[go: up one dir, main page]

JP2004014373A - Solid electrolyte battery - Google Patents

Solid electrolyte battery Download PDF

Info

Publication number
JP2004014373A
JP2004014373A JP2002168190A JP2002168190A JP2004014373A JP 2004014373 A JP2004014373 A JP 2004014373A JP 2002168190 A JP2002168190 A JP 2002168190A JP 2002168190 A JP2002168190 A JP 2002168190A JP 2004014373 A JP2004014373 A JP 2004014373A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer resin
separator
particles
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002168190A
Other languages
Japanese (ja)
Inventor
Hitoshi Maro
麿 整
Akira Saito
斉藤 彰
Yoshio Kawakami
川上 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002168190A priority Critical patent/JP2004014373A/en
Publication of JP2004014373A publication Critical patent/JP2004014373A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance ionic conductivity of a gel-like solid electrolyte even in a solid electrolyte battery using a composite of a separator and the gel-like solid electrolyte, enhance capacity, and prevent mixing of moisture to the gel-like solid electrolyte even when ceramic particles are dispersed in polymer resin. <P>SOLUTION: This solid electrolyte battery contains insulator particles dispersed in the polymer resin in at least one of the gel-like solid electrolytes 17 interposed between a positive electrode 13 and the separator 15, and/or between a negative electrode 14 and the separator 15. The insulator particles are formed by conducting hydrophobic treatment and have an average particle size of 0.01-1 μm, and for example, ceramic particles or silica particles are used as the insulator particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質電池に関し、特に、ゲル状固体電解質を用いたゲル状固体電解質リチウム二次電池に関する。
【0002】
【従来の技術】
携帯電話器、ノートパソコンなどの携帯電子機器においては、電源の高容量化が求められており、その要求に対応するリチウム二次電池などの非水二次電池の需要が高まってきている。非水二次電池は、正極、負極の電極とその間に電解質とを積層した電極群が外装体内に収納された構成である。
【0003】
【発明が解決しようとする課題】
このような非水二次電池においては、電解質に液状である非水電解液を用いていたことから、液漏れを生じるおそれがあった。
【0004】
このため、安全性向上の観点から、ゲル状固体電解質電池が注目されている。このゲル状固体電解質電池では、高分子材料からなるポリマー樹脂に非水電解液を含浸させたゲル状固体電解質を用いている。
【0005】
このようなゲル状固体電解質は、非水電解液に比べてイオン伝導度が低く、電池の高容量化を図る妨げとなっていた。このため、ゲル状固体電解質のイオン伝導度を向上することが試みられている。例えば、特開平9−306543号公報には、ポリマー樹脂中にセラミックス粒子を分散させたゲル状固体電解質を有するリチウム二次電池が開示されている。このリチウム二次電池では、ゲル状固体電解質中のセラミックス粒子の表面をイオンが高速移動することにより高いイオン伝導度を示す。
【0006】
さらに、ゲル状固体電解質は、機械的強度が低く、正極と負極との物理的接触に起因する内部短絡を生じるおそれがあった。そこで、機械的強度の高いセパレータとゲル状固体電解質を複合させることで、機械的強度を向上させたゲル状固体電解質電池が提案されている。例えば、特開平2000−149905号公報、特開平2001−43897号公報に開示されたゲル状固体電解質電池は、微多孔質膜からなるセパレータを電極の間に設け、正極とセパレータとの間、および負極とセパレータとの間にゲル状固体電解質を有する構成である。
【0007】
しかし、セパレータとゲル状固体電解質とを複合させた固体電解質電池においては、電極間に電解質を隔てるセパレータを有する構造のため、電極間のイオン伝導度が低くならざるを得ない問題があった。
【0008】
また、ゲル状固体電解質は、吸湿による特性劣化が生じる問題があった。このように、ゲル状固体電解質に水分が混入した場合、混入した水分と電解液が反応しやすく、HFガスが発生したり、レート特性やサイクル特性の電池特性の劣化を生じていた。特に、セラミックス粒子は吸湿性を有しているため、上述のようにポリマー樹脂中にセラミックス粒子を分散させた場合、ゲル状固体電解質に水分の混入が顕著であった。
【0009】
本発明はこのような課題を解決するためになされたものであり、機械的強度の高いセパレータとゲル状固体電解質とを複合させた固体電解質電池であっても、ゲル状固体電解質のイオン伝導度を向上し、高容量の固体電解質電池を提供することを目的とする。また、ポリマー樹脂中にセラミックス粒子を分散させた場合であっても、ゲル状固体電解質に水分の混入がなく、電池特性の優れた固体電解質電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するための本発明の固体電解質電池は、正極と負極とがセパレータを介して交互に積層され、かつ、正極とセパレータとの間および/または負極とセパレータとの間に、ポリマー樹脂に非水電解液を含浸させたゲル状固体電解質が介在している固体電解質電池であって、正極とセパレータとの間または負極とセパレータとの間のゲル状固体電解質の少なくとも一方は、ポリマー樹脂に分散している絶縁体粒子を含むことを特徴とする。
【0011】
このような構成とすることで、機械的強度の高いセパレータとゲル状固体電解質とを複合させた固体電解質電池であっても、ゲル状固体電解質のイオン伝導度を向上し、高容量の固体電解質電池とすることができる。
【0012】
上記絶縁体粒子は、疎水処理されていることが好ましい。このようにすることで、ゲル状固体電解質に水分の混入を防ぐことができる。
【0013】
また、絶縁体粒子は、平均粒径を0.01〜1μmとすることが好ましい。この範囲とすることで、絶縁体粒子をポリマー樹脂に適度に分散させることができる。
【0014】
また、絶縁体粒子には、例えば、セラミックス粒子を用いることができる。セラミックス粒子は、絶縁性が高いからである。
【0015】
また、絶縁体粒子は、二酸化ケイ素粒子としてもよい。二酸化ケイ素は、ポリマー樹脂に対する分散性が良好である。
【0016】
絶縁体粒子のポリマー樹脂に対する重量比率(絶縁体粒子:ポリマー樹脂)は、好ましくは3:7〜7:3である。この範囲とすることで、電極とセパレータとの密着性を損なうことなく良好なイオン伝導が得られる。
【0017】
【発明の実施の形態】
図1に、本発明の一実施の形態の固体電解質電池の断面図を示す。固体電解質電池11は、正極集電体132の表面に正極活物質131が形成されて一体化された構造の正極13と、負極集電体141の表面に負極活物質142が形成されて一体化された構造の負極14とが、セパレータ15を介して交互に積層される。そして、上記正極と上記セパレータとの間および上記セパレータと上記負極との間に、ポリマー樹脂に非水電解液を含浸させたゲル状固体電解質17が介在している電極群16を外装体18に収納した構成である。ゲル状固体電解質17は、ポリマー樹脂に分散している絶縁体粒子を含んでいる。
【0018】
本実施の形態の固体電解質電池は、正極とセパレータとの間および負極とセパレータとの間のゲル状固体電解質ともにポリマー樹脂に分散している絶縁体粒子を含む構成である。このような構成とすることで、機械的強度の高いセパレータとゲル状固体電解質とを複合させた固体電解質電池であっても、ゲル状固体電解質のイオン伝導度を向上し、高容量の固体電解質電池とすることができる。
【0019】
ゲル状固体電解質は、正極とセパレータとの間および負極とセパレータとの間のどちらか一方のみに形成された構成しても良く、両方ともに形成された構成としても良い。そして、絶縁体粒子は、正極とセパレータとの間および負極とセパレータとの間に形成されたポリマー樹脂層の一方のみに分散している構成としてもよく、両方に分散している構成としても良い。あるいは、正極とセパレータとの間または負極とセパレータとの間の一方のみに絶縁体粒子が分散しているポリマー樹脂層を有し、他方は、ポリマー樹脂層を有していない構成としても良い。
【0020】
本実施の形態に係る固体電解質電池は、以下のような材質を用いることができる。
【0021】
絶縁体粒子は、電解質を構成する非水電解液と反応せず、ポリマー樹脂に分散されるもので有ればよく、各種の酸化物や炭化物からなるセラミックス粒子やポリエチレンなどの有機樹脂粒子を用いることができる。このうち、セラミックス粒子は、絶縁性が高いことから好適である。具体的には、アルミナ、二酸化ケイ素、SiCなどのセラミックス材料を好適に用いることができる。このうち、特に、二酸化ケイ素は、ポリマー樹脂に対する分散性から好ましい。
【0022】
また、絶縁体粒子は、疎水処理されていることが好ましい。疎水処理は、絶縁体粒子を処理剤中に浸漬し、1〜24時間程度の一定時間放置した後、処理剤を除去する方法などにより行うことができる。処理剤としては、例えば、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクチルシラン、ジメチルシリコーンオイルなどを用いることができる。絶縁体粒子を疎水処理することで、ゲル状固体電解質に水分の混入を防ぐことができる。
【0023】
絶縁体粒子の平均粒径は、0.01〜1μmが好ましい。この範囲とすることで、絶縁体粒子をポリマー樹脂に適度に分散させることができる。平均粒径が、0.01μmよりも小さいと偏析する場合がある。また、1μmを超えるとイオン伝導度の向上が十分ではない。また、絶縁体粒子の平均粒径は完成した電池の断面を電子顕微鏡などにより観察することで測定できる。
【0024】
ゲル状固体電解質において、非水電解液が含浸されるポリマー樹脂は、非水電解液に対して耐性を持ち、かつ、非水電解液と酸化還元反応をしない材料により構成される。具体的には、例えば、ポリフッ化ビニリデン(PVDF)やフッ化ビニリデン(VDF)とヘキサフルオロプロピレン(HFP)との共重合体(VDF−HFP共重合体)により構成することができる。
【0025】
絶縁体粒子のポリマー樹脂に対する重量比率(絶縁体粒子:ポリマー樹脂)は、3:7〜7:3であることが好ましい。この範囲とすることで、電極とセパレータとの密着性を損なうことなく良好なイオン伝導が得られる。
【0026】
絶縁体粒子のポリマー樹脂に対する重量比率が、3:7未満であるとゲル状固体電解質層内のイオン伝導抵抗が増大し、電池特性が低下する。また、絶縁体粒子のポリマー樹脂に対する重量比率が、7:3を超えると電極とセパレータとの密着性が低下し、充放電サイクルを繰り返した場合、正極あるいは負極とセパレータとの電気的な接続の維持が困難になり、サイクル特性が劣化する。
【0027】
ポリマー樹脂層は、ポリマー樹脂に溶媒を添加したスラリー状の塗布液を塗布することにより形成することができる。また、ポリマー樹脂に絶縁体粒子を分散させる場合は、塗布液に、前述した絶縁体粒子を添加して調整すればよい。溶媒は、ポリマー樹脂に対する溶解性が高い良溶媒のみを用いても良いが、良溶媒とポリマー樹脂に対する溶解性が低い貧溶媒を混合して用いることが好ましい。また、貧溶媒を混合する場合、貧溶媒は、良溶媒よりも15℃以上高い沸点を有することが好ましい。このような貧溶媒を良溶媒と混合して用いることにより、ポリマー樹脂をより好適に多孔質とすることができる。このようにポリマー樹脂を多孔質とすることで、電解液を良好に保持し、イオン伝導度を向上させる効果が得られる。
【0028】
例えば、良溶媒としては、ポリマー樹脂として好適なポリフッ化ビニリデン(PVDF)に対しては、ジメチルホルムアミド(DMF:沸点153℃)や、Nーメチル2−ピロリドン(NMP:沸点204℃)を用いることができる。また、貧溶媒としては、ブチルセルソロブ(BCS:沸点170.6℃)や1オクタノール(沸点195℃)を用いることができる。これらの良溶媒と貧溶媒は、沸点の違いから、DMFとBCS、DMFと1オクタノールとを混合して用いることが好ましい。
【0029】
非水電解液は、リチウム塩と非水溶媒よりなる。リチウム塩はリチウムイオンを含む支持塩であり、具体的にはLiBF、LiPF、LiAsF、LiSOCF、LiClO、LiN(SOCFなどの塩、または、これらの混合物などを用いることができる。
【0030】
非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(略称DEC)、エチルメチルカーボネート(EMC)などのカーボネート類、テトラヒドロフラン(THF)、2−メチルテトラフランなどの環式エーテル、1,3ージオキソラン、4−メチルジオキソランなどの環式エーテル、γーブチルラクトンなどのラクトン、スルホランなどや3−メチルスルホラン、ジメトキシエタン、ジエトキシエタン、エトキシメトキシエタン、エチルジグライムなどの溶媒、または、これらの混合物を用いることができる。
【0031】
リチウム塩の非水溶媒に対する濃度は、0.3〜5モル/リットルが好ましい。この範囲とすることで、高いイオン伝導性を得ることができる。また、電解液に電池の特性を改善をする化合物を添加しても良い。添加する化合物は、例えば、保存特性やサイクル特性の改善を目的として、ビニレンカーボネートや硫黄を含む有機化合物を用いることができる。
【0032】
ゲル状固体電解質層の厚さは、0.5〜5μmが好ましい。ゲル状固体電解質層の厚さが、0.5μmより薄いと電極とセパレータとの間の接着性が低下し、サイクル特性が劣化する。また、5μmより厚いとエネルギー密度の低下やゲル状固体電解質層内のイオン伝導抵抗が増大する。
【0033】
正極、負極の電極は、集電体の両面または片面に電極活物質が形成された構成である。電極には、導電助剤、電極活物質を結着する結着剤を用いることが好ましい。電極の材質は、公知のものの中から適宜選択して用いればよい。
【0034】
正極活物質は、リチウムを含む酸化物や炭素系材料を用いることが好ましい。このような材料においては、リチウムイオンがその層間にインターカレート、デインターカレートが可能である。リチウムを含む酸化物は、LiCoO、LiMn、LiNiO、LiVなどの複合酸化物を用いることができる。また、これらの酸化物の平均粒径は、1〜40μmであることが好ましい。
【0035】
負極活物質は、例えば、炭素系材料、リチウム金属、リチウム合金、酸化物材料などから適宜選択すればよい。炭素系材料は、例えば、メソカーボンマイクロビーズ(MCMB)、天然あるいは人造の黒鉛、樹脂焼成炭素材料、カーボンブラック、炭素繊維などを用いることができる。このうち黒鉛は、化学的に安定であることから好ましい。また、負極活物質の平均粒径は1〜30μm、特に5〜25μmであることが好ましい。平均粒径がこれよりも小さいと充放電サイクル寿命が短くなり、完成した電池の個体間の容量ばらつきが大きくなる。また、負極活物質の平均粒径がこの範囲より大きいと、負極活物質と集電体の接触や負極活物質の同士の接触にばらつきが生じる。このため、電池容量のばらつきが著しく大きくなり、平均容量が小さくなってしまう。
【0036】
導電助剤は、好ましくは黒鉛、膨張黒鉛、カーボンブラック、炭素系繊維などの炭素系材料や、ニッケル、アルミニウム、銅、銀などの金属を用いることができる。このうち、特に、黒鉛、カーボンブラックが化学的に安定であることから好ましい。
【0037】
結着剤は、例えば、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂などの熱可塑性エラストマー系樹脂、又はフッ素ゴムなどのゴム系樹脂から適宜選択すればよい。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリアクリロニトリル、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレンーブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、カルボキシメチルセルロースなどを用いることができる。
【0038】
また、正極は、活物質を80〜94重量%、導電助剤を2〜8重量%、結着剤を2〜18の範囲で含有することが好ましく、負極は、活物質を70〜97重量%、導電助剤を0〜25重量%、結着剤を3〜10重量%の範囲で含有することが好ましい。
【0039】
集電体の材質は、特に制限はなく、例えば、正極集電体にはアルミニウム、負極集電体には銅またはニッケルを用いることができる。また、集電体は、これらの材質を用いた金属箔や金属メッシュなどとすることができ、形状は電池の形状やケース内への配置方法に応じて、適宜選択ことができる。
【0040】
セパレーターは、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン類の一種又は二種以上、ポリエチレンテレフターレートのようなポリエステル類、エチレン−テトラフルオロエチレン共重合体のような熱可塑性フッ素樹脂類、セルロース類などにより構成することができる。このうち、ポリオレフィン類が好ましい。また、セパレータは、JIS−P8117に規定される方法で測定した通気度が5〜2000秒/100ccの微多孔膜や、織布、不織布などの形態とすることができる。
【0041】
また、セパレータは、過充電や、外部または内部短絡などの原因により電池温度が上昇した場合、所定の温度以上でセパレーターの一部が溶融して空隙が閉塞され、電極間のイオン伝導が遮断されるシャットダウン機能を有している材料、構成とすることが好ましい。
【0042】
正極および負極である電極は、セパレータを介して積層され、電極群が構成される。電極群を収納する外装体は、材質や形状に特に制限はない。外装体は、収納される電極群や電解質に特性の変化を与えることがなく、これらにより外装体が浸食されるものでなければ良い。また、外装体の形状は、外気を遮断し、内部の電解質を外部に漏らさない密閉性を持つものであれば良い。具体的には、材質を鉄やアルミニウムなどの金属やアルミラミネートフィルムとし、形状は缶状のものや円筒状あるいは角形状のものとすることができる。
【0043】
【実施例】
以下、本発明を、実施例および従来例に基づいてさらに詳細に説明する。
[実施例1および従来例]
本発明の固体電解質電池の一例としてリチウム二次電池を作製した。
【0044】
負極活物質として、人造黒鉛であるメソカーボンマイクロビーズ(MCMB;大阪ガス製)を用い、導電助剤として、カーボンブラック(電気化学工業製:HS−100)、結着剤として、ポリフッ化ビニリデン(PVDF;エルフ・アトケム社製:KynarFlex761A)を用いた。そして、上記の負極活物質、導電助剤、結着剤と、溶媒として、N−メチル−2−ピロリドン(NMP)とを、室温で、所定の比率で混合して負極用スラリー状の塗布液を調整した。この負極塗布液を、ドクターブレード法で厚さ10μmの銅箔集電体の両面に塗布したのち、乾燥させることで集電体と一体化した負極シートを作製した。
【0045】
次に、正極活物質として、LiCoO(セイミケミカル製:C−010)、導電助剤として、カーボンブラック(電気化学工業製:HS−100)およびグラファイト(TIMCAL製:KS−6)、結着剤として、負極に用いたものと同様のポリフッ化ビニリデンを用いた。上記の正極活物質、導電助剤、結着剤と、溶媒として、N−メチル−2−ピロリドン(NMP)とを、室温で、所定の比率で混合して負極用スラリー状の塗布液を調整した。この正極塗布液を、ドクターブレード法で厚さ20μmのアルミニウム箔集電体の両面に塗布したのち、乾燥させることで集電体と一体化した正極シートを作製した。
【0046】
そして、正、負極シートを所定の厚みとなるようにプレスし、さらに、所定の形状に打ち抜いて正極および負極とした。
【0047】
ポリマー樹脂層は、次のようにして作製した。疎水処理された絶縁体粒子として疎水性フュームドシリカ(NAX50、日本アエロジル製:平均粒径0.05μm)と、ポリマー樹脂として、PVDF(KF−1100、呉羽製)を用いた。このとき、絶縁体粒子のポリマー樹脂に対する重量比率は、絶縁体粒子:ポリマー樹脂=6:4とした。また、PVDFに対する良溶媒であるジメチルホルムアミド(DMF)と貧溶媒である1−オクタノールをDMF:1−オクタノール=75:25wt%の比率になるように混合し溶媒とした。
【0048】
絶縁体粒子とポリマー樹脂との合計10重量部に対して溶媒を90重量部加えてスラリー状のポリマー樹脂塗布液とした。この塗布液をセパレータ(東燃化学製、SETELA E16MMS)両面にドクターブレード法で塗布したのち、乾燥させ、所定の形状に打ち抜いた。
【0049】
ついで、正極と負極との間に上記のポリマー樹脂を塗布したセパレータを挟み、積層して電極群とした。電極群を袋状のアルミラミネートフィルムからなる外装体に収納したのち、電解液を注入した。電解液は、エチレンカーボネート:ジエチルカーボネート=3:7(体積比)である混合溶媒にLiPFを1モルの濃度で溶解して作製した。さらに、外装体を80℃の熱プレスにより密封し、密閉したのち、電池を80℃、0.3MPaの条件で熱プレスにより成形し、積層型ゲル状固体電解質リチウム二次電池を得た(実施例1)。
【0050】
また、ポリマ−樹脂層を形成する際に、絶縁体粒子を分散させずポリマー樹脂であるPVDF(呉羽製:KF−1100)のみとした以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(従来例)。
【0051】
実施例1および従来例のゲル状固体電解質リチウム二次電池100個について、異なる負荷に対する放電量を評価することを目的としてレート特性評価と、電池の寿命の評価を目的として充放電サイクル試験を行った。レート特性評価は、電池設計の基準充電条件である1Cの定電流充電に対して半分の充電条件となる0.5Cの定電流条件と、2倍の充電条件となる2Cの定電流条件で充電したのち、放電量を評価した。レート特性は2.0C/0.5Cの比が高いほど好ましいが。80%以上を使用可とし、90以上を良と判断した。また、充放電サイクル試験は基準充電条件である1Cで4.2Vに達するまで充電したのち、3.0Vまで放電させる充放電サイクルを400サイクル繰り返し、充放電サイクルに伴う放電量の変化を評価した。サイクル特性は400サイクル後の容量が初期の容量の60%以上であれば使用可とし、80%以上を良と判断した。その結果を表1に示す。
【0052】
【表1】

Figure 2004014373
【0053】
上記の結果より、実施例1は、従来例に対して高い電池容量を有していることが示される。このことは、電解質に絶縁体粒子を分散させていない従来例に対し、絶縁体粒子を分散させることにより電解質のイオン伝導度が向上していることによると考えられる。
【0054】
また、実施例1の2.0C/0.5Cの比は、96%であり、レート特性は良と判断された。また、400サイクルの充放電後の1.0C容量は、初期容量の88%の容量であり、良と判断された。このように良好なレート特性やサイクル特性を有することは、絶縁体粒子であるシリカが疎水処理されているために水分の吸着がなく、電解質に水分の混入がないためと考えられる。
【0055】
一方、従来例は、レート特性、サイクル特性とも実施例1に比べて大きく劣り、それぞれ使用不可と判断された。このことは絶縁体粒子であるシリカが疎水処理されていない親水性シリカであるために水分の吸着があり、電解質が劣化したためであると考えられる。
【0056】
[実施例2]
ポリマー樹脂層に分散させた絶縁体粒子を親水性フュームドシリカ(日本アエロジル製:#50)とした以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例2)。実施例2について、実施例1と同様の評価を行った。その結果を表2に示す。
【表2】
Figure 2004014373
【0057】
実施例2は、レート特性、サイクル特性ともに、それぞれ使用可と判断された。このことは絶縁体粒子であるシリカが疎水処理されていない親水性シリカであるために水分の吸着があり、電解質が劣化したためであると考えられる。
【0058】
[実施例3]
ポリマー樹脂層を形成する際に、絶縁体粒子である疎水性フュームドシリカのポリマー樹脂であるPVDFに対する重量比率を絶縁体粒子:ポリマー樹脂=8:2とした以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例3)。実施例3について、実施例1と同様の評価を行った。その結果を表3に示す。
【表3】
Figure 2004014373
実施例3は、レート特性は、良と判断されたが、サイクル特性は、使用可と判断された。このことは絶縁体粒子である疎水性シリカがポリマー樹脂に対して好ましい範囲よりも多いため、電極とセパレータとの密着性が低下したことによりサイクル特性が劣化したと考えられる。
【0059】
[実施例4]
ポリマー樹脂層を形成する際に、絶縁体粒子である疎水性フュームドシリカのポリマー樹脂であるPVDFに対する重量比率を絶縁体粒子:ポリマー樹脂=2:8とした以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例4)。実施例4について、実施例1と同様の評価を行った。その結果を表4に示す。
【0060】
【表4】
Figure 2004014373
【0061】
実施例4の電池容量は、従来例に対して高いものの実施例1に対してやや劣ることがわかる。このことは、電解質に絶縁体粒子を分散させていない従来例に対し、レート特性は、良と判断されたが、サイクル特性は、使用可と判断された。このことは絶縁体粒子である疎水性シリカがポリマー樹脂に対して好ましい範囲よりも少ないため、電解質のイオン伝導度の向上が十分ではなかったことによると考えられる。しかし、このように電池容量はやや劣るもののレート特性、サイクル特性ともに、それぞれ良と判断された。
【0062】
[実施例5]
ポリマー樹脂層を形成する際に、疎水処理された絶縁体粒子として平均粒径0.005μmの疎水性フュームドシリカを用いた以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例5)。実施例5について、実施例1と同様の評価を行った。その結果を表5に示す。
【表5】
Figure 2004014373
【0063】
実施例5の電池容量は、従来例に対して高いものの実施例1に対してやや劣ることがわかる。このことは、絶縁体粒子の平均粒径が好ましい範囲よりも小さいため、絶縁体粒子が偏析を生じ、電解質のイオン伝導度の向上が十分ではなかったことによると考えられる。しかし、このように電池容量はやや劣るもののレート特性、サイクル特性ともに、それぞれ良と判断された。
【0064】
[実施例6]
ポリマー樹脂層を形成する際に、疎水処理された絶縁体粒子として平均粒径1.5μmの疎水性フュームドシリカを用いた以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例6)。実施例6について、実施例1と同様の評価を行った。その結果を表6に示す。
【表6】
Figure 2004014373
【0065】
実施例6の電池容量は、従来例に対して高いものの実施例6に対してやや劣ることがわかる。このことは、絶縁体粒子の平均粒径が好ましい範囲よりも大きいため、電解質のイオン伝導度の向上が十分ではなかったことによると考えられる。しかし、このように電池容量はやや劣るもののレート特性、サイクル特性ともに、それぞれ良と判断された。
【0066】
[実施例7]
ポリマー樹脂塗布液に用いた溶媒をポリマー樹脂であるPVDFに対して良溶媒であるNMPとした以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例7)。実施例7について、実施例1と同様の評価を行った。その結果を表7に示す。
【表7】
Figure 2004014373
【0067】
実施例7は、レート特性、サイクル特性とも良と判断された。電池容量は、実施例1に比べて劣るものの高い容量を有していることがわかる。このことは、ポリマー樹脂塗布液に用いた溶媒をNMPとしたためポリマー樹脂が十分に多孔質とされていないためと考えられる。
【0068】
[実施例8]
ポリマー樹脂をVDF−HFP共重合体(VDF:HEP=90:10wt%;エルフ・アトケム社製:Kynar2801)を用いたこと以外は実施例1と同様にして積層型ゲル状固体電解質リチウム二次電池を作製した(実施例8)。このとき、絶縁体粒子である疎水性フュームドシリカのポリマー樹脂であるVDF−HFP共重合体に対する重量比率は、絶縁体粒子:ポリマー樹脂=6:4とした。また、ポリマー樹脂塗布液に用いた溶媒は、実施例1で用いた溶媒と同様にDMF:1−オクタノール=75:25wt%の比率になるように混合した溶媒とした。溶媒中のDMFと1−オクタノールは、VDF−HFP共重合体に対してそれぞれ良溶媒、貧溶媒である。この実施例8について、実施例1と同様の評価を行った。その結果を表8に示す。
【表8】
Figure 2004014373
【0069】
実施例8の電池容量は、実施例1に比べて同等であり、また、レート特性、サイクル特性とも良と判断された。このようにVDF−HFP共重合体は、PVDFと同様にポリマー樹脂として好適であることがわかる。
【0070】
以上、本発明の固体電解質電池の好適な実施の形態と実施例について説明したが、本発明はこれらの例に限定されない。いわゆる当業者であれば、特許請求の範囲に記載された範囲内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲内に属している。
【0071】
【発明の効果】
本発明によれば、ゲル状固体電解質のポリマー樹脂中に絶縁体粒子を分散させることにより、固体電解質のイオン伝導度を向上させることができ、高容量の二次電池を提供することができる。また、ポリマー樹脂中に絶縁体粒子としてセラミックス粒子を分散させた場合であっても、ゲル状固体電解質に水分が混入を防ぎ、電池特性の優れた二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である固体電解質電池の断面図である。
【符号の説明】
11 固体電解質電池
13 正極
131 正極活物質
132 正極集電体
14 負極
141 負極活物質
142 負極集電体
15 セパレータ
16 電極群
17 電解質
18 外装体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid electrolyte battery, and more particularly, to a gel solid electrolyte lithium secondary battery using a gel solid electrolyte.
[0002]
[Prior art]
2. Description of the Related Art In portable electronic devices such as mobile phones and notebook computers, higher capacity power supplies are required, and demand for non-aqueous secondary batteries such as lithium secondary batteries to meet the demand is increasing. The non-aqueous secondary battery has a configuration in which an electrode group in which positive and negative electrodes and an electrolyte are stacked therebetween is housed in an exterior body.
[0003]
[Problems to be solved by the invention]
In such a non-aqueous secondary battery, since a liquid non-aqueous electrolyte is used as an electrolyte, there is a possibility that a liquid leak may occur.
[0004]
For this reason, from the viewpoint of improving safety, a gel solid electrolyte battery has been receiving attention. In this gel solid electrolyte battery, a gel solid electrolyte in which a non-aqueous electrolyte is impregnated into a polymer resin made of a polymer material is used.
[0005]
Such a gel-like solid electrolyte has a lower ionic conductivity than a non-aqueous electrolyte, and has hindered an attempt to increase the capacity of a battery. For this reason, attempts have been made to improve the ionic conductivity of the gelled solid electrolyte. For example, Japanese Patent Application Laid-Open No. 9-306543 discloses a lithium secondary battery having a gel-like solid electrolyte in which ceramic particles are dispersed in a polymer resin. In this lithium secondary battery, high ion conductivity is exhibited by high-speed movement of ions on the surface of the ceramic particles in the gelled solid electrolyte.
[0006]
Furthermore, the gel-like solid electrolyte has low mechanical strength, and may cause an internal short circuit due to physical contact between the positive electrode and the negative electrode. Therefore, a gel solid electrolyte battery having improved mechanical strength by combining a separator having high mechanical strength with a gel solid electrolyte has been proposed. For example, JP-A-2000-149905 and JP-A-2001-43897 disclose a gel-type solid electrolyte battery in which a separator made of a microporous membrane is provided between electrodes, and between the positive electrode and the separator, and In this configuration, a gel-like solid electrolyte is provided between the negative electrode and the separator.
[0007]
However, in a solid electrolyte battery in which a separator and a gel-like solid electrolyte are combined, there is a problem that the ion conductivity between the electrodes has to be reduced due to the structure having the separator separating the electrolyte between the electrodes.
[0008]
In addition, the gel-like solid electrolyte has a problem that the characteristics are deteriorated due to moisture absorption. As described above, when water is mixed into the gelled solid electrolyte, the mixed water easily reacts with the electrolytic solution, HF gas is generated, and the battery characteristics such as rate characteristics and cycle characteristics are deteriorated. In particular, since the ceramic particles have a hygroscopic property, when the ceramic particles are dispersed in the polymer resin as described above, the mixing of water into the gel-like solid electrolyte was remarkable.
[0009]
The present invention has been made to solve such a problem, and even in a solid electrolyte battery in which a separator having high mechanical strength and a gel solid electrolyte are combined, the ionic conductivity of the gel solid electrolyte is high. And to provide a high capacity solid electrolyte battery. It is another object of the present invention to provide a solid electrolyte battery having excellent battery characteristics even when ceramic particles are dispersed in a polymer resin, without water being mixed into the gel solid electrolyte.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the solid electrolyte battery of the present invention has a structure in which a positive electrode and a negative electrode are alternately stacked with a separator interposed therebetween, and a polymer is provided between the positive electrode and the separator and / or between the negative electrode and the separator. A solid electrolyte battery in which a gel solid electrolyte in which a resin is impregnated with a nonaqueous electrolyte is interposed, and at least one of the gel solid electrolyte between the positive electrode and the separator or between the negative electrode and the separator is a polymer. It is characterized by including insulating particles dispersed in a resin.
[0011]
With such a configuration, even in a solid electrolyte battery in which a separator having high mechanical strength and a gel solid electrolyte are combined, the ionic conductivity of the gel solid electrolyte is improved, and the high capacity solid electrolyte is improved. It can be a battery.
[0012]
The insulator particles are preferably subjected to a hydrophobic treatment. By doing so, it is possible to prevent water from being mixed into the gelled solid electrolyte.
[0013]
The average particle diameter of the insulator particles is preferably 0.01 to 1 μm. Within this range, the insulating particles can be appropriately dispersed in the polymer resin.
[0014]
For example, ceramic particles can be used as the insulator particles. This is because ceramic particles have high insulating properties.
[0015]
Further, the insulator particles may be silicon dioxide particles. Silicon dioxide has good dispersibility in a polymer resin.
[0016]
The weight ratio of the insulator particles to the polymer resin (insulator particles: polymer resin) is preferably from 3: 7 to 7: 3. With this range, good ion conduction can be obtained without impairing the adhesion between the electrode and the separator.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view of a solid electrolyte battery according to one embodiment of the present invention. The solid electrolyte battery 11 has a structure in which the positive electrode active material 131 is formed on the surface of the positive electrode current collector 132 and is integrated, and the negative electrode active material 142 is formed on the surface of the negative electrode current collector 141 and is integrated. The negative electrode 14 having the structure described above is alternately stacked with the separator 15 interposed therebetween. Then, between the positive electrode and the separator, and between the separator and the negative electrode, an electrode group 16 in which a gel-like solid electrolyte 17 in which a non-aqueous electrolyte is impregnated in a polymer resin is interposed, is provided on the exterior body 18. It is a configuration that is stored. The gel-like solid electrolyte 17 includes insulator particles dispersed in a polymer resin.
[0018]
The solid electrolyte battery of the present embodiment has a configuration in which both the gel solid electrolyte between the positive electrode and the separator and between the negative electrode and the separator include insulator particles dispersed in a polymer resin. With such a configuration, even in a solid electrolyte battery in which a separator having high mechanical strength and a gel solid electrolyte are combined, the ionic conductivity of the gel solid electrolyte is improved, and the high capacity solid electrolyte is improved. It can be a battery.
[0019]
The gel-like solid electrolyte may be formed on only one of the space between the positive electrode and the separator and between the negative electrode and the separator, or may be formed on both. The insulating particles may be dispersed in only one of the polymer resin layers formed between the positive electrode and the separator and between the negative electrode and the separator, or may be dispersed in both. . Alternatively, a configuration may be adopted in which only one of the space between the positive electrode and the separator or the space between the negative electrode and the separator has a polymer resin layer in which the insulating particles are dispersed, and the other does not have the polymer resin layer.
[0020]
The following materials can be used for the solid electrolyte battery according to the present embodiment.
[0021]
The insulator particles do not react with the non-aqueous electrolyte constituting the electrolyte, and need only be dispersed in a polymer resin, and use ceramic particles made of various oxides and carbides or organic resin particles such as polyethylene. be able to. Among them, ceramic particles are preferable because of their high insulating properties. Specifically, ceramic materials such as alumina, silicon dioxide, and SiC can be suitably used. Among them, silicon dioxide is particularly preferred from the viewpoint of dispersibility in a polymer resin.
[0022]
Further, the insulator particles are preferably subjected to a hydrophobic treatment. The hydrophobic treatment can be performed by, for example, immersing the insulating particles in a treatment agent, leaving the insulation particles to stand for a certain time of about 1 to 24 hours, and then removing the treatment agent. As the treating agent, for example, dimethyldichlorosilane, hexamethyldisilazane, octylsilane, dimethylsilicone oil and the like can be used. By subjecting the insulator particles to a hydrophobic treatment, the incorporation of moisture into the gelled solid electrolyte can be prevented.
[0023]
The average particle size of the insulator particles is preferably 0.01 to 1 μm. Within this range, the insulating particles can be appropriately dispersed in the polymer resin. If the average particle size is smaller than 0.01 μm, segregation may occur. On the other hand, if it exceeds 1 μm, the ionic conductivity is not sufficiently improved. The average particle size of the insulator particles can be measured by observing the cross section of the completed battery with an electron microscope or the like.
[0024]
In the gelled solid electrolyte, the polymer resin impregnated with the non-aqueous electrolyte is made of a material that has resistance to the non-aqueous electrolyte and does not undergo an oxidation-reduction reaction with the non-aqueous electrolyte. Specifically, for example, it can be composed of polyvinylidene fluoride (PVDF) or a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) (VDF-HFP copolymer).
[0025]
The weight ratio of the insulator particles to the polymer resin (insulator particles: polymer resin) is preferably 3: 7 to 7: 3. With this range, good ion conduction can be obtained without impairing the adhesion between the electrode and the separator.
[0026]
If the weight ratio of the insulating particles to the polymer resin is less than 3: 7, the ionic conduction resistance in the gelled solid electrolyte layer increases, and the battery characteristics deteriorate. On the other hand, if the weight ratio of the insulating particles to the polymer resin exceeds 7: 3, the adhesion between the electrode and the separator decreases, and when the charge / discharge cycle is repeated, the electrical connection between the positive electrode or the negative electrode and the separator is reduced. Maintenance becomes difficult, and the cycle characteristics deteriorate.
[0027]
The polymer resin layer can be formed by applying a slurry-like coating solution obtained by adding a solvent to a polymer resin. In the case where the insulating particles are dispersed in the polymer resin, the above-mentioned insulating particles may be added to the coating solution and adjusted. As the solvent, only a good solvent having high solubility in the polymer resin may be used, but it is preferable to use a mixture of a good solvent and a poor solvent having low solubility in the polymer resin. When a poor solvent is mixed, the poor solvent preferably has a boiling point higher than that of the good solvent by 15 ° C. or more. By using such a poor solvent mixed with a good solvent, the polymer resin can be more suitably made porous. By making the polymer resin porous as described above, the effect of maintaining the electrolyte solution well and improving the ionic conductivity can be obtained.
[0028]
For example, as a good solvent, dimethylformamide (DMF: boiling point: 153 ° C.) or N-methyl 2-pyrrolidone (NMP: boiling point: 204 ° C.) is used for polyvinylidene fluoride (PVDF) suitable as a polymer resin. it can. As the poor solvent, butylcellulob (BCS: boiling point: 170.6 ° C.) or 1-octanol (boiling point: 195 ° C.) can be used. These good solvents and poor solvents are preferably used in a mixture of DMF and BCS, or DMF and 1 octanol, due to the difference in boiling points.
[0029]
The non-aqueous electrolyte comprises a lithium salt and a non-aqueous solvent. A lithium salt is a supporting salt containing lithium ions, and specifically, LiBF 4 , LiPF 6 , LiAsF 6 , LiSO 3 CF 3 , LiClO 4 , LiN (SO 2 CF 3 ) 2 Or a mixture thereof.
[0030]
Examples of the non-aqueous solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, dimethyl carbonate (DMC), diethyl carbonate (abbreviated as DEC), and ethyl methyl carbonate (EMC), and tetrahydrofuran (THF). , Cyclic ethers such as 1,3-dioxolane and 4-methyldioxolane, lactones such as γ-butyl lactone, sulfolane and the like, 3-methylsulfolane, dimethoxyethane, diethoxyethane, ethoxymethoxy Solvents such as ethane and ethyl diglyme, or a mixture thereof can be used.
[0031]
The concentration of the lithium salt in the non-aqueous solvent is preferably from 0.3 to 5 mol / l. Within this range, high ion conductivity can be obtained. Further, a compound for improving the characteristics of the battery may be added to the electrolytic solution. As the compound to be added, for example, organic compounds containing vinylene carbonate or sulfur can be used for the purpose of improving storage characteristics and cycle characteristics.
[0032]
The thickness of the gel-like solid electrolyte layer is preferably 0.5 to 5 μm. If the thickness of the gel-like solid electrolyte layer is less than 0.5 μm, the adhesiveness between the electrode and the separator will decrease, and the cycle characteristics will deteriorate. On the other hand, when the thickness is more than 5 μm, the energy density decreases and the ionic conduction resistance in the gel-like solid electrolyte layer increases.
[0033]
The positive electrode and the negative electrode have a structure in which an electrode active material is formed on both surfaces or one surface of a current collector. It is preferable to use a conductive auxiliary agent and a binder for binding the electrode active material for the electrode. The material of the electrode may be appropriately selected from known materials.
[0034]
As the positive electrode active material, an oxide containing lithium or a carbon-based material is preferably used. In such a material, lithium ions can intercalate and deintercalate between the layers. The oxide containing lithium is LiCoO. 2 , LiMn 2 O 4 , LiNiO 2 , LiV 2 O 4 And the like. The average particle size of these oxides is preferably 1 to 40 μm.
[0035]
The negative electrode active material may be appropriately selected from, for example, a carbon-based material, a lithium metal, a lithium alloy, and an oxide material. As the carbon-based material, for example, mesocarbon microbeads (MCMB), natural or artificial graphite, resin-fired carbon material, carbon black, carbon fiber, and the like can be used. Of these, graphite is preferred because it is chemically stable. The average particle size of the negative electrode active material is preferably 1 to 30 μm, particularly preferably 5 to 25 μm. If the average particle size is smaller than this, the charge / discharge cycle life is shortened, and the capacity variation among the completed batteries becomes large. If the average particle diameter of the negative electrode active material is larger than this range, the contact between the negative electrode active material and the current collector and the contact between the negative electrode active materials vary. For this reason, the variation in the battery capacity becomes extremely large, and the average capacity becomes small.
[0036]
As the conductive assistant, a carbon-based material such as graphite, expanded graphite, carbon black, or carbon-based fiber, or a metal such as nickel, aluminum, copper, or silver can be preferably used. Among them, graphite and carbon black are particularly preferable because they are chemically stable.
[0037]
The binder may be appropriately selected from, for example, a thermoplastic elastomer resin such as a fluorine resin, a polyolefin resin, a styrene resin, and an acrylic resin, or a rubber resin such as a fluorine rubber. Specifically, it is possible to use polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, carboxymethylcellulose, or the like. it can.
[0038]
The positive electrode preferably contains 80 to 94% by weight of the active material, 2 to 8% by weight of the conductive additive, and 2 to 18% of the binder. The negative electrode contains 70 to 97% by weight of the active material. %, A conductive additive in a range of 0 to 25% by weight, and a binder in a range of 3 to 10% by weight.
[0039]
The material of the current collector is not particularly limited. For example, aluminum can be used for the positive electrode current collector, and copper or nickel can be used for the negative electrode current collector. Further, the current collector can be a metal foil or a metal mesh using these materials, and the shape can be appropriately selected according to the shape of the battery and the method of disposing the battery in the case.
[0040]
Separators are, for example, polyethylene, one or more polyolefins such as polypropylene, polyesters such as polyethylene terephthalate, thermoplastic fluororesins such as ethylene-tetrafluoroethylene copolymer, celluloses and the like. Can be configured. Of these, polyolefins are preferred. The separator may be in the form of a microporous membrane having a permeability of 5 to 2000 seconds / 100 cc measured by a method specified in JIS-P8117, a woven fabric, a nonwoven fabric, or the like.
[0041]
In addition, when the battery temperature rises due to overcharging, external or internal short circuit, etc., a part of the separator melts at a predetermined temperature or more, the void is closed, and ion conduction between the electrodes is cut off. It is preferable to use a material and a structure having a shutdown function.
[0042]
Electrodes, which are a positive electrode and a negative electrode, are stacked via a separator to form an electrode group. There is no particular limitation on the material and shape of the exterior body that houses the electrode group. The exterior body does not need to change the characteristics of the housed electrode group and the electrolyte, and the exterior body may be eroded by these. Further, the shape of the exterior body may be any as long as it has a sealing property that blocks external air and does not leak the internal electrolyte to the outside. Specifically, the material may be a metal such as iron or aluminum or an aluminum laminated film, and the shape may be a can, a cylinder, or a square.
[0043]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and conventional examples.
[Example 1 and Conventional Example]
A lithium secondary battery was manufactured as an example of the solid electrolyte battery of the present invention.
[0044]
As the negative electrode active material, mesocarbon microbeads (MCMB; manufactured by Osaka Gas Co., Ltd.), which is artificial graphite, carbon black (HS-100 manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive aid, and polyvinylidene fluoride (PVD) as a binder PVDF; manufactured by Elf Atochem: KynarFlex 761A) was used. Then, the above-mentioned negative electrode active material, conductive auxiliary agent, binder and N-methyl-2-pyrrolidone (NMP) as a solvent are mixed at room temperature at a predetermined ratio to form a slurry-like coating liquid for a negative electrode. Was adjusted. This negative electrode coating solution was applied to both sides of a copper foil current collector having a thickness of 10 μm by a doctor blade method, and then dried to produce a negative electrode sheet integrated with the current collector.
[0045]
Next, as a positive electrode active material, LiCoO 2 (Manufactured by Seimi Chemical: C-010), carbon black (HS-100 manufactured by Denki Kagaku Kogyo) and graphite (KS-6 manufactured by TIMCAL) as conductive aids, and the same as those used for the negative electrode as a binder Was used. The above-mentioned positive electrode active material, conductive auxiliary agent, binder, and N-methyl-2-pyrrolidone (NMP) as a solvent are mixed at room temperature in a predetermined ratio to prepare a slurry-like coating solution for a negative electrode. did. This positive electrode coating solution was applied to both surfaces of a 20 μm-thick aluminum foil current collector by a doctor blade method, and then dried to produce a positive electrode sheet integrated with the current collector.
[0046]
Then, the positive and negative electrode sheets were pressed to have a predetermined thickness, and were punched into a predetermined shape to obtain a positive electrode and a negative electrode.
[0047]
The polymer resin layer was produced as follows. Hydrophobic fumed silica (NAX50, manufactured by Nippon Aerosil: average particle size: 0.05 μm) was used as the insulating particles subjected to the hydrophobic treatment, and PVDF (KF-1100, manufactured by Kureha) was used as the polymer resin. At this time, the weight ratio of the insulator particles to the polymer resin was set to insulator particle: polymer resin = 6: 4. Also, dimethylformamide (DMF), which is a good solvent for PVDF, and 1-octanol, which is a poor solvent, were mixed at a ratio of DMF: 1-octanol = 75: 25 wt% to obtain a solvent.
[0048]
90 parts by weight of a solvent was added to a total of 10 parts by weight of the insulator particles and the polymer resin to obtain a slurry-like polymer resin coating solution. This coating solution was applied to both surfaces of a separator (manufactured by Tonen Kagaku, SETELA E16MMS) by a doctor blade method, dried, and punched into a predetermined shape.
[0049]
Next, a separator coated with the above-described polymer resin was sandwiched between the positive electrode and the negative electrode, and laminated to form an electrode group. After the electrode group was housed in a bag-shaped outer package made of an aluminum laminated film, an electrolyte was injected. The electrolytic solution was prepared by adding LiPF to a mixed solvent of ethylene carbonate: diethyl carbonate = 3: 7 (volume ratio). 6 Was dissolved at a concentration of 1 mol. Further, the exterior body was sealed with a hot press at 80 ° C., and after sealing, the battery was molded by hot press at 80 ° C. and 0.3 MPa to obtain a laminated gel-type solid electrolyte lithium secondary battery (implementation). Example 1).
[0050]
In addition, when forming the polymer resin layer, the laminated gel solid electrolyte was prepared in the same manner as in Example 1 except that only the polymer resin PVDF (KF-1100 made by Kureha) was used without dispersing the insulating particles. A lithium secondary battery was manufactured (conventional example).
[0051]
For 100 gel solid electrolyte lithium secondary batteries of Example 1 and the conventional example, a rate characteristic evaluation was performed for the purpose of evaluating the discharge amount for different loads, and a charge / discharge cycle test was performed for the purpose of evaluating the battery life. Was. The evaluation of the rate characteristics was performed under the constant current condition of 0.5 C, which is half the charge condition with respect to the constant current charge of 1 C, which is the reference charge condition for battery design, and the constant current condition of 2 C, which is twice the charge condition. After that, the discharge amount was evaluated. It is preferable that the rate characteristic is higher as the ratio of 2.0C / 0.5C is higher. 80% or more was usable, and 90 or more was judged as good. In the charge / discharge cycle test, the battery was charged at 1 C, which is a reference charge condition, until the voltage reached 4.2 V, and then the battery was discharged to 3.0 V, 400 charge / discharge cycles were repeated, and the change in the discharge amount accompanying the charge / discharge cycle was evaluated. . The cycle characteristics were determined to be usable if the capacity after 400 cycles was 60% or more of the initial capacity, and 80% or more was judged to be good. Table 1 shows the results.
[0052]
[Table 1]
Figure 2004014373
[0053]
The above results show that Example 1 has a higher battery capacity than the conventional example. This is considered to be due to the fact that the ionic conductivity of the electrolyte is improved by dispersing the insulating particles as compared with the conventional example in which the insulating particles are not dispersed in the electrolyte.
[0054]
The ratio of 2.0C / 0.5C in Example 1 was 96%, and the rate characteristics were determined to be good. The 1.0 C capacity after 400 cycles of charging and discharging was 88% of the initial capacity, and was determined to be good. It is considered that such good rate characteristics and cycle characteristics are due to the fact that silica, which is an insulator particle, has been subjected to a hydrophobic treatment so that no water is adsorbed and no water is mixed into the electrolyte.
[0055]
On the other hand, in the conventional example, both the rate characteristics and the cycle characteristics were significantly inferior to those in the first embodiment, and it was determined that each of them could not be used. This is considered to be because the silica, which is an insulator particle, is a hydrophilic silica that has not been subjected to a hydrophobic treatment, so that moisture is adsorbed and the electrolyte is deteriorated.
[0056]
[Example 2]
A laminated gel-type solid electrolyte lithium secondary battery was produced in the same manner as in Example 1 except that the insulating particles dispersed in the polymer resin layer were changed to hydrophilic fumed silica (# 50, manufactured by Nippon Aerosil). Example 2). About Example 2, the same evaluation as Example 1 was performed. Table 2 shows the results.
[Table 2]
Figure 2004014373
[0057]
In Example 2, both the rate characteristics and the cycle characteristics were determined to be usable. This is considered to be because the silica, which is an insulator particle, is a hydrophilic silica that has not been subjected to a hydrophobic treatment, so that moisture is adsorbed and the electrolyte is deteriorated.
[0058]
[Example 3]
When forming the polymer resin layer, the same procedure as in Example 1 was carried out except that the weight ratio of the hydrophobic fumed silica as the insulator particles to the PVDF as the polymer resin was set to insulator particles: polymer resin = 8: 2. A stacked gel-type solid electrolyte lithium secondary battery was manufactured (Example 3). About Example 3, the same evaluation as Example 1 was performed. Table 3 shows the results.
[Table 3]
Figure 2004014373
In Example 3, the rate characteristics were determined to be good, but the cycle characteristics were determined to be usable. This is considered to be due to the fact that the hydrophobic silica, which is an insulator particle, is larger than the preferable range for the polymer resin, and thus the cycle characteristics have been deteriorated due to a decrease in the adhesion between the electrode and the separator.
[0059]
[Example 4]
When forming the polymer resin layer, the same procedure as in Example 1 was carried out except that the weight ratio of the hydrophobic fumed silica as the insulator particles to the PVDF as the polymer resin was set to insulator particles: polymer resin = 2: 8. A stacked gel-type solid electrolyte lithium secondary battery was manufactured (Example 4). About Example 4, the same evaluation as Example 1 was performed. Table 4 shows the results.
[0060]
[Table 4]
Figure 2004014373
[0061]
It can be seen that the battery capacity of the fourth embodiment is higher than that of the conventional example, but slightly lower than that of the first embodiment. This means that the rate characteristics were determined to be good, but the cycle characteristics were determined to be usable, as compared with the conventional example in which the insulating particles were not dispersed in the electrolyte. It is considered that this is because the amount of the hydrophobic silica as the insulator particles was less than the preferable range for the polymer resin, and the ionic conductivity of the electrolyte was not sufficiently improved. However, although the battery capacity was slightly inferior, both the rate characteristics and the cycle characteristics were judged to be good.
[0062]
[Example 5]
When forming the polymer resin layer, a laminated gel-type solid electrolyte lithium secondary electrolyte was prepared in the same manner as in Example 1 except that hydrophobic fumed silica having an average particle diameter of 0.005 μm was used as the hydrophobically treated insulator particles. A battery was manufactured (Example 5). About Example 5, the same evaluation as Example 1 was performed. Table 5 shows the results.
[Table 5]
Figure 2004014373
[0063]
It can be seen that the battery capacity of Example 5 was higher than that of the conventional example, but was slightly inferior to that of Example 1. This is presumably because the average particle size of the insulator particles was smaller than the preferred range, so that the insulator particles segregated and the ionic conductivity of the electrolyte was not sufficiently improved. However, although the battery capacity was slightly inferior, both the rate characteristics and the cycle characteristics were judged to be good.
[0064]
[Example 6]
When forming the polymer resin layer, a laminated gel-like solid electrolyte lithium secondary electrolyte was prepared in the same manner as in Example 1 except that hydrophobic fumed silica having an average particle size of 1.5 μm was used as the hydrophobically treated insulator particles. A battery was manufactured (Example 6). About Example 6, the same evaluation as Example 1 was performed. Table 6 shows the results.
[Table 6]
Figure 2004014373
[0065]
It can be seen that the battery capacity of Example 6 was higher than that of the conventional example, but was slightly inferior to that of Example 6. This is presumably because the average particle size of the insulator particles was larger than the preferred range, and the ionic conductivity of the electrolyte was not sufficiently improved. However, although the battery capacity was slightly inferior, both the rate characteristics and the cycle characteristics were judged to be good.
[0066]
[Example 7]
A laminated gel-type solid electrolyte lithium secondary battery was produced in the same manner as in Example 1 except that the solvent used for the polymer resin coating solution was NMP, which was a good solvent for PVDF as a polymer resin (Example 7). ). About Example 7, the same evaluation as Example 1 was performed. Table 7 shows the results.
[Table 7]
Figure 2004014373
[0067]
In Example 7, both the rate characteristics and the cycle characteristics were determined to be good. It can be seen that the battery capacity is inferior to Example 1 but high. This is presumably because the solvent used for the polymer resin coating liquid was NMP, and the polymer resin was not sufficiently porous.
[0068]
Example 8
A laminated gel-type solid electrolyte lithium secondary battery in the same manner as in Example 1 except that the polymer resin was a VDF-HFP copolymer (VDF: HEP = 90: 10 wt%; manufactured by Elf Atochem: Kynar2801). (Example 8). At this time, the weight ratio of the hydrophobic fumed silica as the insulator particles to the VDF-HFP copolymer as the polymer resin was set to insulator particles: polymer resin = 6: 4. The solvent used for the polymer resin coating solution was a solvent mixed so as to have a ratio of DMF: 1-octanol = 75: 25 wt% as in the case of the solvent used in Example 1. DMF and 1-octanol in the solvent are good and poor solvents for the VDF-HFP copolymer, respectively. About this Example 8, the same evaluation as Example 1 was performed. Table 8 shows the results.
[Table 8]
Figure 2004014373
[0069]
The battery capacity of Example 8 was equivalent to that of Example 1, and both the rate characteristics and the cycle characteristics were determined to be good. Thus, it can be seen that the VDF-HFP copolymer is suitable as a polymer resin like PVDF.
[0070]
The preferred embodiments and examples of the solid electrolyte battery of the present invention have been described above, but the present invention is not limited to these examples. It is apparent that those skilled in the art can conceive various changes or modifications within the scope of the claims, and these naturally belong to the technical scope of the present invention. I have.
[0071]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the ionic conductivity of a solid electrolyte can be improved by disperse | distributing an insulator particle in the polymer resin of a gel-like solid electrolyte, and a high capacity secondary battery can be provided. Further, even when ceramic particles are dispersed as insulator particles in a polymer resin, moisture is prevented from being mixed into the gel solid electrolyte, and a secondary battery having excellent battery characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a solid electrolyte battery according to one embodiment of the present invention.
[Explanation of symbols]
11 Solid electrolyte battery
13 Positive electrode
131 Positive electrode active material
132 Positive electrode current collector
14 Negative electrode
141 Negative electrode active material
142 Negative electrode current collector
15 Separator
16 electrode group
17 Electrolyte
18 Exterior body

Claims (6)

正極と負極とがセパレータを介して交互に積層され、
かつ、前記正極と前記セパレータとの間および/または前記負極と前記セパレータとの間に、
ポリマー樹脂に非水電解液を含浸させたゲル状固体電解質が介在している固体電解質電池であって、
前記正極と前記セパレータとの間または前記負極と前記セパレータとの間の前記ゲル状固体電解質の少なくとも一方は、
前記ポリマー樹脂に分散した絶縁体粒子を含むことを特徴とする固体電解質電池。
A positive electrode and a negative electrode are alternately laminated via a separator,
And, between the positive electrode and the separator and / or between the negative electrode and the separator,
A solid electrolyte battery in which a gel solid electrolyte in which a polymer resin is impregnated with a non-aqueous electrolyte is interposed,
At least one of the gelled solid electrolyte between the positive electrode and the separator or between the negative electrode and the separator,
A solid electrolyte battery comprising insulator particles dispersed in the polymer resin.
前記絶縁体粒子は、疎水処理されていることを特徴とする請求項1に記載の固体電解質電池。The solid electrolyte battery according to claim 1, wherein the insulator particles are subjected to a hydrophobic treatment. 前記絶縁体粒子は、平均粒径が0.01〜1μmであることを特徴とする請求項1または2に記載の固体電解質電池。3. The solid electrolyte battery according to claim 1, wherein the insulator particles have an average particle size of 0.01 to 1 μm. 4. 前記絶縁体粒子は、セラミックス粒子であることを特徴とする請求項1乃至3のいずれか1項に記載の固体電解質電池。4. The solid electrolyte battery according to claim 1, wherein the insulator particles are ceramic particles. 5. 前記絶縁体粒子は、二酸化ケイ素粒子であることを特徴とする請求項1乃至4のうちのいずれか1項に記載の固体電解質電池。The solid electrolyte battery according to any one of claims 1 to 4, wherein the insulator particles are silicon dioxide particles. 前記絶縁体粒子の前記ポリマー樹脂に対する重量比率(絶縁体粒子:ポリマー樹脂)は、3:7〜7:3であることを特徴とする請求項1乃至5のうちのいずれか1項に記載の固体電解質電池。The weight ratio of the insulator particles to the polymer resin (insulator particles: polymer resin) is 3: 7 to 7: 3, according to any one of claims 1 to 5, wherein: Solid electrolyte battery.
JP2002168190A 2002-06-10 2002-06-10 Solid electrolyte battery Withdrawn JP2004014373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168190A JP2004014373A (en) 2002-06-10 2002-06-10 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168190A JP2004014373A (en) 2002-06-10 2002-06-10 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JP2004014373A true JP2004014373A (en) 2004-01-15

Family

ID=30435166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168190A Withdrawn JP2004014373A (en) 2002-06-10 2002-06-10 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP2004014373A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062008A1 (en) * 2002-12-27 2004-07-22 Nippon Aerosil Co., Ltd. Inorganic oxide powder for use in gel electrolyte of battery and gel composition containing inorganic oxide powder
JP2006185654A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Solid electrolyte battery
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Stacked lithium ion polymer battery
JP2007194104A (en) * 2006-01-20 2007-08-02 Sony Corp Gelatinous electrolyte battery
JP2010262860A (en) * 2009-05-08 2010-11-18 Panasonic Corp Lithium ion battery
JP2011210433A (en) * 2010-03-29 2011-10-20 Sony Corp Nonaqueous electrolyte constituent and nonaqueous electrolyte cell
JP2011222354A (en) * 2010-04-12 2011-11-04 Nippon Soda Co Ltd Polymer solid electrolyte
US8383273B2 (en) 2009-04-27 2013-02-26 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2013171681A (en) * 2012-02-20 2013-09-02 Asahi Kasei Corp Nonaqueous battery electrolyte and battery including the same
US20140106213A1 (en) * 2011-06-28 2014-04-17 Murata Manufacturing Co., Ltd. Electrical storage device element and electrical storage device
WO2015068324A1 (en) * 2013-11-05 2015-05-14 ソニー株式会社 Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system
CN105874642A (en) * 2013-12-27 2016-08-17 索尼公司 Battery, electrolyte, battery pack, electronic device, electric vehicle, electricity-storage device, and power system
CN107068948A (en) * 2017-04-29 2017-08-18 合肥国轩高科动力能源有限公司 Preparation method of ion exchange membrane of lithium ion battery
JP2018120739A (en) * 2017-01-25 2018-08-02 富士フイルム株式会社 Method of producing solid electrolyte-containing sheet, method of producing electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
WO2021043297A1 (en) * 2019-09-06 2021-03-11 青岛九环新越新能源科技股份有限公司 Solid-state battery and manufacturing method and manufacturing apparatus thereof
CN114069022A (en) * 2021-11-17 2022-02-18 鄂尔多斯市紫荆创新研究院 Single-section high-voltage thin film lithium battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004062008A1 (en) * 2002-12-27 2006-05-18 日本アエロジル株式会社 Inorganic oxide powder used for battery gel electrolyte and gel composition containing the inorganic oxide powder
JP4736431B2 (en) * 2002-12-27 2011-07-27 日本アエロジル株式会社 Inorganic oxide powder used for battery gel electrolyte and gel composition containing the inorganic oxide powder
WO2004062008A1 (en) * 2002-12-27 2004-07-22 Nippon Aerosil Co., Ltd. Inorganic oxide powder for use in gel electrolyte of battery and gel composition containing inorganic oxide powder
JP2006185654A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Solid electrolyte battery
JP2007141714A (en) * 2005-11-21 2007-06-07 Nec Tokin Corp Stacked lithium ion polymer battery
JP2007194104A (en) * 2006-01-20 2007-08-02 Sony Corp Gelatinous electrolyte battery
US8647779B2 (en) 2009-04-27 2014-02-11 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
US8383273B2 (en) 2009-04-27 2013-02-26 Sony Corporation Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery
JP2010262860A (en) * 2009-05-08 2010-11-18 Panasonic Corp Lithium ion battery
JP2011210433A (en) * 2010-03-29 2011-10-20 Sony Corp Nonaqueous electrolyte constituent and nonaqueous electrolyte cell
JP2011222354A (en) * 2010-04-12 2011-11-04 Nippon Soda Co Ltd Polymer solid electrolyte
US20140106213A1 (en) * 2011-06-28 2014-04-17 Murata Manufacturing Co., Ltd. Electrical storage device element and electrical storage device
US9728343B2 (en) * 2011-06-28 2017-08-08 Murata Manufacturing Co., Ltd. Electrical storage device element and electrical storage device
JP2013171681A (en) * 2012-02-20 2013-09-02 Asahi Kasei Corp Nonaqueous battery electrolyte and battery including the same
WO2015068324A1 (en) * 2013-11-05 2015-05-14 ソニー株式会社 Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system
CN105684205A (en) * 2013-11-05 2016-06-15 索尼公司 Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system
US10263278B2 (en) 2013-11-05 2019-04-16 Murata Manufacturing Co., Ltd. Battery, electrolyte, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system
CN105874642A (en) * 2013-12-27 2016-08-17 索尼公司 Battery, electrolyte, battery pack, electronic device, electric vehicle, electricity-storage device, and power system
JPWO2015097952A1 (en) * 2013-12-27 2017-03-23 ソニー株式会社 Batteries, electrolytes, battery packs, electronic devices, electric vehicles, power storage devices, and power systems
US10270128B2 (en) 2013-12-27 2019-04-23 Murata Manufacturing Co., Ltd. Battery, electrolyte, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2018120739A (en) * 2017-01-25 2018-08-02 富士フイルム株式会社 Method of producing solid electrolyte-containing sheet, method of producing electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
CN107068948A (en) * 2017-04-29 2017-08-18 合肥国轩高科动力能源有限公司 Preparation method of ion exchange membrane of lithium ion battery
WO2021043297A1 (en) * 2019-09-06 2021-03-11 青岛九环新越新能源科技股份有限公司 Solid-state battery and manufacturing method and manufacturing apparatus thereof
CN114069022A (en) * 2021-11-17 2022-02-18 鄂尔多斯市紫荆创新研究院 Single-section high-voltage thin film lithium battery

Similar Documents

Publication Publication Date Title
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
JP4570271B2 (en) High energy rechargeable lithium battery separator
CN102148357B (en) For the negative pole of lithium rechargeable battery, lithium rechargeable battery, electric power tool, motor vehicle and power storage system
KR20070100957A (en) Lithium ion secondary battery
JP2000123873A (en) Solid electrolyte battery
JP2007273183A (en) Negative electrode and secondary battery
JP4031635B2 (en) Electrochemical devices
JP2003282148A (en) Thin lithium-ion secondary battery
MXPA01000916A (en) Gel electrolyte battery.
JP2004014373A (en) Solid electrolyte battery
JP4834299B2 (en) Lithium secondary battery
US20080199764A1 (en) Safer high energy battery
KR101278464B1 (en) Lithium battery with external positive thermal coefficient layer
JPH10214640A (en) Battery
US20060251963A1 (en) Non-aqueous electrolyte secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP2001307735A (en) Lithium secondary battery
WO2020059806A1 (en) Secondary battery
JP2005302382A (en) Non-aqueous electrolyte secondary battery pack
JP2003331916A (en) Secondary cell, and manufacturing method of the same
JP2008293982A (en) Nonaqueous electrolyte secondary battery
US7651818B2 (en) Lithium ion secondary battery and charging method therefor
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP2001084987A (en) Electrochemical device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906