when large heat input welding of about 50 to 80 kJ / cm is performed in single-pass one-pass welding.
(4) The yield ratio (yield point / tensile strength) is 90% or less (preferably 88% or less).
[0003]
When conventional normalizing type low temperature steel plate (C amount: about 0.1%) used for LPG ships is used for low temperature pressure tanks of multipurpose gas ships, welding is performed with a small heat input of 20 kJ / cm or less. Even if it is performed, stress corrosion cracking due to ammonia occurs in the heat affected zone (hereinafter referred to as HAZ) that has undergone rapid heating and quenching during welding, or when high heat input welding of 50 kJ / cm or more is performed. There has been a problem that the toughness of HAZ is significantly reduced. Thus, stress corrosion cracking due to ammonia is likely to occur and the toughness of the HAZ deteriorates because the normalizing type low temperature steel sheet contains a large amount of alloying elements for ensuring strength. .
[0004]
In recent years, the development of TMCP (Thermo Mechanical Control Process) technology, which combines controlled rolling and subsequent accelerated cooling, limits the C content to about 0.07% and is an alloying element compared to conventional normal-type steel sheets. Even if the amount is reduced, sufficient strength can be obtained, and the resistance to ammonia stress corrosion cracking of low-temperature steel and the toughness of HAZ in high heat input welding (hereinafter referred to as high heat input welding HAZ toughness) Although it has become possible to improve, it has not yet stably satisfied the characteristics of (1) and (2) above, and precise welding management for preheating, post-heating and welding heat input is not possible. Has been done.
[0005]
Also, if the yield ratio is large, it will break as soon as it is deformed when stress is applied for some reason, so the yield ratio is small (the yield point is low relative to the tensile strength, yielding to stress) However, the technology for reducing the yield ratio to 90% or less (preferably 88% or less) has not been established, and it is very difficult to select by inspection after manufacturing. Yield decline was invited.
[0006]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above circumstances, and is a steel sheet having a tensile strength of 400 N / mm 2 or more and excellent low temperature toughness at around −60 ° C., and does not cause ammonia stress corrosion cracking. The second challenge is to provide steel sheets for low temperature with a high HAZ toughness even if high heat input welding of 50 kJ / cm or more is performed, and a low yield ratio of 88% or less. A third object is to provide a low-temperature steel sheet having the above.
[0007]
[Means for Solving the Problems]
The low temperature steel sheet having excellent ammonia stress corrosion cracking resistance according to the present invention that solves the first problem is characterized in that the C content is 0.06% or less.
[0008]
The steel sheet for low temperature having excellent ammonia stress corrosion cracking resistance and high heat input welding HAZ toughness according to the present invention, which has solved the second problem, has a C content of 0.06% or less and Ti: 0.00. It contains 005 to 0.020% and N: 0.002 to 0.005%.
[0009]
Further, the low yield ratio type low temperature steel sheet excellent in ammonia stress corrosion cracking resistance and high heat input welding HAZ toughness according to the present invention, which solves the third problem, is a pearlite mainly composed of ferrite and present at ferrite grain boundaries. Is a low-temperature steel plate having a layered pearlite structure [see FIG. 1 (a)] dispersed in layers, the C content being 0.06% or less, Ti: 0.005 to 0.020%, N And 0.002 to 0.005%, the average particle diameter of the ferrite is 5 to 15 μm, and the layer interval of layered pearlite [h in FIG. 1B] is 30 μm or less. To do.
[0010]
In addition, the welded part using any one of the above-described steel plates of the present invention and having a hardness of Hv280 or less exhibits excellent resistance to ammonia stress corrosion cracking.
[0011]
As composition of the steel sheet of the present invention, C: 0.03 to 0.06%, Si: 0.05 to 0.50%, Mn: 1.0 to 1.8%, Al: 0.005 to 0.00. It is necessary to contain 08%, Ti: 0.005 to 0.020%, N: 0.002 to 0.005%, and to make the balance Fe and inevitable impurities.
[0012]
As another element, for the purpose of increasing strength,
Cu: 0.05 to 1.0%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%,
V: 0.005-0.10%,
Nb: 0.005 to 0.10%
You may contain 1 or more types of elements selected from the group which consists of.
[0013]
For the purpose of improving toughness,
Ni: 0.05-1.0%
May be contained.
[0014]
Furthermore, for the purpose of improving HAZ toughness, Zr: 0.003-0.020%, B: 0.0002-0.0020%, Ca: 0.001-0.01%, Mg: 0.001-0. 01%, REM (rare earth element; Ce, La, Nd): One or more selected from the group consisting of 0.001 to 0.01% may be contained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention are steel plates for low temperature that do not generate ammonia stress corrosion cracking resistance, have good HAZ toughness even when subjected to high heat input welding of 50 kJ / cm or more, and have a low yield ratio of 88% or less. In order to develop a low-temperature steel sheet with high temperature, we have conducted extensive research on the component composition and microstructure.
[0016]
In this process, the present inventors can reliably prevent the occurrence of ammonia stress corrosion cracking (hereinafter sometimes referred to as ammonia SCC) by reducing the C content to 0.06% or less, and at the same time a large heat input. It was found that the welded HAZ toughness was also greatly improved.
[0017]
FIG. 2 shows various changes in heat input using steel sheets having chemical components shown in Table 1 in order to investigate in detail the effect of C content on ammonia stress corrosion cracking resistance and high heat input HAZ toughness. It is the result of producing welded joints and conducting a liquefied ammonia stress corrosion cracking acceleration test (environment and stress as acceleration factors) and a JIS Z 3128 welded joint impact test shown in Table 2 for these welded joints.
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
As apparent from FIG. 2, by controlling the C content to 0.06% or less, the occurrence of ammonia stress corrosion cracking can be surely prevented, and at the same time, the high heat input HAZ toughness with a heat input of about 80 kJ / cm is also achieved. It turns out that it improves significantly. In addition, it is the knowledge which the present inventors discovered for the first time in said series of experiments that the limit hardness which does not generate | occur | produce the ammonia stress corrosion cracking of welding HAZ is Hv280 or less.
[0021]
Therefore, the C content in the present invention is 0.06% as an upper limit for securing ammonia stress corrosion cracking resistance and high heat input weld HAZ toughness, and a base metal strength of a tensile strength of 400 N / mm 2 or more is secured. Therefore, at least 0.03% is necessary, so the lower limit was made 0.03%.
[0022]
On the other hand, when the present inventors investigated the tensile properties of C: 0.06% or less of low C steel, it was confronted with the problem that lowering C would cause a significant decrease in tensile strength and a corresponding increase in yield ratio. did. It is possible to increase the tensile strength by adding an alloying element. However, the yield ratio could not be improved. Therefore, in order to reduce the yield ratio of low C steel with C: 0.06% or less, steel plates were made under various rolling conditions, and the tensile properties and the microstructure were investigated. As a result, all the steel sheet structures having a low yield ratio of 88% or less and high low temperature toughness have an average ferrite particle size of 5 to 15 μm, and layered pearlite with a layer spacing of 30 μm or less dispersed in the ferrite structure. I found out.
[0023]
FIG. 3 is a result of investigating the relationship between the average ferrite particle size and layer spacing of layered pearlite, and the toughness and yield ratio (YR). The average ferrite particle size is about 15 to 30 μm and the layer spacing of layered pearlite is 20 In the case of a steel plate of ˜45 μm [FIG. 3A], the yield ratio was 88% or less, but the impact value was less than 50 J and the toughness was low. In the case of a steel sheet in which layered pearlite having an average ferrite grain size of 5 to 15 μm and a layer interval of 30 μm or less is dispersed in the ferrite structure [FIG. 3B], a high toughness with an impact value of 80 J and a low value of 88% or less Yield ratio was obtained. In the case of the steel sheet of FIG. 3 (c), the average value of the ferrite grain size is 15 μm or less, but the dispersion of the ferrite grain size is large, the layer spacing of the layered pearlite is wide as 10 to 40 μm, and the yield is excellent in toughness. The ratio was high.
[0024]
Therefore, in the present invention, in order to ensure high toughness (impact absorption energy at −60 ° C .: 60 J or more) and a low yield ratio of 88% or less, the microstructure has an average ferrite grain size of 5 to 15 μm and a ferrite structure. The layer spacing of the layered pearlite dispersed in was limited to 30 μm or less.
[0025]
The manufacturing technique for obtaining the microstructure is made possible by precision control rolling that is significantly higher than that of the conventional TMCP technique. Specifically, for example, in the case of a steel sheet having a thickness of 16 mm or less, the heating temperature is set to be lower. As shown in FIG. 4, the rolling reduction at 900 to 830 ° C. is set to 30 to 80%, and the rolling reduction below 830 ° C. is set to 10 to 45% as shown in FIG. A microstructure can be obtained. If any of the rolling reductions is too small, the structure becomes relatively coarse as shown in FIG. 3A, resulting in low toughness. If any of the rolling reductions is too large, FIG. ) And the yield ratio was high.
[0026]
As for chemical components, Ti and N are added in a range of Ti: 0.005 to 0.020% and N: 0.002 to 0.005% in a low C steel of C: 0.06% or less. Thus, it is possible to improve the high heat input welding HAZ toughness.
[0027]
Since Ti forms TiN and improves high heat input welding HAZ toughness, it is recommended to contain 0.005% or more. However, if the amount is too large, the cleanliness decreases, so the upper limit is preferably 0.02%.
[0028]
N is preferably added in an amount of 0.002% or more because it forms nitrides with elements such as Ti and Zr to improve high heat input welding HAZ toughness. However, if the amount is too large, the toughness of the base material is lowered, so the upper limit is preferably made 0.005%.
[0029]
Furthermore, in the present invention, it is desirable to contain at least Si, Mn, and Al in the following ranges in a low C steel having C: 0.06% or less.
[0030]
Si is an element necessary for deoxidation, and it is desirable to contain 0.05% or more. However, if too much, weldability and toughness deteriorate, so the upper limit is preferably 0.5%.
[0031]
Mn is an element necessary for securing the strength and toughness of the base material, and it is desirable to contain 1.0% or more. However, if the amount is too large, the weldability and the high heat input weld HAZ toughness are deteriorated, so it is desirable to set the upper limit to 1.8%.
[0032]
Since Al is a deoxidizing element, it is desirable to contain 0.005% or more. However, if the amount is too large, toughness is deteriorated, so the upper limit is preferably made 0.08% or less.
[0033]
In addition, Cu, Ni, Cr, Mo, V, Nb, Zr, B, Ca, Mg, and rare earth elements may be added according to the plate thickness and strength level for the purpose of improving characteristics.
[0034]
Since Cu is an element effective for increasing the strength by solid solution strengthening and precipitation strengthening, it is desirable to contain 0.05% or more. However, if the amount is too large, the hot workability deteriorates and cracks are likely to enter the steel sheet surface, so the upper limit is preferably made 1.0%.
[0035]
Since Ni is an element that improves toughness, it is desirable to contain 0.05% or more. However, if it is too much, scale wrinkles are liable to occur and the cost increases, so the upper limit should be 1.0%. desirable.
[0036]
Both Cr and Mo are effective in increasing the strength of the base metal, and it is desirable to contain 0.05% or more of each, but if it is too much, the high heat input welding HAZ toughness is deteriorated, so 1.0% It is desirable to make the upper limit.
[0037]
Both V and Nb are effective elements for increasing the strength by precipitation strengthening, and it is desirable to contain 0.005% or more. However, if the amount is too large, the high heat input HAZ toughness is deteriorated, so the upper limit is 0.10. % Is desirable.
[0038]
Zr forms a nitride like Ti and improves the high heat input welding HAZ toughness, so it is desirable to contain 0.003% or more, but if it is too much, the cleanliness is lowered, so the upper limit is 0. 0.02% is preferable.
[0039]
B has a function of fixing solute N harmful to the HAZ toughness by generating BN and suppressing the formation of grain boundary ferrite, so it is desirable to contain 0.0002% or more, but too much Since the high heat input welding HAZ toughness is lowered, the upper limit is preferably made 0.002%.
[0040]
Ca, Mg and rare earth elements are elements effective in reducing the anisotropy of the base material while forming oxides, sulfides, and oxysulfides to prevent coarsening of HAZ crystal grains, and 0.001 It is desirable to add at least 0.01%, but if it is too much, the cleanliness will be lowered, so 0.01% is preferable as the upper limit.
[0041]
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0042]
【Example】
The test steel plate was rolled into a steel plate having a thickness of 8 to 16 mm under the conditions shown in Table 4 using steel pieces having chemical components shown in Table 3.
[0043]
[Table 3]
[0044]
[Table 4]
[0045]
Test specimens were collected from these steel plates, and the base metal tensile test and impact test, microstructure investigation, ammonia stress corrosion cracking test of welded joint (heat input 6 kJ / cm) and welded joint (heat input 80 kJ / cm) An impact test was performed. The results are shown in Table 5.
[0046]
[Table 5]
[0047]
As apparent from Table 5, the steel plate No. In Nos. 1 to 7, ammonia stress corrosion cracking occurs, and the high heat input HAZ toughness is as good as 100 J or more, and has a low yield ratio of 87% or less.
[0048]
In contrast, Comparative Example No. In No. 8, since the C content exceeds 0.06%, ammonia stress corrosion cracking occurs, and the weld joint impact value is as low as 40J. In Comparative Examples 9 to 13, since the microstructure does not satisfy the conditions of the present invention, the base material impact property (vE 60 ) is too low as 40 J, or the yield ratio is too high as 92% or more. No. 9 and no. No. 13 had a rolling reduction at 900 to 830 ° C. that was too small, and a rolling reduction of less than 830 ° C. was too large, resulting in a mixture of coarse ferrite grains and fine ferrite grains. No. 10 and no. No. 11 has an appropriate rolling reduction at 900 to 830 ° C., but the rolling reduction below 830 ° C. is too large and too fine. No. 12 had a rolling reduction at 900 to 830 ° C. and a rolling reduction of less than 830 ° C. both were too small and coarse.
[0049]
【The invention's effect】
Since the present invention is configured as described above, it is possible to provide a low-temperature steel sheet that does not cause ammonia stress corrosion cracking resistance, and has good HAZ toughness even when high heat input welding of 50 kJ / cm or more is performed. A low-temperature steel sheet can be provided, and a low-temperature steel sheet having a low yield ratio of 88% or less can be provided.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic explanatory view showing a microstructure according to the present invention, wherein (a) shows layered pearlite dispersed in a layer form at ferrite grain boundaries, and (b) shows a layer interval of the layered pearlite: h.
FIG. 2 is a graph showing the influence of the amount of C on the high heat input HAZ toughness value and the weld hardened portion hardness.
FIG. 3 is a graph showing the relationship between the base metal tensile properties and impact properties of C: 0.06% steel, the average ferrite grain size and the layer spacing of layered pearlite.
FIG. 4 is a diagram showing the base metal tensile properties and impact properties of C: 0.06% steel organized by a rolling reduction of 900 to 830 ° C. and a rolling reduction of less than 830 ° C.
FIG. 5 is a view showing a test piece of an ammonia stress corrosion cracking test.
Claims (5)
フェライト粒界に存在するパーライトが層状に分散された層状パーライト組織を有する低温用鋼板であって、
C:0.03〜0.06%、
Si:0.05〜0.50%、
Mn:1.0〜1.8%、
Al:0.005〜0.08%、
Ti:0.005〜0.020%、
N:0.002〜0.005%を含有し、残部がFeおよび不可避的不純物であると共に、
上記フェライトの平均粒径が5〜15μmで、
且つ層状パーライトの層間隔が30μm以下であることを特徴とする耐アンモニア応力腐食割れ性および大入熱溶接における熱影響部の靱性に優れた低降伏比型低温用鋼板。Ferrite as a main component,
A steel plate for low temperature having a layered pearlite structure in which pearlite existing in ferrite grain boundaries is dispersed in layers,
C: 0.03 to 0.06%,
Si: 0.05 to 0.50%,
Mn: 1.0-1.8%
Al: 0.005 to 0.08%,
Ti: 0.005-0.020%,
N: 0.002 to 0.005%, the balance being Fe and inevitable impurities,
The average particle size of the ferrite is 5 to 15 μm,
A low yield ratio low temperature steel sheet excellent in ammonia stress corrosion cracking resistance and toughness of a heat-affected zone in high heat input welding, characterized in that the layer spacing of the layered pearlite is 30 μm or less.
Cu:0.05〜1.0%、Cu: 0.05 to 1.0%,
Cr:0.05〜1.0%、Cr: 0.05 to 1.0%,
Mo:0.05〜1.0%、Mo: 0.05-1.0%,
V:0.005〜0.10%、V: 0.005-0.10%,
Nb:0.005〜0.10%よりなる群から選択される1種以上の元素を含有するものである請求項1に記載の低降伏比型低温用鋼板。The steel plate for low yield ratio type low temperature according to claim 1, which contains one or more elements selected from the group consisting of Nb: 0.005 to 0.10%.
Ni:0.05〜1.0%を含有するものである請求項1または2に記載の低降伏比型低温用鋼板。The low yield ratio steel plate for low temperature according to claim 1 or 2, which contains Ni: 0.05 to 1.0%.
Zr:0.003〜0.020%、Zr: 0.003 to 0.020%,
B:0.0002〜0.0020%、B: 0.0002 to 0.0020%,
Ca:0.001〜0.01%、Ca: 0.001 to 0.01%,
Mg:0.001〜0.01%、Mg: 0.001 to 0.01%,
REM(希土類元素;Ce,La,Nd):0.001〜0.01%よりなる群から選択される1種以上を含有するものである請求項1〜3のいずれかに記載の低降伏比型低温用鋼板。The low yield ratio according to any one of claims 1 to 3, wherein the REM (rare earth element; Ce, La, Nd): contains at least one selected from the group consisting of 0.001 to 0.01%. Steel plate for mold low temperature.
硬さがHv280以下であることを特徴とする耐アンモニア応力腐食割れ性に優れた溶接部。It is a welding part using the low-temperature steel plate in any one of Claims 1-4 ,
A weld having excellent ammonia stress corrosion cracking resistance, wherein the hardness is Hv280 or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29137797A JP4041194B2 (en) | 1997-10-23 | 1997-10-23 | Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding |
KR1019980043964A KR100294421B1 (en) | 1997-10-23 | 1998-10-20 | Resistant ammonia stress corrosion cracking property and excellent toughness of heat affected zone in large heat welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29137797A JP4041194B2 (en) | 1997-10-23 | 1997-10-23 | Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11131178A JPH11131178A (en) | 1999-05-18 |
JP4041194B2 true JP4041194B2 (en) | 2008-01-30 |
Family
ID=17768139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29137797A Expired - Lifetime JP4041194B2 (en) | 1997-10-23 | 1997-10-23 | Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4041194B2 (en) |
KR (1) | KR100294421B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110331328A (en) * | 2019-08-02 | 2019-10-15 | 武汉钢铁集团鄂城钢铁有限责任公司 | The ultra-thin anti-ammonia corrosion moving pressure container steel plate of one kind and its production method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470048B1 (en) * | 2000-10-27 | 2005-02-04 | 주식회사 포스코 | Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same |
JP5741378B2 (en) * | 2011-10-28 | 2015-07-01 | 新日鐵住金株式会社 | High tensile steel plate with excellent toughness and method for producing the same |
JP7160213B2 (en) * | 2019-11-22 | 2022-10-25 | Jfeスチール株式会社 | Steel material for transportation and storage of liquid ammonia, and method for producing steel material for transportation and storage of liquid ammonia |
WO2023166934A1 (en) * | 2022-03-03 | 2023-09-07 | Jfeスチール株式会社 | Steel sheet and method for manufacturing same |
WO2023166935A1 (en) * | 2022-03-03 | 2023-09-07 | Jfeスチール株式会社 | Steel sheet and method for manufacturing steel sheet |
KR20240128013A (en) * | 2022-03-03 | 2024-08-23 | 제이에프이 스틸 가부시키가이샤 | Steel sheet and its manufacturing method |
JP7323090B1 (en) * | 2022-03-03 | 2023-08-08 | Jfeスチール株式会社 | Steel plate and steel plate manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293914A (en) * | 1993-04-07 | 1994-10-21 | Nippon Steel Corp | Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness |
-
1997
- 1997-10-23 JP JP29137797A patent/JP4041194B2/en not_active Expired - Lifetime
-
1998
- 1998-10-20 KR KR1019980043964A patent/KR100294421B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110331328A (en) * | 2019-08-02 | 2019-10-15 | 武汉钢铁集团鄂城钢铁有限责任公司 | The ultra-thin anti-ammonia corrosion moving pressure container steel plate of one kind and its production method |
CN110331328B (en) * | 2019-08-02 | 2020-06-30 | 武汉钢铁集团鄂城钢铁有限责任公司 | Ultrathin ammonia corrosion resistant steel plate for movable pressure container and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100294421B1 (en) | 2001-07-12 |
JPH11131178A (en) | 1999-05-18 |
KR19990037236A (en) | 1999-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4881773B2 (en) | Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone | |
JP5337412B2 (en) | Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same | |
WO2012108543A1 (en) | Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same | |
JP5903880B2 (en) | High-strength steel sheet for line pipes with excellent sour resistance and weld heat-affected zone toughness and method for producing the same | |
JP4490472B2 (en) | Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same | |
KR20030011148A (en) | Ferritic heat-resistant steel | |
JPWO2011148754A1 (en) | Thick steel plate manufacturing method | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6451871B2 (en) | Steel material for large heat input welding | |
WO2020004410A1 (en) | Clad steel sheet and production method thereof | |
JP4041194B2 (en) | Low yield ratio low temperature steel sheet with excellent ammonia stress corrosion cracking resistance and toughness of heat affected zone in high heat input welding | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP5061649B2 (en) | Thick steel plate with a thickness of 50 mm or more with excellent brittle crack propagation stopping characteristics | |
JP4279231B2 (en) | High-strength steel material with excellent toughness in weld heat affected zone | |
JPWO2017135179A1 (en) | Steel material for large heat input welding | |
JP2004156095A (en) | Steel sheet excellent in toughness of base metal and weld heat affected zone and method of manufacturing the same | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JPH0873983A (en) | Steel plate for welded structure excellent in fatigue strength of welded joint and manufacturing method thereof | |
JP2009235458A (en) | High strength thick steel plate having excellent high heat input weld zone toughness and brittle crack propagation stop property, and method for producing the same | |
JP2000204442A (en) | High strength ERW steel pipe with excellent toughness in ERW weld | |
EP3677698A1 (en) | High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe | |
JP3468168B2 (en) | High-strength steel sheet with excellent economy and toughness | |
JP4259374B2 (en) | High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same | |
JP6274375B1 (en) | High strength thick steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040526 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121116 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131116 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |