[go: up one dir, main page]

JP4035854B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4035854B2
JP4035854B2 JP06599296A JP6599296A JP4035854B2 JP 4035854 B2 JP4035854 B2 JP 4035854B2 JP 06599296 A JP06599296 A JP 06599296A JP 6599296 A JP6599296 A JP 6599296A JP 4035854 B2 JP4035854 B2 JP 4035854B2
Authority
JP
Japan
Prior art keywords
secondary battery
organic compound
fluorine
containing organic
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06599296A
Other languages
Japanese (ja)
Other versions
JPH09259925A (en
Inventor
信一 木下
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP06599296A priority Critical patent/JP4035854B2/en
Publication of JPH09259925A publication Critical patent/JPH09259925A/en
Application granted granted Critical
Publication of JP4035854B2 publication Critical patent/JP4035854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池に関する。特に、電気自動車用、電力のロードレベリング用など、大容量でエネルギー密度が高く、かつメンテナンスフリーの要求が高い分野で利用される非水電解液二次電池に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、軽量化に対応して、その電源として、エレクトロニクス用のリチウムイオン二次電池が実用化され、ハンディビデオカメラや携帯用パソコン等に使われている。さらには、環境問題等から電気自動車が注目を集めており、エネルギー密度が高く、かつ密閉型でメンテナンスフリーのリチウムイオン二次電池に注目が集まっている。
【0003】
【発明が解決しようとする課題】
非水電解液二次電池は、一般に電解液に可燃性の非水系有機化合物を用いており、発火の問題を生じる可能性がある事が知られている。
負極活物質としてリチウムまたはリチウム合金等を用いる場合、これらが着火源となって発火を引き起こす。
【0004】
負極活物質としてリチウムを吸蔵、放出できる化合物を用いるリチウムイオン二次電池でも、正しく使用しない場合には不具合を生じる。特にリチウムイオン二次電池では、推奨される充電電圧をはるかに越える程度まで過充電された場合にその発火の問題を生じる可能性がある。
上述した電池の安全性の点から固体電解質を用いるリチウムイオン二次電池が種々提案されているが、未だ充分な性能が得られていない。
【0005】
【課題を解決するための手段】
上記問題点に鑑み、鋭意検討した結果、電池容器内に不燃性の気体を存在させることにより、従来の非水電解液二次電池の性能を低下させる事なく、電池の安全性を高める事が可能である事を見いだし本発明に至った。
すなわち、本発明の要旨は、少なくとも正極活物質、負極活物質、セパレータ、非水電解液からなる二次電池であって、これらを収納する電池容器内に沸点が25℃以下の自己不燃性又は消火性の含フッ素有機化合物(但し、ジブロモジフルオロメタンを除く)を存在させることを特徴とする、非水電解液二次電池に存する。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の非水電解液二次電池は、少なくとも負極、正極、セパレータ、非水電解液からなる。
負極活物質としては、リチウム及びリチウム合金であってもよいが、より安全性の高いリチウムを吸蔵、放出できる炭素材料が好ましい。この炭素材料は特に限定されないが、黒鉛及び、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂・結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。
【0007】
正極活物質とはリチウムを吸蔵またはインターカレーションできる金属酸化物系化合物、カルコゲナイト系化合物等が好ましく、LixCoO2 、LixMnO2 、LixMn2 4 、LixV2 5 、LixTiS2 等が挙げられる。
負極は、負極活物質と結着剤(バインダー)とを溶媒でスラリー化したものを塗布し乾燥した物を用いる事ができる。
【0008】
正極は、正極活物質と結着剤(バインダー)と導電剤とを溶媒でスラリー化したものを塗布し乾燥した物を用いる事ができる。
負極・正極活物質の結着剤(バインダー)としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM(エチレン−プロピレン−ジエン三元共重合体)、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム等が掲げられるが、これらに限定されない。
【0009】
正極の導電剤としては、黒鉛の微粒子、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等が使用されるが、これらに限定されない。
スラリー化する溶媒としては、通常は結着剤を溶解する有機溶剤が使用される。例えば、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン,NN−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等を掲げる事ができるがこれらに限定されない。また、水に分散剤、増粘剤等を加えてSBR等のラテックスで活物質をスラリー化する場合もある。
【0010】
負極に集電体を用いる場合には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等が使用され、正極集電体を用いる場合には、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
セパレータとしては、微多孔性の高分子フィルムが用いられ、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン系高分子よりなる物が用いられる。セパレータの化学的及び電気化学安定性は重要な因子である。この点からポリオレフィン系高分子が好ましく、電池セパレータの目的の一つである自己閉塞温度の点からポリエチレン製であることが好ましい。
【0011】
ポリエチレン製セパレータの場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましく、その分子量の下限は好ましくは50万、更に好ましくは100万、最も好ましくは150万である。他方分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱されたときセパレータの孔が閉塞しない場合があるからである。
【0012】
電解液としては、例えばリチウム塩を電解質とし、これを有機溶媒に溶解した電解液が用いられる。ここで有機溶媒としては、特に限定されるものではないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、アミン類、エステル類、アミド類、燐酸エステル化合物等を使用する事ができる。これらの代表的なものを列挙すると、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、燐酸トリメチル、燐酸トリエチル等の単独もしくは二種類以上の混合溶媒が使用できる。電解質も従来公知のいずれもが使用でき、LiClO4 、LiAsF6 、LiPF6 、LiBF4 、LiB(C6 5 )4 、LiCl、LiBr、CH3 SO3 Li、CF3 SO3 Li等が用いられる。
【0013】
本発明の非水電解液二次電池では、電池容器内に沸点が25℃以下の含フッ素有機化合物(但し、ジブロモジフルオロメタンを除く)を存在させる事にひとつの特徴がある。
沸点が25℃以下の含フッ素有機化合物としては、炭素数が4以下のアルカンの水素原子をハロゲンで置換した化合物(少なくとも水素原子1個がフッ素原子で置換されている必要がある)を例示できるがこれに限定されるわけではない。本願発明の含フッ素有機化合物は、好ましくは自己不燃性の含フッ素有機化合物であり、更に好ましくは消火性の含フッ素有機化合物である。消火性の含フッ素有機化合物としては、CFCHFCF、CFBrCFClBr、CHF、C10等を例示できる。他方、一分子中にフッ素原子とフッ素以外の他のハロゲン原子を含む化合物はオゾン層破壊の可能性大であり環境への影響の点から好ましくない。したがって、フッ素以外のハロゲン原子を含まない消火性を有する含フッ素有機化合物が最も好ましく、CFCHFCFはその最も好ましい化合物である。
【0014】
電池の発火は電池容器から何らかの要因で噴出した可燃性気体への引火により引き起こされる。有機電解液の蒸気が可燃性気体の発生源である。噴出する蒸気を本願発明の含フッ素有機化合物気体により希釈する事で実質的に引火しなくなり、電池の安全性を確保できる。消火性の含フッ素有機化合物を用いる場合には、上述の希釈効果に加えて、可燃性気体が瞬間的に引火して生成した活性ラジカルを捕捉することにより反応を停止させる効果を有しており電池の安全性確保の点でより好ましい。
【0015】
したがって、本発明の含フッ素有機化合物の沸点は25℃以下である必要がある。電池に不具合が生じる可能性は常温付近から考慮する必要があり、常温付近で含フッ素有機化合物の蒸気圧が充分に高い必要があるからである。
25℃雰囲気下における、電池容器の空隙部に占める本発明の含フッ素有機化合物の割合は、好ましくは10体積%以上、更に好ましくは20体積%以上、最も好ましくは30体積%以上である。含フッ素有機化合物の割合が高いほど不燃性を確保できる。
【0016】
本発明の含フッ素有機化合物の比重は、好ましくは2×10-3g/cm3 以上、更に好ましくは3×10-3g/cm3 以上、最も好ましくは3×10-3g/cm3 以上である。含フッ素有機化合物の比重が大きいほど、散逸しにくく効果的に不燃性に作用するので好ましい。
本発明の非水電解液二次電池は、有機電解液の多量に存在する大型電池に適用するのが効果的である。特に自動車用に代表される大型電池に用いるのが好ましい。また、小型電池に比較し、大型電池では含フッ素有機化合物を保持できる空隙を確保しやすく効果を発現させやすい。
【0017】
尚、本発明の電池の収納容器の構成の概念を図により例示するが、本願発明はその要旨を越えない限りこれらに限定されるものではない。図1は側面から見た、非水電解液1上に本願発明の含フッ素有機化合物2を存在させた場合の概念図の一例である。例えば温度上昇等の理由により二次電池内部の圧力が上昇し、安全弁等が開いて噴出した場合、気化した非水電解液は本願発明の含フッ素有機化合物と容易に混合してから噴出することになり、不燃性を確保できる。又、図2のように、側面まで充填すれば、より大量の本願発明の含フッ素有機化合物を充填できる。さらには図3に示すように、全体を本願発明の含フッ素有機化合物で包み込むようにすれば、何らかの事故で電池に孔が開くような場合でも不燃性を確保しやすい。そして図4のようにいくつかの二次電池を1つの容器に入れ、この周囲に本願発明の含フッ素有機化合物を充填する方法も有効である。
【0018】
そして、本発明の電池の好ましい用途である大型電池では、複数個の電池を組み合わせて用いる事がしばしばであり、複数個の電池を収納する大型容器内に本発明の含フッ素有機化合物を存在させてもよい。
【0019】
【実施例】
以下、本発明を実施例を挙げてさらに詳細に説明するが、本発明は、その要旨を越えない限り以下の実施例によって限定されるものではない。なお、実施例中の評価方法は下記のとおりである。実施例および比較例中、「部」とあるのは重量部」を示す。
【0020】
(比較例1)
(負極)
平均粒径10μmの石炭系ニードルコークス90部(重量割合;特に記述のない場合は以下同様)を、ポリフッ化ビニリデン10部のN−メチルピロリドン溶液(2重量%)と混合し、負極合剤スラリーとした。20μm厚さの銅箔の両面に塗布し、乾燥して溶媒を蒸発させ、ロール処理をして負極を作る。負極合剤の塗布部の大きさは12cm×15cm、厚さは片面250μmとした。銅箔の左右には、左に25mm、右に15mmの耳を残して負極合剤を塗布するように設計してある。
尚、単電池の端を構成する電極は負極合剤を片面のみに塗布したものである。
【0021】
(正極)
炭酸リチウム1モルと炭酸コバルト2モルとをボールミルで混合粉砕し、850℃で5時間空気中で加熱処理した後、再度ボールミルで混合粉砕し、更に850℃で5時間空気中で加熱処理したもの90部に、導電剤としてアセチレンブラックを5部加えて混合したものをポリフッ化ビニリデン5部のN−メチルピロリドン溶液(2重量%)と混合し、正極合剤スラリーとした。25μm厚さのアルミニウム箔の両面に塗布し、乾燥して溶媒を蒸発させ、ロール処理をして正極を作る。正極合剤の塗布部の大きさは12cm×15cm、厚さは片面250μmとした。アルミニウム箔の左右には、右に25mm、左に15mmの耳を残して正極合剤を塗布するように設計してある。
尚、単電池の端を構成する電極は正極合剤を片面のみに塗布したものである。
【0022】
(セパレータ)
融点135℃で、分子量(粘度平均)2×106 の超高分子量ポリエチレン粉末20部とセリルアルコール80部とを押出機に供給して230℃で混練しながら連続的にTダイより押し出した後、MD方向に溶融変形を加え、膜厚50μmのフィルムを得た。得られたフィルムを80℃のイソプロピルアルコール中に浸漬し、セリルアルコールをフィルム中から抽出除去し、次いで、表面温度125℃の加熱ピンチロールにて30秒間熱処理して25μmの膜厚の多孔性フィルムを得た。
【0023】
(単電池の組立)
上記、負極と正極とを交互にセパレータを介して積層し単電池を組み立てる。その際、両端の電極は電極合剤を片面のみ塗布したものを使用する。負極及び正極をそれぞれ別々に金属棒を溶接し、負極と正極とがそれぞれ別々に電気的に接続された集電体が形成される。
尚、単電池は積層する方向に非導電体の枠を以て締め付ける。上記の大きさの電極を26組と半分(両端の電極は片面のみ電極合剤が塗布されているので半分となる)を積層すると、約350Whの充放電容量を有する単電池を作製した。
【0024】
(組電池の組立)
上記単電池を1×10-2Torr以下で真空脱気した後、Arガスで置換しておいたドライボックス中に投入する。
上記単電池10個を隔壁を備えたポリプロピレン製の容器に収納し、電解液を注入して、上蓋を閉める。この時、上蓋を貫通して、各単電池の負極端子、正極の端子が容器の上部に突きだした形となる。この端子を上蓋の貫通部分で、適当な封止剤で封止する。この時、ポリプロピレン製の容器上部に直径10mmの穴をあけておく。電解液にはエチレンカーボネートと1,2−ジメトキシエタンとの割合が1:1の混合溶媒にヘキサフルオロリン酸リチウム塩(LiPF6 )を1モル/l溶解し用いた。
25℃雰囲気下、1mA/cm2 の定電流密度で電池電圧が4.0Vに達するまで充電した後、接着剤を塗布したゴム栓で容器上部の穴に蓋をしておく。
尚、25℃におけるArガスの体積は92体積%である。
【0025】
(電池の評価)
上記の組電池を25℃雰囲気下、更に1mA/cm2 の定電流密度で電池電圧が4.3Vに達するまで充電した後、容器上部のゴム栓をはずし、JIS K2810に準拠して試験炎を近づけたところ、引火した。以下同様にして組電池の置かれる温度を変えて評価した結果をまとめて表1に示す。
【0026】
(実施例1)
比較例1において、ArガスのかわりにCF CHFCF ガスを用いる以外は比較例1と同様にして組電池を組み立てた後、初期充電を行った。
得られた電池の25℃におけるCF CHFCF ガスの体積は92体積%である。
【0027】
得られた電池を25℃雰囲気下、更に1mA/cm2 の定電流密度で電池電圧が4.3Vに達するまで充電した後、容器上部のゴム栓をはずし、JIS K2810に準拠して1秒間試験炎を近づけても、引火しなかった。以下同様にして温度を変えて評価したが、いずれも引火しなかった。
尚、実施例1の電池特性は、比較例1と同等であった。
【0028】
【表1】

Figure 0004035854
【0029】
【発明の効果】
以上のように、少なくとも正極活物質、負極活物質、セパレータ、非水電解液からなる二次電池であって、これらを収納する電池容器内に沸点が25℃以下の含フッ素有機化合物を存在させることにより、非水電解液二次電池の電池特性を損なうことなくその安全性を著しく向上でき、工業的意義は大きい。
【図面の簡単な説明】
【図1】図1は本願発明の非水電解液二次電池の一例を側面視した概念図である。
【図2】図2は本願発明の非水電解液二次電池の一例を側面視した概念図である。
【図3】図3は本願発明の非水電解液二次電池の一例を側面視した概念図である。
【図4】図4は本願発明の非水電解液二次電池の一例を側面視した概念図である。
【符号の説明】
1 非水電解液
2 含フッ素有機化合物[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery. In particular, the present invention relates to a non-aqueous electrolyte secondary battery used in a field having a large capacity, a high energy density, and a high demand for maintenance-free, such as for electric vehicles and power load leveling.
[0002]
[Prior art]
In recent years, in response to the reduction in size and weight of electronic devices, lithium-ion secondary batteries for electronics have been put into practical use as power sources and are used in handy video cameras, portable personal computers, and the like. Furthermore, electric vehicles are attracting attention due to environmental problems and the like, and attention is being focused on sealed, maintenance-free lithium-ion secondary batteries with high energy density.
[0003]
[Problems to be solved by the invention]
It is known that non-aqueous electrolyte secondary batteries generally use a flammable non-aqueous organic compound in the electrolyte and may cause ignition problems.
When lithium or a lithium alloy is used as the negative electrode active material, these serve as an ignition source and cause ignition.
[0004]
Even a lithium ion secondary battery using a compound capable of occluding and releasing lithium as the negative electrode active material causes problems if not used correctly. In particular, lithium ion secondary batteries can cause ignition problems when overcharged to a level far exceeding the recommended charging voltage.
Various lithium ion secondary batteries using solid electrolytes have been proposed from the viewpoint of the above-described battery safety, but sufficient performance has not been obtained yet.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations in view of the above problems, it is possible to improve the safety of the battery without deteriorating the performance of the conventional non-aqueous electrolyte secondary battery by making the non-combustible gas exist in the battery container. It was found that it was possible to arrive at the present invention.
That is, the gist of the present invention is a secondary battery comprising at least a positive electrode active material, a negative electrode active material, a separator, and a non-aqueous electrolyte solution, and a self-incombustibility having a boiling point of 25 ° C. or less in a battery container housing these . Or it exists in the nonaqueous electrolyte secondary battery characterized by making a fire extinguishing fluorine-containing organic compound (however, excluding dibromodifluoromethane) exist.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The non-aqueous electrolyte secondary battery of the present invention comprises at least a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte.
The negative electrode active material may be lithium or a lithium alloy, but a carbon material that can occlude and release lithium with higher safety is preferable. The carbon material is not particularly limited, but graphite, coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, needle coke, pitch coke, carbide such as phenol resin / crystalline cellulose, etc. Examples thereof include partially graphitized carbon materials, furnace black, acetylene black, and pitch-based carbon fibers.
[0007]
The positive electrode active material is preferably a metal oxide compound or a chalcogenite compound that can occlude or intercalate lithium, and examples thereof include LixCoO 2 , LixMnO 2 , LixMn 2 O 4 , LixV 2 O 5 , and LixTiS 2 .
As the negative electrode, a material obtained by applying a slurry of a negative electrode active material and a binder (binder) with a solvent and drying it can be used.
[0008]
As the positive electrode, a product obtained by applying a slurry of a positive electrode active material, a binder (binder), and a conductive agent with a solvent and drying it can be used.
Examples of the binder (binder) for the negative electrode / positive electrode active material include polyvinylidene fluoride, polytetrafluoroethylene, EPDM (ethylene-propylene-diene terpolymer), SBR (styrene-butadiene rubber), NBR ( (Acrylonitrile-butadiene rubber), fluororubber and the like, but are not limited thereto.
[0009]
As the conductive agent for the positive electrode, fine particles of graphite, carbon black such as acetylene black, and amorphous carbon fine particles such as needle coke are used, but are not limited thereto.
As the solvent for forming a slurry, an organic solvent that dissolves the binder is usually used. For example, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N 2 , N-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran and the like can be mentioned, but not limited thereto. . Moreover, a dispersing agent, a thickener, etc. are added to water, and an active material may be slurried with latex, such as SBR.
[0010]
When a current collector is used for the negative electrode, copper, nickel, stainless steel, nickel-plated steel or the like is used, and when a positive electrode current collector is used, aluminum, stainless steel, nickel-plated steel or the like is used.
As the separator, a microporous polymer film is used, and a material made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, polybutene, or the like is used. . The chemical and electrochemical stability of the separator is an important factor. In this respect, a polyolefin-based polymer is preferable, and polyethylene is preferable from the viewpoint of the self-occluding temperature, which is one of the purposes of the battery separator.
[0011]
In the case of a polyethylene separator, ultrahigh molecular weight polyethylene is preferable from the viewpoint of maintaining high-temperature shape, and the lower limit of the molecular weight is preferably 500,000, more preferably 1,000,000, and most preferably 1.5 million. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. This is because if the molecular weight is too large, the pores of the separator may not close when heated because the fluidity is too low.
[0012]
As the electrolytic solution, for example, an electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent is used. Here, the organic solvent is not particularly limited, but for example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, amines, esters, amides. Further, phosphoric acid ester compounds can be used. Typical examples of these are listed: propylene carbonate, ethylene carbonate, vinylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 4-methyl-2-pentanone, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, γ-butyrolactone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2 -A single or two or more kinds of mixed solvents such as dichloroethane, dimethylformamide, dimethyl sulfoxide, trimethyl phosphate, and triethyl phosphate can be used. Any conventionally known electrolyte can be used, and LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. are used. It is done.
[0013]
The nonaqueous electrolyte secondary battery of the present invention is characterized in that a fluorine-containing organic compound (except for dibromodifluoromethane) having a boiling point of 25 ° C. or less is present in the battery container.
Examples of the fluorine-containing organic compound having a boiling point of 25 ° C. or less include compounds in which a hydrogen atom of an alkane having 4 or less carbon atoms is substituted with a halogen (at least one hydrogen atom needs to be substituted with a fluorine atom). However, this is not a limitation. The fluorine-containing organic compound of the present invention is preferably a self-incombustible fluorine-containing organic compound, and more preferably a fire-extinguishing fluorine-containing organic compound. Examples of the fire extinguishing fluorine-containing organic compound include CF 3 CHFCF 3 , CF 3 Br , CF 2 ClBr, CHF 3 , and C 4 F 10 . On the other hand, a compound containing a fluorine atom and a halogen atom other than fluorine in one molecule has a high possibility of destruction of the ozone layer, and is not preferable from the viewpoint of influence on the environment. Therefore, a fluorine-containing organic compound having a fire extinguishing property that does not contain a halogen atom other than fluorine is most preferable, and CF 3 CHFCF 3 is the most preferable compound.
[0014]
The ignition of the battery is caused by the ignition of the combustible gas ejected from the battery container for some reason. The vapor of the organic electrolyte is a source of combustible gas. By diluting the jetted steam with the fluorine-containing organic compound gas of the present invention, it is substantially impossible to ignite, and the safety of the battery can be ensured. In the case of using a fire extinguishing fluorine-containing organic compound, in addition to the dilution effect described above, it has the effect of stopping the reaction by capturing the active radicals generated by the flammable gas igniting momentarily. It is more preferable in terms of ensuring the safety of the battery.
[0015]
Therefore, the boiling point of the fluorine-containing organic compound of the present invention needs to be 25 ° C. or less. This is because the possibility that the battery has a problem needs to be considered from around room temperature, and the vapor pressure of the fluorine-containing organic compound needs to be sufficiently high around room temperature.
The proportion of the fluorine-containing organic compound of the present invention in the gap of the battery container in a 25 ° C. atmosphere is preferably 10% by volume or more, more preferably 20% by volume or more, and most preferably 30% by volume or more. The higher the proportion of the fluorine-containing organic compound, the more nonflammability can be ensured.
[0016]
The specific gravity of the fluorine-containing organic compound of the present invention is preferably 2 × 10 −3 g / cm 3 or more, more preferably 3 × 10 −3 g / cm 3 or more, and most preferably 3 × 10 −3 g / cm 3. That's it. It is preferable that the specific gravity of the fluorine-containing organic compound is large because it is difficult to dissipate and effectively acts on nonflammability.
The non-aqueous electrolyte secondary battery of the present invention is effective when applied to a large battery having a large amount of organic electrolyte. It is particularly preferable to use it for a large battery represented by an automobile. In addition, compared with a small battery, a large battery can easily secure a void capable of holding a fluorine-containing organic compound, and can easily exert an effect.
[0017]
In addition, although the concept of the structure of the storage container of the battery of this invention is illustrated with a figure, this invention is not limited to these, unless the summary is exceeded. FIG. 1 is an example of a conceptual diagram when the fluorine-containing organic compound 2 of the present invention is present on a non-aqueous electrolyte 1 as seen from the side. For example, when the pressure inside the secondary battery rises due to a temperature rise or the like, and the safety valve etc. is opened and ejected, the vaporized non-aqueous electrolyte should be ejected after being easily mixed with the fluorine-containing organic compound of the present invention. And nonflammability can be secured. Further, as shown in FIG. 2, if the side surface is filled, a larger amount of the fluorine-containing organic compound of the present invention can be filled. Further, as shown in FIG. 3, if the whole is encased in the fluorine-containing organic compound of the present invention, it is easy to ensure nonflammability even when a hole is opened in the battery due to some accident. As shown in FIG. 4, it is also effective to put several secondary batteries in one container and fill the periphery with the fluorine-containing organic compound of the present invention.
[0018]
In a large battery which is a preferred application of the battery of the present invention, a plurality of batteries are often used in combination, and the fluorine-containing organic compound of the present invention is present in a large container containing a plurality of batteries. May be.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited by a following example, unless the summary is exceeded. In addition, the evaluation method in an Example is as follows. In the examples and comparative examples, “parts” means “parts by weight”.
[0020]
(Comparative Example 1)
(Negative electrode)
90 parts of coal-based needle coke having an average particle diameter of 10 μm (weight ratio; unless otherwise specified) is mixed with an N-methylpyrrolidone solution (2% by weight) of 10 parts of polyvinylidene fluoride to prepare a negative electrode mixture slurry. It was. It is applied to both sides of a 20 μm-thick copper foil, dried to evaporate the solvent, and roll-processed to make a negative electrode. The size of the application part of the negative electrode mixture was 12 cm × 15 cm, and the thickness was 250 μm on one side. On the left and right sides of the copper foil, the negative electrode mixture is designed so as to leave an ear of 25 mm on the left and 15 mm on the right.
In addition, the electrode which comprises the edge of a single cell applies a negative mix to only one side.
[0021]
(Positive electrode)
1 mol of lithium carbonate and 2 mol of cobalt carbonate were mixed and ground in a ball mill, heat-treated in air at 850 ° C. for 5 hours, then mixed and ground in a ball mill again, and further heat-treated in air at 850 ° C. for 5 hours. A mixture obtained by adding 5 parts of acetylene black as a conductive agent to 90 parts was mixed with an N-methylpyrrolidone solution (2 wt%) of 5 parts of polyvinylidene fluoride to obtain a positive electrode mixture slurry. It is applied to both sides of a 25 μm thick aluminum foil, dried to evaporate the solvent, and roll-processed to produce a positive electrode. The size of the application part of the positive electrode mixture was 12 cm × 15 cm, and the thickness was 250 μm on one side. On the left and right sides of the aluminum foil, the positive electrode material mixture is designed so as to leave 25 mm on the right and 15 mm on the left.
In addition, the electrode which comprises the edge of a cell is what apply | coated the positive mix to only one side.
[0022]
(Separator)
After feeding 20 parts of ultrahigh molecular weight polyethylene powder having a melting point of 135 ° C. and a molecular weight (average viscosity) of 2 × 10 6 and 80 parts of ceryl alcohol to the extruder and continuously extruding from a T-die while kneading at 230 ° C. Then, melt deformation was applied in the MD direction to obtain a film having a thickness of 50 μm. The obtained film is immersed in isopropyl alcohol at 80 ° C., ceryl alcohol is extracted and removed from the film, and then heat-treated with a heated pinch roll having a surface temperature of 125 ° C. for 30 seconds to form a porous film having a thickness of 25 μm. Got.
[0023]
(Assembly of single cells)
The negative electrode and the positive electrode are alternately stacked via separators to assemble a unit cell. In that case, the electrode of both ends uses what applied the electrode mixture only to one side. The negative electrode and the positive electrode are separately welded with metal rods, and a current collector is formed in which the negative electrode and the positive electrode are separately electrically connected.
The unit cells are fastened with a non-conductive frame in the stacking direction. By stacking 26 sets of electrodes of the above size and half (the electrodes at both ends are half because the electrode mixture is applied only on one side), a unit cell having a charge / discharge capacity of about 350 Wh was produced.
[0024]
(Assembly of assembled battery)
The unit cell is vacuum degassed at 1 × 10 −2 Torr or less and then put into a dry box that has been replaced with Ar gas.
Ten unit cells are accommodated in a polypropylene container having a partition wall, an electrolyte is injected, and the upper lid is closed. At this time, the negative electrode terminal and the positive electrode terminal of each unit cell protrude through the upper part of the container through the upper lid. This terminal is sealed with an appropriate sealant at the penetrating portion of the upper lid. At this time, a hole having a diameter of 10 mm is made in the upper part of the polypropylene container. As the electrolytic solution, 1 mol / l of hexafluorophosphoric acid lithium salt (LiPF 6 ) was dissolved in a mixed solvent having a ratio of ethylene carbonate and 1,2-dimethoxyethane of 1: 1.
After charging at a constant current density of 1 mA / cm 2 at a constant current density of 25 ° C. until the battery voltage reaches 4.0 V, the hole at the top of the container is covered with a rubber stopper coated with an adhesive.
The volume of Ar gas at 25 ° C. is 92% by volume.
[0025]
(Battery evaluation)
After charging the above assembled battery in a 25 ° C. atmosphere at a constant current density of 1 mA / cm 2 until the battery voltage reaches 4.3 V, remove the rubber stopper at the top of the container and remove the test flame in accordance with JIS K2810. When approached, it ignited. Table 1 shows the results of evaluation in the same manner by changing the temperature at which the assembled battery is placed.
[0026]
Example 1
In Comparative Example 1, an assembled battery was assembled in the same manner as in Comparative Example 1 except that CF 3 CHFCF 3 gas was used instead of Ar gas, and initial charging was performed.
The volume of CF 3 CHFCF 3 gas at 25 ° C. in the obtained battery is 92% by volume.
[0027]
The obtained battery was charged in a 25 ° C. atmosphere at a constant current density of 1 mA / cm 2 until the battery voltage reached 4.3 V, and then the rubber stopper on the top of the container was removed, and the test was conducted for 1 second in accordance with JIS K2810. Even if the flame approached, it did not ignite. Thereafter, the temperature was changed in the same manner as described above, but none of them ignited.
The battery characteristics of Example 1 were equivalent to those of Comparative Example 1.
[0028]
[Table 1]
Figure 0004035854
[0029]
【The invention's effect】
As described above, a secondary battery comprising at least a positive electrode active material, a negative electrode active material, a separator, and a non-aqueous electrolyte solution, and a fluorine-containing organic compound having a boiling point of 25 ° C. or less is present in a battery container that accommodates the secondary battery. Thus, the safety of the non-aqueous electrolyte secondary battery can be remarkably improved without impairing the battery characteristics, and the industrial significance is great.
[Brief description of the drawings]
FIG. 1 is a conceptual view of an example of a nonaqueous electrolyte secondary battery according to the present invention as viewed from the side.
FIG. 2 is a conceptual diagram showing a side view of an example of a nonaqueous electrolyte secondary battery of the present invention.
FIG. 3 is a conceptual diagram showing a side view of an example of a nonaqueous electrolyte secondary battery of the present invention.
FIG. 4 is a conceptual diagram showing a side view of an example of the nonaqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
1 Non-aqueous electrolyte 2 Fluorinated organic compound

Claims (6)

少なくとも正極活物質、負極活物質、セパレータ、非水電解液からなる二次電池であって、これらを収納する電池容器内に沸点が25℃以下の自己不燃性又は消火性の含フッ素有機化合物(但し、ジブロモジフルオロメタンを除く)を、存在させることを特徴とする非水電解液二次電池。A secondary battery comprising at least a positive electrode active material, a negative electrode active material, a separator, and a non-aqueous electrolyte, and a self-incombustible or fire-extinguishing fluorine-containing organic compound having a boiling point of 25 ° C. or less in a battery container housing these (However, excluding dibromodifluoromethane) is present in the non-aqueous electrolyte secondary battery. 該含フッ素有機化合物が、炭素数が4以下のアルカンの水素原子をハロゲンで置換した化合物である請求項1に記載の非水電解液二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein the fluorine-containing organic compound is a compound in which a hydrogen atom of an alkane having 4 or less carbon atoms is substituted with a halogen. 該含フッ素有機化合物が、CFCHFCF、CFBr、CFClBr、CHF、C10からなる群から選ばれる含フッ素有機化合物である請求項1又は2に記載の非水電解液二次電池。The non-aqueous electrolysis according to claim 1 or 2 , wherein the fluorinated organic compound is a fluorinated organic compound selected from the group consisting of CF 3 CHFCF 3 , CF 3 Br, CF 2 ClBr, CHF 3 , and C 4 F 10. Liquid secondary battery. 25℃雰囲気下において、該含フッ素有機化合物が、電池容器の空隙部に占める割合が10体積%以上である請求項1乃至のいずれかに記載の非水電解液二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3 , wherein a proportion of the fluorine-containing organic compound in a void portion of the battery container is 10% by volume or more in a 25 ° C atmosphere. 該含フッ素有機化合物が、CFCHFCFである請求項1乃至のいずれかに記載の非水電解液二次電池。Fluorine-containing organic compound, a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4 is CF 3 CHFCF 3. 少なくとも正極活物質、負極活物質、セパレータ、非水電解液からなる二次電池であって、これらを収納する電池容器内に、CFA secondary battery comprising at least a positive electrode active material, a negative electrode active material, a separator, and a non-aqueous electrolyte, and a CF 3 CHFCFCHFCF 3 、CF, CF 3 Br、CFBr, CF 2 ClBr、CHFClBr, CHF 3 、C, C 4 F 1010 からなる群から選ばれる含フッ素有機化合物を存在させることを特徴とする非水電解液二次電池。A non-aqueous electrolyte secondary battery comprising a fluorine-containing organic compound selected from the group consisting of:
JP06599296A 1996-03-22 1996-03-22 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4035854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06599296A JP4035854B2 (en) 1996-03-22 1996-03-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06599296A JP4035854B2 (en) 1996-03-22 1996-03-22 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09259925A JPH09259925A (en) 1997-10-03
JP4035854B2 true JP4035854B2 (en) 2008-01-23

Family

ID=13303024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06599296A Expired - Fee Related JP4035854B2 (en) 1996-03-22 1996-03-22 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4035854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101178554B1 (en) 2009-07-09 2012-08-30 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101452031B1 (en) 2011-12-27 2014-10-23 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JPH09259925A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
JP5329310B2 (en) Lithium secondary battery using ionic liquid
JP3492173B2 (en) Non-aqueous battery
JP2009245828A (en) Nonaqueous electrolyte secondary battery
CN103918107A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
WO2005020365A1 (en) Nonflammable nonaqueous electrolyte and lithium-ion battery containing the same
JP5015474B2 (en) Battery separator, lithium ion secondary battery, electric double layer capacitor
JPH10214640A (en) Battery
JP2009026542A (en) Lithium secondary battery
JPH09320568A (en) Nonaqueous electrolyte secondary battery
JP2004014373A (en) Solid electrolyte battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
JP2005302382A (en) Non-aqueous electrolyte secondary battery pack
JP3236400B2 (en) Non-aqueous secondary battery
JPH1012272A (en) Nonaqueous electrolyte secondary battery
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JPH09293533A (en) Nonaqueous electrolyte secondary battery
JP4287123B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4035854B2 (en) Non-aqueous electrolyte secondary battery
JP3444616B2 (en) Negative electrode for non-aqueous secondary batteries
US20190393465A1 (en) Secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP4711319B2 (en) Non-aqueous secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
TW202209738A (en) Improved electrolyte for electrochemical cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees