[go: up one dir, main page]

JP4032093B2 - Building - Google Patents

Building Download PDF

Info

Publication number
JP4032093B2
JP4032093B2 JP2001178723A JP2001178723A JP4032093B2 JP 4032093 B2 JP4032093 B2 JP 4032093B2 JP 2001178723 A JP2001178723 A JP 2001178723A JP 2001178723 A JP2001178723 A JP 2001178723A JP 4032093 B2 JP4032093 B2 JP 4032093B2
Authority
JP
Japan
Prior art keywords
upper chord
view
building
unit frame
truss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001178723A
Other languages
Japanese (ja)
Other versions
JP2002371625A (en
Inventor
服部好隆
Original Assignee
株式会社小笠原設計
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小笠原設計 filed Critical 株式会社小笠原設計
Priority to JP2001178723A priority Critical patent/JP4032093B2/en
Publication of JP2002371625A publication Critical patent/JP2002371625A/en
Application granted granted Critical
Publication of JP4032093B2 publication Critical patent/JP4032093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Foundations (AREA)
  • Sewage (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
この発明は山野、海浜のような傾斜地などにも利用でき、小資源、リサイクル、再使用可能な循環型の建造物に関するものである。
【0002】
【従来の技術】
都市での集中居住は便利ではあるが、居住空間を狭小にし、多くの密集地域を発生させている。情報、交通、設備などの技術、流通機構が進歩した現在、山野、海浜が大部分をしめる日本国土に於いて、都市での集中居住から山野、海浜などへの分散居住が可能である。また、自然が少なくなった都市居住の市民にとって、山野、海浜などへリゾートに出かける意義は高い。従来山野、海浜のような傾斜地に居住などのための建造物を造る場合、樹木を伐採、道路を造り、宅地造成を行ってきた。これは山野、海浜の自然破壊となった。また、循環型社会形成の視点から見ても従来の建造物、基礎は小資源、リサイクル及び再使用に問題がある。
【0003】
【発明が解決しようとする課題】
山野などの傾斜地の有効利用として、一つは立体トラスなどによる人工地盤があったが、しかし今までの人工地盤は都市を対象にしたものが多く、山野などの傾斜地につくるにしては大型クレーンなどの重機類の近寄りが必要であったり、自然の景観を損ねたり、また支柱、接合部材などの種類が多くいるなど環境保全性、施工性、経済性に於いて問題があった。
【0004】
また、山野などの傾斜地に建造物を造るには一階部の一部を埋めるか、下部をピロティにするかの手法があったが、前者の場合自然破壊につながり、また地すべり、防水などのために施工費が高くつき、後者の場合にはピロティ部に地震による水平力が集中する弱点を持っていた。
【0005】
また、力学的に安定し、部材の軽量化が図れて経済的でもある立体トラスは人工地盤の骨組としてはあったが、居住などもできる建造物として使うにはその傾斜部材が内部使用に妨げになるという問題があった。
【0006】
さらに、床部材についてはコンクリートなど一体形の材料使用の傾向が強く取り替え、再使用に対する考慮が不足していた。
【0007】
組み立て基礎の着想はあるが、その重量からクレーン車などの重機の寄り付きを必要とし傾斜地での施工には問題があり、また建造物の荷重に合わせて自由に大きさを変えられるものではなく、再使用するにしても一定の規格住宅などの建造物に限定されるものであり、さらに不同沈下に対して容易に対応できるものではなく、また傾斜地に利用するにしては地すべり崩壊への対応の問題があった。
【0008】
そこで、本発明はかかる問題点に着目してなされたもので、山野、海浜のような傾斜地にも適し、なおかつ自然環境共生で標準化、取り替え、再使用も可能な建造物を提供することを目的とする。
【0009】
また、自然環境破壊を最小限に押さえ、大きさを単体の組み合わせで任意に変えられ、取り替え、再使用もでき、不同沈下、地すべりへの対応も可能な組み立て基礎を提供することを目的とする。
【0010】
【課題を解決するための手段】
上弦材1及び傾斜部材2の各端部どうしをピンボルト9で角度調整できるヒンジ接合することにより3角錐状単位架構3を構成し、前記3角錐状単位架構3を、上弦材1を重複しないように連接することにより立体トラスとし、前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつないで一体化した立体トラスの上部に床部材6を取り付け、前記傾斜部材2は複数の直径の異なる軸管20からなり、上の軸管20は下の軸管20に内蔵され、前記上弦材1等をジャッキアップまたは吊り上げるなどして、傾斜部材2を伸ばして上下の軸管20の端部のテーパー面で相互に接するようにし、上の軸管20に装着されたナット41を下の軸管20に向けて締め付け、上の軸管20と下の軸管20が接する面を締め付けて、ナット41の戻りをなくする為、戻り止めナット42で締め付ける構造になっていることを特徴とする。
【0011】
前記上弦材1または上弦つなぎ材4をトラス梁28、31としたことを特徴とする。
【0012】
前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつなぎ、さらに前記傾斜部材2の交点を下弦材62でつないで一体化した立体トラスを斜面に沿って段状に連接し、上弦材1または下弦材62上部に床部材を取り付けてなることを特徴とする。
【0013】
前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつないで一体化した立体トラスを、前記3角錐状単位架構3を多角形状に連接することにより構成した立体トラスにしたことを特徴とする。
【0014】
前記3角錘状単位架構を1列または複数列横に上弦材1によって構成される3角形の底辺が外周にくるように連接し、前記3角錐状単位架構3の傾斜部材2下端部交点を下弦材62でつなぎ、外周に面した前記3角錘状単位架構3の上弦材1の横2交点と傾斜部材2下端部交点にそれぞれ傾斜部材99、100を接合すると共に傾斜部材99、100の下端部どうしを接合することによってなる3角錘状単位架構105を一定間隔で構成したことを特徴とする。
【0015】
前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつなぎ、さらに前記傾 斜部材2の交点を下弦材119でつないで一体化し、傾斜部材2の交点に、下弦材119と同長または複数倍を3辺とする3角形を上面としてなる3角錐状のフロート120を結合し、水深、波高、流速を探知するセンサー123、制御機、巻揚げ機、引き綱121及びアンカーまたはアースアンカー125を取り付けてなることを特徴とする。

【0016】
前記3角錐状単位架構3を4角錐状単位架構50に替えてなることを特徴とする。
【0017】
前記上弦材1または上弦つなぎ材4で囲まれた面内に水平、平行及び等間隔に小梁37を取り付け適当な間隔の格子梁を構成し、この格子梁に格子梁で囲まれた大きさと同形または等分割の床部材6を取り付けてなることを特徴とする。
【0018】
前記傾斜部材2または上弦材1の先端部21と軸管または軸棒20をねじ接合して伸縮可能ならしめ、一本または複数の軸管または軸棒20の接合によって任意の長さにでき、かつ軸管20どうしの接合部に、Y字型腕木24を取り付けた軸管20をねじ接合し、このY字型腕木24の3端部と傾斜部材2または上弦材1両先端部に鋼線25を張り補強することもできるようにしたことを特徴とする。
【0019】
前記3角錐状単位架構3または4角錐状単位架構50の上弦材1または傾斜部材2によって囲まれた面内にトラスを構成して、錐状単位架構にかかる水平力を前記面内トラスで受けることを特徴とする
【0020】
基礎を棒材または管材143を芯材とし、これに一つまたは複数のらせん状加工された板材144を取り付けまたは一体成形され、回転圧入できるように造られたアースアンカー142で地盤に固定されることを特徴とする。
【0021】
基礎を前記建造物の傾斜部材下端部交点下にベースプレート152を取り付け、前記ベースプレート152と基礎の間にジャッキ挿入スペースを設け、前記ベースプレート52を固定する為のアンカーボルト153上部の余長を取り、不同沈下後ベースプレート152をジャッキアップ、ベースプレート152と基礎の間にグラウト156を注入またはキャンバーを入れ、レベル調整できることを特徴とする。
【0022】
【作用】
本発明の建造物に使用している3角錐状単位架構はその4面体の全ての面が3角形を形成するのでどの方向の力に対しても容易に変形せず、力学的にもっとも安定し、効率的な単位架構である。これを平面的または立体的に連設、または配設してトラス梁でそれらを結合し、構造骨組を立体トラスにすることによって、構造骨組の軽量化が図れ、構造骨組の拡大、縮小、再使用も容易である。また、請求項2記載の本発明によれば、上弦材をトラス梁にしているので、上弦材を傾傾斜部材より外側へはね出すことができる。
【0023】
前記理由により、3角錐状単位架構の各部材の接合はピン接合またはヒンジ接合で良く、容易に組み立て、解体ができる。また、上弦材と傾斜部材をヒンジ接合し、傾斜部材を容易に任意の長さにせしめることによってこの単位架構は任意の高さになり、傾斜地に人工地盤、道路、軌道、建築などの建造物を容易に造ることができる。
【0024】
また、本発明によれば、構造骨組、床、基礎の各部材を必要適当な長さ、大きさ、重さに分解可能ならしめているので、山野などに建造するに当っても重機を必要とせず、自然環境を破壊することなく建造が可能である。さらに施工便宜上必要な重機などを用意するのであれば、本発明の線状建造物は自己延伸が可能である故、これを道路または軌道として利用することによって自然破壊することなく重機などの運搬が可能である。
【0025】
本発明によれば、3角格子梁は剛性が高い故、その上面に取り付ける床、屋根、太陽電池などの部材は非剛性で良く、容易に取り付け、取替、解体ができ、またメッシュとシートの上砂利敷などであっても良い。これは4角錐状単位架構による格子梁上に於いても、水平ブレスによる補強または床部材に剛性を持たせることによって可能である。
【0026】
本発明によれば、地盤に近いところで組立ができるので、高さの高い建造物の建方にも大規模な足場を必要とせずに建方可能である。
【0027】
本発明によって傾斜地に自由に接地できるので山野、海浜などの傾斜地の人工地盤に適しており、太陽光発電所などの建造物にも利用できる。また、単位架構を樹木回避して設置もしくは傾斜部材、上弦材を樹木の幹、枝を避けて通すことによって樹木の伐採を抑止できる。
【0028】
また、本発明によって3角錐状単位架構を曲面状に連設、傾斜部材下部を下弦材でつなぎ一体の立体トラスとし、この上部に床部材または屋根部材を取り付けることによって3次曲面状の人工地盤または屋根が可能である。
【0029】
請求項5記載の線状建造物は、傾斜地に自由に線状に接地できるので山野、海浜などの傾斜地の道路、軌道に適し、容易に3次曲線状にすることも可能である。
【0030】
請求項6記載の浮き建造物はフロートが3角錐であり、フロート間及びフロートと床の間に十分な空間があることによって波のエネルギーを吸収し、波の建造物に与える影響を少なくすることができる。さらに、センサーによって水深、波高及び流速を探知、制御盤へ伝え巻揚機を作動、アースアンカーで固定された引綱に張力を掛けることによって建造物の移動及び振動を無くすことができるので海上施設、空港等に利用できる。建造物下に船を運行させることも可能である。また、フロートの間隔が十分である場合にはその形体を球形、円筒形または矩形などの形体にすることもできる。
【0031】
本発明によって傾斜地にも安全な基礎ができ、さらに沈下を許容した最小限の大きさの基礎が可能である。
【0032】
以上の本発明の建造物と基礎の間に免震装置を挿入することによって免震構造建造物、傾斜部材にダンパーなどの制震装置を挿入して制震構造建造物が可能である。
【0033】
【実施例】
以下、図面について本発明の実施例を詳細に説明する。図1は本発明の建造物の実施例を示す斜視図、図2は同上立体トラス構造骨組の平面図、図3は図2のa−a線断面図、図4は図2のb−b線断面図である。上弦材などの部材の太さは省略して単線表現をしている。建造物は図1、図2で示すように上弦材1、傾斜部材2を互いに接合、3角錐状単位架構3を構成し、前記3角錐状単位架構3を、上弦材1を重複しないように連接することにより立体トラスとし、上部に床部材6を取り付けてなる。
【0034】
図5は上弦材及び傾斜部材の接合平面図、図6は同上c−c線断面図、図7は傾斜部材下部の接合平面図、図8は同上正面図である。上弦材1はそれが3角形を形成する故、容易に取付、解体可能なピンボルト9によって接合でき、傾斜部材2は接合部材8、9にヒンジ接合されるので上弦材2に対して任意の角度に取り付けでき、なおかつ上弦材とで3角形を形成するのでヒンジ接合で安定する。
【0035】
図9は該建造物を人工地盤として利用、住宅を建てた実施例の1階平面図、図10は2階平面図、図11は側面図である。上弦材長を3mとしており、上弦材及び傾斜部材にφ165.2の鋼管を利用できる。なお、それらはPCコンクリート、丸太、紙管などの管材または棒材であっても良い。該建造物は上弦材によって3角格子梁を形成するので樹木を避けて、床部材及び一部の上弦材の取り止めが容易である。3角格子梁上の建築の主要なる室は6角形によって構成され、従来の4角形の室とは異なった空間の拡がりを創出できる。人工地盤上の建築は、構造的には、上弦材上に壁パネルを取り付けてなる壁式構造、上弦材上に土台を取り付け柱を建ててなる木造、上弦材接合部材上に鉄骨柱を建ててなる鉄骨造、いずれも可能である。
【0036】
図12〜図16は床パネル取付けの実施例である。図12は床パネル取付用台座の配置平面図、図13は床パネル及び止めボルトの配置平面図、図14、図15、図16はそれぞれ同上d−d線断面図、e−e線断面図、f−f線断面図である。上弦材は3角形を形成しているので、水平力によって変形することがなく、台座11、12、13は容易に取付、解体可能な方法によることができ、Uボルト17によって取り付けられる。床パネル6も同様に止めボルト18によって取り付けられる。パネル相互のすき間には変形自在で吸水性のない断熱材19を詰める。本実施例では上弦材長を3mとして、床パネルの大きさを1辺を1.5mとする正3角形で統一している。
【0037】
図17〜図24は傾斜部材の実施例である。図17は傾斜部材を軸管20と先端部材21に分け、ねじ接合し、その長さがLからL+2l0まで長さ調整できることを示す。図18、図19、図20はl0=0.25mとした場合、軸管長l1、l2、l3、l4がそれぞれ2.0m、2.5m、3.0m、3.5mの軸管を組み合わせて傾斜部材長Lが2.0mから11.0mまで任意の長さにできることを示す。図20は傾斜部材長Lが7.5mを越えた時、該部材を補強するため、Y字型金物24、鋼線25を取り付けた実施例を示す。図21は軸管の接合断面図で、軸管23は接合部材26によってねじ接合される。図22は軸管とY字型金物の接合断面図、図23は同上g−g線断面図である。Y字型金物24は軸管20とねじ接合され、Y型金物の先端に鋼線25を通す。図24は軸管、先端部材及び鋼線取付金物の接合断面図である。鋼線取付金物26は先端部材21にねじ接合され、鋼線25はタンバックル27によって緊張される。以上傾斜部材長について述べたが、上弦材長、水平部材長、下弦材長にも同様に利用できる。
【0038】
図25は建造物の構造骨組の平面図、図26は同上h−h線断面図、図27は3角錐状単位架構の斜視図である。図27で示すようにトラス状上弦材28と傾斜部材2を接合部材29、接合部材10を介して互いに接合3角錐状の単位架構とし、図25に示すように該単位架構を配設これらをトラス梁31で結合、さらに外周部に該上弦材線上にトラス梁32を取り付け、その端部を上弦つなぎ材33でつなぎ一体の立体トラスとしている。3箇の該単位架構により図1と同面積の建造物を造っており、これを建造物の基本単位として自在に連設拡張が可能である。トラス状上弦材28、トラス梁31、トラス梁32及び上弦つなぎ材33は同じ部材で良い。また、3角錐状単位架構及びトラス梁をPCコンクリート製にすることもできる。
【0039】
図28は別な実施例の正面図である。該建造物34、線状建造物35及び複層型建造物36によって構成されている。線状建造物、複層型建造物の詳細は後述する。図示のように海浜または砂漠地帯に該建造物を人工地盤として利用、植裁し緑豊かな都市空間を創出することができる。
【0040】
図29は建造物の構造骨組の斜視図、図30は同上平面図及び背面図を示す。3個の3角錐状単位架構3を斜め横に連接、上弦つなぎ材4でつなぎ一体の立体トラスとし、小梁37を上弦材1と平行に入れ、3角格子梁を形成している。上弦材1、上弦つなぎ材4及び小梁37は接合部材38、束39と下弦材40によってトラス梁を形成するので該部材は軽量化が図れ、なおかつ取付、解体に容易なピン接合にできる。図31は該建造物を人工地盤として利用、上部に住宅を建てた実施例の平面図、図32は同上側面図である。このように3箇の該単位架構と3箇所の基礎によって一戸の住宅のための建造物が可能である。
【0041】
図33は傾斜部材2を釣竿状に伸縮自在となるよう複数の直径の異なる軸管20で一体化した釣竿状傾斜部材の正面図、図34は同上該傾斜部材を伸ばした正面図、図35は同上軸管接合断面図である。図35に示すように上下の軸管20の端部が伸ばし切った際、テーパー面で相互に接し、かつ上部の軸管20には、ねじが切ってある。従ってナット41を締め付け、さらにもどり止めナット42を締め付けることによって上下の軸管は固定される。図36は図29及び図30で示す建造物の傾斜部材に該傾斜部材を使用し、ジャッキアップのためのジャッキ据え付け図を示す。該傾斜部材の下に架台43を置き、下に3機のジャッキを据えてジャッキアップできる。図37は図36のジャッキアップ前の側面図、図38はジャッキアップ第1段階時、図39はジャッキアップ完了、本設の側面図である。第1段階で3本つぎ傾斜部材の上部接合部45を固定、第2段階で同下部接合部46及び2本つぎ傾斜部材の接合部47を固定、架台及びジャッキを取りはずして本設とする。
【0042】
図40はジャッキ内蔵傾斜部材の延長前、図41は延長後の正面図を示す参考例である。傾斜部材は軸管20とジャッキ48とでなり、相互にねじ接合されているので、ハンドル49を回転させることによって傾斜部材は自在に伸縮する。従って3角錐状単位架構に該傾斜部材を使用することによって地盤上で組み立て、ジャッキアップ後本設とすることができる。また本設後不同沈下に対して自在にレベル調整が可能である。
【0043】
図42は4角錐状単位架構連設による建造物実施例の構造骨組の斜視図、図43は同上平面図及び背面図、図44は同上側面図である。上弦材51、傾斜部材52を接合部材53及び54を介して相互に接合、4角錐状単位架構とし、該単位架構を4箇縦横に連接している。上弦材51に束55及び下弦材56を接合してトラス梁にしている。さらに小梁57を上弦材51と平行、等間隔に入れ格子梁を形成している。小梁57も上弦材51と同様にトラス梁にしている。上弦材及び小梁の部材長を3,600mmとすることによって面積が207.36m2の一戸の住宅に必要な人工地盤の構造骨組を構築できる。
【0044】
図45は上弦材と傾斜部材の接合平面図、図46は同上背面図、図47は図45のh′−h′線断面図である。3角錐状単位架構と同様に上弦材51、傾斜部材52は接合部材53を介してそれぞれピン接合、ヒンジ接合される。下弦材56は上弦材先端部材60にねじ接合された接合部材58にねじ接合される。図48は上弦材51又は小梁57と束55及び下弦材56の接合正面図である。束55は接合部材59及び61に、下弦材56は接合部材61にそれぞれねじ接合される。このように単材を容易に接合、解体のできる手段で接合していくことによって断面性の高い長尺のトラス梁を容易に得る事ができ、また取り替え、再使用も容易にできる。
【0045】
図49は段状建造物構造骨組実施例の平面図、図50は同上i′−i′線断面図、図51はi−i線断面図である。3角錐状単位架構3を連設、上弦材交点をつなぐ上弦つなぎ材4を入れ、該単位架構下部に下弦材62を接合することによって立体トラスにしており、これを斜面に沿って段状に接地させ、上弦材または下弦材上面に床部材を取りつけ段状建造物が構築される。該建造物の外周部は下弦材62を上弦材とする3角錐状単位架構63または基礎立上り64にて接地する。図52は部材接合正面図、図53は該建造物の具体的な実施例である。下層階は立体歩道として利用でき、下層階と上層階を階段またはエスカレーターによって接続することができる。
【0046】
図54は複層型建造物構造骨組参考例の図55〜図59のo−o線断面図、図55、図56、図57、図58、図59はそれぞれ同上j−j線平面図、k−k線平面図、l−l線平面図、m−m線平面図、n−n線平面図である。該構造骨組は3個の3角錐状単位架構68より構成され、各層が3角格子梁を形成する立体トラスになる。この各層の3角格子梁上面に床部材を取り付け、外周に外材装を取り付けることによって建築として利用できる。図60は傾斜部材と水平部材の接合正面図である。傾斜部材52は接合部材70と接合部材71によってねじ接合され一体の傾斜部材を構成する。水平部材69は接合部材70にピンボルト9によってピン接合される。該建造物は立体トラスを構成し、最上層は上弦材51、上弦つなぎ材67及び小梁57によって、中層及び最下層は水平部材69、水平部材72及び小梁57によって3角格子梁を形成し、該3角格子梁はトラス梁を構成するので、該建造物の軽量化が図れる。また、該建造物は各部材のピン接合またはねじ接合によって構成されるので、建造、解体及び部材の再使用も容易にできる。
【0047】
図61は別な複層型建造物構造骨組の参考例の側面図、図62〜図66は各々p−p線平面図、g−g線平面図、r−r線平面図、s−s線平面図である。該構造骨組は上弦材51及び4本の傾斜部材52よりなる4個の4角錐状単位架構74によって構成される立体トラスである。最上層は上弦材51及び小梁57によって、中層及び最下層は水平部材69、水平部材72及び小梁57によって格子梁を形成する。上弦材51、水平部材69、水平部材72及び小梁57は束55及び下弦材56によってトラス梁を構成する。該複層型構造骨組の各層の上面に床部材、外周部に外装材を取り付けることによって、建築として利用できる。該建造物の水平力に対する剛性は剛性のある床部材を取り付けることによって保持される。図67は図61の構造骨組を上下反転、傾斜部材52を延長接地、さらに水平部材72、束55、下弦材56よりなるトラス梁をつけてなる複層型建造物構造骨組の側面図である。
【0048】
図68は複層型建造物構造骨組の別な参考例の斜視図である。内部及び裏面の鉄骨は省略している。図69は図68の平面図、図70は図69のt′−t′線断面図である。上弦材75及び76と傾斜部材77及び78によってなる3角錐状単位架構79を多角形状に連設、中央部にコア84′及びその立上りである塔屋84の構造骨組を設け、上弦材交点をつなぐように上弦つなぎ材73′を入れ、上弦材75、76または上弦つなぎ材73′のそれぞれと必要な長さを取って水平部材80、80′、80″を入れ、傾斜部材と接合して複層型構造骨組の主骨格を構成。さらに、該3角錐状単位架構の上面に上弦材75、76のそれぞれと平行等間隔に小梁83、82を入れ上弦材と接合、2側面に傾斜部材77と平行等間隔に傾斜部材81を入れ、傾斜部材77、78、上弦材75または水平部材80と接合、該3角錐状単位架構3面にトラスを形成している。これによって、該3角錐状単位架構の上弦材、傾斜部材、水平部材、小梁及び傾斜部材をそれぞれピン接合にすることができ、該部材も接合間の長さによって統一される。さらに、最上層は小梁83を延長、小梁82を該3角錐状単位架構上面外にも入れることによって中層及び最下層も同様に小梁82、83をそれぞれ水平部材80′、80″と平行等間隔に入れることによって格子梁を形成し、外面部は傾斜部材81を延長させることによって格子状骨組を形成するので該建造物の各部材は出隅以外は同一部材で統一される。コア部分は階段、エレベーターシャフト、PSとして利用できる。該実施例は矩形の建造物の実施例であるが、6角形、8角形などの多角形も同様に可能である。図71は構造骨組の接合及び外壁取付の平面図である。傾斜部材77、81と水平部材80及び水平部材80と小梁83が3角形を形成する故、その接合はピン接合で良く、容易に取付、解体ができる。また、外壁93の取付もピンボルト92によって容易に取付、解体ができる。
【0049】
図72は複層型建造物構造骨組の別な参考例の平面図で上半分は外部、下半分は内部を示している。図73は同上正面図、図74は図72のu−u線断面図である。上弦材76′と傾斜部材75′、77′、79′からなる3角錐状単位架構80′を多角形状に連設、上弦材交点をつなぐように上弦つなぎ材を83′を入れ、上弦材76′、上弦つなぎ材83′とそれぞれ必要な高さを取って水平部材85′、86′を入れて複層型構造骨組とし、さらに床部材または屋根部材を有効に取り付けるために、上弦材で囲まれた面内にドーム状の3角格子梁を形成、水平部材で囲まれた面内にトラス梁による3角格子梁を形成したものである。この上層部に屋根部材、下層部に床部材を取り付けるこよによって、ドームとして利用できる。
【0050】
図75は別な複層型構造骨組の参考例の斜視図である。上弦材1、傾斜部材2よりなる3角錐状単位架構3を傾斜部材2が外側に来るよう水平及び上下に連接して一体の立体トラスになっている。最下部3角錐状単位架構の傾斜部材2の長さを調整することによって傾斜地に接地させることができる。最上部に4角錐状単位架構96を取り付け、屋根部材を張ることによって勾配屋根にすることが可能である。該構造骨組の各層の上弦材両面に床部材を取り付け、外周に外壁材を取り付けることによって建築として利用できる。内部に出る傾斜部材の位置を間仕切壁位置に合わすことによって内部空間を有効に利用できる。また、階段、エレベーターの縦動線は内部に設けることも、別な構造体として結合させることも可能である。
【0051】
図76は線状建造物構造骨組参考例の斜視図、図77は同上平面図、図78は同上側面図、図79はu′−u′線断面図である。上弦材1、傾斜部材2よりなる編重心3角錐状単位架構を交互に横に一列連接してなる立体トラスである。傾斜部材2は接合部材97及び98とヒンジ接合されている故、その長さを調整することによって不陸のある傾斜地にも自在に接地する。また上弦材1及び傾斜部材2の長さを調整することによって3次曲線の線状建造物が可能である。平行する上弦材1の上面にレールを取り付けることによって軌道、上弦材1の上面に床部材を取り付けるこよによって道路として利用できる。
【0052】
図80は別な線状建造物構造骨組斜視図、図81は同上平面図、図82は正面図、図83、図84はそれぞれ図81のv′−v′線断面図、v−v線断面図である。上弦材1及び傾斜部材2を相互に接合してなる3角錐状単位架構3を横に2列連設、傾斜部材下部を下弦材62で接続、一定間隔で前記単位架構縦両端部上弦材1の横2交点、下端部及び3本の新設傾斜部材99、100を互いに接合してできる3角錐状単位架構105を向き合わせに作ってなる立体トラスである。この上弦材上面に床部材を取り付けることによって道路などの線状建造物とし利用できる。上弦材1、傾斜部材2、99、100及び下弦材62の長さを調整することによって該構造骨組は3次曲線を形成することができる。
【0053】
図85は別な線状建造物構造骨組実施例の斜視図、図86は同上平面図、図87は正面図、図88、図89はそれぞれ図86のw−w線断面図、x−x線断面図である。上弦材106、107、傾斜部材108を相互に接合してなる4角錐状単位架構109を横に連設、傾斜部材下部を下弦材110で接続、一定間隔で前記単位架構縦両端部上弦材106の横2交点、下端部及び3本の新設傾斜部材111、112を互いに接合してできる3角錐状単位架構113を向き合わせに作ってなる立体トラスである。この上弦材上面に剛性のある床部材を取り付けることによって道路などの線状建造物に利用できる。上弦材106、107、傾斜部材108、111、112、下弦材110の長さを調整することによって該構造骨組は3次曲線を形成することができる。
【0054】
図90は浮き建造物実施例平面図、図91は同上側面図、図92は正面図である。上弦材1、傾斜部材2を相互に接合してなる3角錐状単位架構を連設、外周部に上弦つなぎ材4、傾斜部材下部に下弦材119を入れ立体トラスの構造骨組が構成される。上弦材上面に床部材118、下弦材より下にフロートを取り付け浮き建造物本体がなる。フロートを3角錐状とし、フロート間に十分な間隙を取り、さらにフロートと床の間に十分な空間を取ることによって波のエネルギーを吸収することができる。図93は浮き建造物下部参考例の正面図である。フロート120は接合部材126にピン接合されているので容易に取付、解体、取替えができる。図94はフロート参考例の斜視図である。構造骨組130は上弦材127、傾斜部材128及びトラス部材129を相互に接合してなる3角錐状の立体トラスであるので部材の軽量化が図れる。該構造骨組4面にチタンなどの耐久性と強度のある板を張ることによって浮き建造物のためのフロートができる。図95はフロートの別な参考例である。該3角錐状構造骨組の内部にフロート単体を詰め、外周にネットを張ってなる。フロート単体は取り替えも容易にできるので水圧などに対する強度と耐久性があれば良く、ポリボトル再生品などの安価なものを利用できる。またフロートがフロート単体の集合体であるので、フロートの破損浸水のリスクは軽減される。図96はセンサーから引綱の張力までのフロー図である。センサーが水深、流速及び波高を感知し、制御盤がこれを受け巻揚機を作動させ引綱に浮き建造物の水平移動と上下運動を抑止するに必要な張力を掛けることができる。引綱はアースアンカー125によって海底に固定される。図97は複層型浮き建造物参考例の断面図である。構造骨組は前記複層型建造物参考例の図54〜図60に準ずる。上部を滑走路、その下を空航ターミナルとすることによって、海上空航などに利用できる。
【0055】
図98は組み立て基礎実施例の平面図、図99は同上正面図である。充分な強度と耐久性のある等厚のブロック136を地盤上に縦横または斜め横にすき間なく敷き並べ、これらを鋼棒で引張力をかけ結合して基礎のベースとし、この上に前記のブロックを一段または複数段積み重ね、これら及びベースを鋼棒で引張力をかけ結合、基礎の立上りとした独立基礎である。ブロックは3角形または4角形であっても良い。この様に基礎が適当な大きさの複数個のブロックの組み立てによってなる構造であるので、組み立てに重機など必要とせず、山野などの傾斜地にても組み立てが可能であり、また部材の再利用が可能である。傾斜地に於いて基礎のすべりを防ぐため及び風力に対して抵抗するため、アースアンカー142にて地盤に固定することができる。アースアンカー142は棒材または管材143を芯材とし、これに一つまたは複数のらせん状加工された板材144を取り付け、または一体成形されているので回転圧入、地盤に固定することができる。アースアンカーを回転圧入するための機具は容易に運搬、移動できるもので、その圧入のための荷重も水などの容易に増量、回収及び移動のできるものを利用する。
【0056】
図100は基礎梁付き組み立て基礎参考例の平面図、図101は同上y−y線断面図、図102は同上z−z線断面図である。基礎ベースの上に空胴ブロックを一段または複数段積み重ね、これら及びベースを鋼棒141で固定する。次に各独立基礎間に基礎梁ブロック148を棒状に敷き並べ、これら及び基礎立上りを鋼棒またはPC鋼線149で引張力をかけ結合する。最後に基礎立上りの空胴部及び基礎梁ブロックと基礎立上りの間隙にコンクリートまたはグラウトを詰める。基礎立上りブロック147を空胴にしているのは基礎梁結合のための鋼棒またはPC鋼線149を貫通させるための穴を容易にあけるためである。この様に独立基礎を基礎梁でつないで一体にすることによって地震力に対してより安定した基礎及び建造物を造ることができる。
【0057】
図103は不同沈下対応基礎実施例平面図、図104は同上正面図、図105は同上基礎沈下後のジャッキアップの正面図である。ベースプレート152下にジャッキ挿入スペース157及びアンカーボルト153に余長がとられているので不同沈下した後にジャッキ挿入スペースにジャッキ159を入れ、ジャッキアップ、レベル調整の後グラウト注入、グラウトが固まった後ジャッキを取り外し、上部建造物を水平に安定させることができる。基礎にアースアンカー142が付いている場合にはそのナット145を締め付ければ良い。建造物基礎に不同沈下対応基礎を使用し、沈下を許容し、不同沈下調整をすることによって基礎の大きさを小さくでき省資源、経済性を図れる。
【0058】
図106は交通システムのための建造物に本発明の建造物を利用し、さらに本発明の建造物を応用した建造物200、201、202、203、204を、山野の傾斜地に創出した新空間をより具体的に示すために掲載している。
【0059】
【発明の効果】
以上述べたように本発明の建造物、基礎は山野、海浜などの傾斜地に自然をほとんど破壊することなく構築することが可能であり、眺望、自然を享受する新しい空間を創出できる。
【0060】
また、本発明の建造物、基礎は小資源、リサイクル、再使用が可能であるのであまねく場所に使用して、循環型社会の形成に寄与できる。
【0061】
【図面の簡単な説明】
【図1】本発明建造物の実施例を示す斜視図。
【図2】同上立体トラス構造骨組の平面図。
【図3】図2のa−a線断面図。
【図4】図2のb−b線断面図。
【図5】上弦材及び傾斜部材の接合平面図。
【図6】同上c−c線断面図。
【図7】傾斜部材下部の接合平面図。
【図8】同上正面図。
【図9】該建造物を人工地盤として利用、住宅を建てた実施例の一階平面図
【図10】同上2階平面図。
【図11】図9、図10の側面図。
【図12】床パネル取付用台座の配置平面図。
【図13】床パネル及び止めボルトの配置平面図。
【図14】図13のd−d線断面図。
【図15】図13のe−e線断面図。
【図16】図13のf−f線断面図。
【図17】傾斜部材正面図、断面図。
【図18】傾斜部材長調整の参考例の正面図と表。
【図19】同上(2本継)。
【図20】同上(3本継)及び補強Y型金物、鋼線正面図。
【図21】傾斜部材軸管の接合断面図。
【図22】傾斜部材軸管とY型金物の接合断面図。
【図23】同上g−g線断面図。
【図24】傾斜部材軸管、先端部材及び鋼線取付金物接合断面図。
【図25】建造物の構造骨組平面図。
【図26】同上h−h線断面図。
【図27】3角錐状単位架構斜視図。
【図28】建造物の別な実施例の正面図。
【図29】建造物の構造骨組斜視図。
【図30】同上平面図。
【図31】該建造物を人工地盤として利用、上部に住宅を建てた実施例の平面図。
【図32】同上側面図。
【図33】釣竿状傾斜部材収納時の正面図。
【図34】釣竿状傾斜部材延長時の正面図。
【図35】同上軸管接合断面図。
【図36】ジャッキアップのためのジャッキ据え付け図。
【図37】建造物ジャッキアップ前の側面図。
【図38】建造物ジャッキアップ第1段階時側面図。
【図39】建造物ジャッキアップ完了、本設の側面図。
【図40】ジャッキ内蔵傾斜部材の延長前の正面図。
【図41】ジャッキ内蔵傾斜部材の延長後の正面図。
【図42】4角錐状単位架構連設による建造物実施例の構造骨組の斜視図。
【図43】同上平面図、背面図。
【図44】同上側面図。
【図45】上弦材と傾斜部材の接合平面図。
【図46】同上背面図。
【図47】図45のh′−h′線断面図。
【図48】トラス梁の接合正面図。
【図49】段状建造物構造骨組実施例の平面図。
【図50】図4のi′−i′線断面図。
【図51】図49のi−i線断面図。
【図52】部材接合正面図。
【図53】該建造物の具体的な参考例。
【図54】複層型建造物構造骨組参考例の図55〜図59のo−o線断面図
【図55】図54のj−j線平面図。
【図56】図54のk−k線平面図。
【図57】図54のlーl線平面図。
【図58】図54のm−m線平面図。
【図59】図54のn−n線平面図。
【図60】傾斜部材と水平部材の接合正面図。
【図61】別な複層型建造物構造骨組参考例の側面図。
【図62】図61のp−p線平面図。
【図63】図61のg−g線平面図。
【図64】図61のr−r線平面図。
【図65】図61のs−s線平面図。
【図66】図61のt−t線平面図。
【図67】別な複層型建造物構造骨組参考例の側面図。
【図68】別な複層型建造物構造骨組参考例の斜視図。
【図69】同上平面図。
【図70】図69のt′−t′線平面図。
【図71】構造骨組及び外壁取付の平面図。
【図72】別な複層型建造物構造骨組の参考例の平面図。
【図73】同上正面図。
【図74】図72のu−u線断面図。
【図75】別な複層型建造物構造骨組参考例の斜視図。
【図76】線状建造物構造骨組参考例の斜視図。
【図77】同上平面図。
【図78】同上側面図。
【図79】図77のu′−u′線断面図。
【図80】別な線状建造物構造骨組実施例の斜視図。
【図81】同上平面図。
【図82】同上側面図。
【図83】図81のv′−v′線断面図。
【図84】図81のv−v線断面図。
【図85】別な線状建造物構造骨組実施例の斜視図。
【図86】同上平面図。
【図87】同上側面図。
【図88】図86のw−w線断面図。
【図89】図86のx−x線断面図。
【図90】浮き建造物実施例の平面図。
【図91】同上側面図。
【図92】同上正面図。
【図93】浮き建造物下部実施例の正面図。
【図94】フロート実施例の斜視図。
【図95】フロートの別な実施例の斜視図。
【図96】センサーから引綱の張力までのフロー図。
【図97】複層型浮き建造物参考例の断面図。
【図98】組み立て基礎実施例の平面図。
【図99】同上正面図。
【図100】基礎梁付き基礎参考例の平面図。
【図101】図100のy−y線断面図。
【図102】図101のz−z線断面図。
【図103】不同沈下対応基礎実施例の平面図。
【図104】同上正面図。
【図105】同上沈下後ジャッキアップの正面図。
【図106】建造物実施例の正面図
【0062】
【符号の説明】
1、51、75、76、76′、85、86、106、107、127─上弦材
2、52、75′、77、77′、78、79′、81、87、88、99、100、108、111、112、128──傾斜部材
3、30、63、68、79、80′、89、105、113──3角錐状単位架構
4、33、67、73′、83′──上弦つなぎ材
5、34──該建造物
6──床部材
7、21、60、132──先端部材
8、10、29、38、53、54、58、59、61、70、71、90、91、97、98、101、102、103、104,114、115、116、117、126、131──接合部材
9──ピンボルト
11、12、13──台座
17──Uボルト
18──止めボルト
19──断熱材
20──軸管
23──ねじ接合
24──Y字型金物
25──鋼線
26──軸管接合部材
27──タンバックル
28──トラス状上弦材
31、32、90′──トラス梁
35──線状建造物
36──複層型建造物
37、57、82、83──小梁
39、55──束
40、56、62、110、119──下弦材
41──ナット
42──もどり止めナット
43──架台
45、46、47──接合部
48──傾斜部材内蔵ジャッキ
49──ハンドル
50、74、96、109──4角錐状単位架構
64──基礎立上り
65──立体歩道
66──エスカレーター
69、72、80、80′、80″、85′、86′──水平部材
73──斜行エレベーター
84──塔屋
84′──中央部コア
93──外壁
94──シーリング材
95──バックアップ材
120──フロート
121──引綱
122──機械室進入口
123──センサー
124──機械室
125──アースアンカー
129──トラス部材
130──構造骨組
133──金属板
134──ネット
135──フロート単体
136、137──ブロック
138、141、149──鋼棒
139、145、154──ナット
140──欠き込み
142──アースアンカー
143──鋼棒または管材
144──板材
146、151、155──丸座
147──空胴ブロック
148──基礎梁ブロック
149──鋼棒またはPC鋼線
150──コンクリートまたはグラウト
152──ベースプレート
153──アンカーボルト
156、158──グラウト
157──ジャッキ挿入スペース
159──ジャッキ
[0001]
[Industrial application fields]
  This invention can also be used on slopes such as mountains and beaches, and is a recyclable building that can be reused, recycled, and reused.AboutIs.
[0002]
[Prior art]
  Concentrated residence in the city is convenient, but the living space is narrowed and many dense areas are generated. With the advancement of information, transportation, facilities, and other technologies and distribution mechanisms, in Japan, where most of the mountains and beaches dominate, it is possible to live in a distributed manner from concentrated residences in cities to mountains and beaches. In addition, for citizens living in cities with less nature, it is highly meaningful to go to resorts such as Yamano and the beach. Conventionally, when building a building for residence on slopes like Yamano and the beach, trees have been cut down, roads have been built, and residential land has been created. This was a natural destruction of Yamano and the beach. Also, from the viewpoint of creating a recycling-oriented society, conventional buildings,The basis isThere are problems with small resources, recycling and reuse.
[0003]
[Problems to be solved by the invention]
  One of the effective uses of sloped areas such as Yamano was artificial ground using a three-dimensional truss. However, many artificial grounds have been designed for cities, and large cranes are often used for slopes in mountainous areas. There are problems in environmental conservation, workability, and economics, such as the need for close proximity to heavy machinery, damage to the natural landscape, and the number of types of columns and joints.
[0004]
  In addition, to build a building on slopes such as Yamano, there was a method of filling part of the first floor or making the lower part a piloti, but in the former case, it led to natural destruction, landslides, waterproofing etc. Therefore, the construction cost is high, and in the latter case, the horizontal force due to the earthquake is concentrated in the piloti part.
[0005]
  In addition, the three-dimensional truss, which is mechanically stable and light in weight and is economical, has been used as a framework for artificial ground, but its slanted member prevents internal use when it is used as a building that can be used for living. There was a problem of becoming.
[0006]
  Furthermore, floor members were replaced with a strong tendency to use integrated materials such as concrete, and there was a lack of consideration for reuse.
[0007]
    Although there is an idea of the basics of assembly, heavy machinery such as crane trucks need to be approached due to its weight, and there is a problem in construction on sloping ground, and the size can not be changed freely according to the load of the building, Even if it is reused, it is limited to buildings such as certain standard houses, and it is not easy to deal with uneven settlement, and it is not suitable for landslide collapse when used on slopes. There was a problem.
[0008]
  Therefore, the present invention was made paying attention to such problems, and an object thereof is to provide a building that is suitable for slopes such as mountains and beaches, and that can be standardized, replaced, and reused in harmony with the natural environment. And
[0009]
  In addition, the objective is to provide an assembly foundation that minimizes the destruction of the natural environment, can be arbitrarily changed in size as a single unit, can be replaced and reused, and can respond to uneven settlement and landslides. .
[0010]
[Means for Solving the Problems]
  Hinge that can adjust the angle of each end of upper chord material 1 and inclined member 2 with pin bolt 9By joiningA triangular pyramid unit frame 3 is constructed, and the triangular pyramid unit frame 3 is connected so as not to overlap the upper chord member 1 to form a three-dimensional truss, and the intersection point of the upper chord member 1 at the outer periphery of the upper portion of the three-dimensional truss is connected to the upper chord The floor member 6 is attached to the upper part of the three-dimensional truss connected and integrated with the material 4,The inclined member 2 includes a plurality of axial tubes 20 having different diameters.The upper shaft tube 20 is built in the lower shaft tube 20, and the inclined member 2 is extended by, for example, jacking up or lifting the upper chord material 1 or the like, and the taper surface at the end of the upper and lower shaft tubes 20 The nut 41 mounted on the upper shaft tube 20 is tightened toward the lower shaft tube 20 so as to be in contact with each other, the surface where the upper shaft tube 20 and the lower shaft tube 20 are in contact is tightened, and the nut 41 is returned. In order to eliminate the problem, the detent nut 42 is used for tightening.
[0011]
  The upper chord member 1 or the upper chord connecting member 4 is made of truss beams 28 and 31.
[0012]
  A three-dimensional truss in which the intersection of the upper chord material 1 at the outer periphery of the three-dimensional truss is connected by the upper chord connecting material 4 and the intersection of the inclined member 2 is connected by the lower chord material 62 to integrate them.It is characterized by being connected stepwise along the slope and having a floor member attached to the upper chord material 1 or the lower chord material 62.
[0013]
A solid truss in which the intersection of the upper chord material 1 at the upper outer periphery of the three-dimensional truss is integrated by connecting the upper chord connecting material 4,The triangular pyramid unit frame 3 is connected to a polygonal shape.A three-dimensional truss constructed by doing
[0014]
  The triangular pyramid unit frame is placed in a row or a plurality of rowsThe triangular base composed of the upper chord member 1 is connected so that the outer periphery is located on the outer periphery, and the lower chord member 62 is connected to the lower end portion of the inclined member 2 of the triangular pyramid unit frame 3, and the triangular pyramid shape facing the outer periphery is connected. Triangular pyramid-shaped unit frame formed by joining inclined members 99 and 100 to the intersection of two horizontal sides of the upper chord member 1 of the unit frame 3 and the lower end of the inclined member 2 and joining the lower ends of the inclined members 99 and 100 to each other. 105 is configured at regular intervals.
[0015]
The intersection of the upper chord material 1 at the outer periphery of the upper part of the three-dimensional truss is connected by the upper chord connecting material 4, and further the tilt The intersections of the slant members 2 are integrated by connecting the lower chord members 119, and the intersections of the slant members 2 areCombined with a triangular pyramid-shaped float 120 whose upper surface is a triangular shape having the same length or multiples of three sides as the lower chord material 119, a sensor 123 for detecting water depth, wave height, and flow velocity, a controller, a hoist, a tow rope 121 and an anchor or earth anchor 125 are attached.

[0016]
The triangular pyramid unit frame 3 is replaced with a quadrangular pyramid unit frame 50.
[0017]
  In the plane surrounded by the upper chord material 1 or the upper chord connecting material 4, horizontal beams, parallel beams, and equal intervals are attached to form small beams 37, and a lattice beam having an appropriate interval is formed. A floor member 6 having the same shape or equally divided is attached.
[0018]
  The tip portion 21 of the inclined member 2 or the upper chord material 1 and the shaft tube or the shaft rod 20 are screwed together so that they can expand and contract, and can be of any length by joining one or a plurality of shaft tubes or shaft rods 20,And between the shaft tubes 20At the junction,The shaft tube 20 to which the Y-shaped arm 24 is attached is screw-joined.A steel wire 25 can also be reinforced by reinforcing the three end portions and the inclined member 2 or the upper chord member 1 both ends.
[0019]
  Configuring a truss in a plane surrounded by the upper chord material 1 or the inclined member 2 of the triangular pyramid unit frame 3 or the quadrangular pyramid unit frame 50;The horizontal force applied to the conical unit frame is received by the in-plane truss..
[0020]
  FoundationA rod or tube 143 is used as a core, and one or a plurality of spirally processed plate members 144 are attached or integrally formed thereon, and are fixed to the ground by an earth anchor 142 that can be rotationally press-fitted. Features.
[0021]
  A base plate 152 is attached to the foundation below the intersection of the lower end of the inclined member of the building, a jack insertion space is provided between the base plate 152 and the foundation, and the base plate 52 is fixed.The extra length of the anchor bolt 153 is taken, the base plate 152 is jacked up after uneven settlement, and a grout 156 is injected between the base plate 152 and the foundation or a camber is inserted to adjust the level.
[0022]
[Action]
  The triangular pyramid unit frame used in the building of the present invention has a triangular shape because all faces of the tetrahedron form a triangle. It is an efficient unit frame. By connecting or arranging them in a planar or three-dimensional manner and connecting them with truss beams to make the structural frame into a three-dimensional truss, the structural frame can be reduced in weight, and the structural frame can be expanded, reduced, Easy to use. According to the second aspect of the present invention, since the upper chord material is a truss beam, the upper chord material can be ejected outward from the inclined member.
[0023]
  For the above reasons, the members of the triangular pyramid unit frame may be joined by pin joining or hinge joining, and can be easily assembled and disassembled. In addition, by connecting the upper chord material and the inclined member with a hinge, and making the inclined member easily have an arbitrary length, this unit frame can be at an arbitrary height, and the artificial ground, roads, tracks, buildings, etc. on the inclined land Can be built easily.
[0024]
  In addition, according to the present invention, the structural frame, floor, and foundation members can be disassembled into necessary and appropriate lengths, sizes, and weights. It can be built without destroying the natural environment. Furthermore, if the necessary heavy machinery is provided for the convenience of construction, the linear structure of the present invention can be self-stretched, so that it can be used as a road or track to transport heavy machinery and the like without causing natural destruction. Is possible.
[0025]
  According to the present invention, since the triangular lattice beam has high rigidity, members such as a floor, a roof, and a solar cell to be attached to the upper surface thereof may be non-rigid, and can be easily attached, replaced, and disassembled. It may be a top gravel floor. This is possible even on a lattice beam with a quadrangular pyramid unit frame by reinforcing it with a horizontal brace or giving the floor member rigidity.
[0026]
  According to the present invention,Since it can be assembled close to the ground, it can be built without the need for a large-scale scaffolding for the construction of tall buildings.
[0027]
  According to the present invention, since it can be freely grounded on an inclined land, it is suitable for an artificial ground on an inclined land such as a mountain or a beach, and can be used for a building such as a solar power plant. In addition, it is possible to prevent the felling of the tree by setting the unit frame while avoiding the tree or by passing the slant member while avoiding the trunk and branches of the upper chord material.
[0028]
  Further, according to the present invention, the triangular pyramid unit frame is connected in a curved shape, the lower part of the inclined member is connected with the lower chord material to form an integral three-dimensional truss, and the floor member or the roof member is attached to the upper part, thereby providing the artificial surface having the cubic curved surface shape. Or a roof is possible.
[0029]
  Since the linear building according to claim 5 can be grounded freely on the slope, it is suitable for roads and tracks on slopes such as mountains and beaches, and can be easily formed into a cubic curve.
[0030]
  In the floating structure according to claim 6, the float is a triangular pyramid, and there is sufficient space between the float and between the float and the floor, so that the wave energy can be absorbed and the influence of the wave on the building can be reduced. . In addition, the water depth, wave height and flow velocity are detected by the sensor, transmitted to the control panel, the hoist is actuated, and the structure is able to eliminate the movement and vibration of the building by applying tension to the towline fixed by the ground anchor, Available for airports. It is also possible to operate a ship under the building. Further, when the space between the floats is sufficient, the shape may be a shape such as a sphere, a cylinder, or a rectangle.
[0031]
  According to the present invention, a safe foundation can be formed even on sloping ground, and a foundation of a minimum size that allows subsidence is possible.
[0032]
  By inserting the seismic isolation device between the building of the present invention and the foundation, it is possible to construct a seismic isolation structure by inserting a seismic isolation device such as a damper into the seismic isolation structure.
[0033]
【Example】
  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a building according to the present invention, FIG. 2 is a plan view of the same three-dimensional truss structure framework, FIG. 3 is a cross-sectional view taken along line aa in FIG. 2, and FIG. It is line sectional drawing. The thickness of the member such as the upper chord material is omitted and a single line is expressed. As shown in FIGS. 1 and 2, the building is constructed by joining the upper chord member 1 and the inclined member 2 to each other to form a triangular pyramid unit frame 3 so that the upper chord member 1 is not overlapped with the triangular pyramid unit frame 3. By connecting them, a solid truss is formed, and a floor member 6 is attached to the upper part.
[0034]
  FIG. 5 is a joining plan view of the upper chord material and the inclined member, FIG. 6 is a sectional view taken along the line cc of FIG. 7, FIG. 7 is a joining plan view of the lower portion of the inclined member, and FIG. Since the upper chord material 1 forms a triangle, the upper chord material 1 can be joined by a pin bolt 9 that can be easily mounted and disassembled, and the inclined member 2 is hinged to the joining members 8 and 9, so It can be attached to the top, and since it forms a triangle with the upper chord material, it is stable at the hinge joint.
[0035]
  9 is a first floor plan view of an embodiment in which the building is used as an artificial ground and a house is built, FIG. 10 is a second floor plan view, and FIG. 11 is a side view. The upper chord material length is 3 m, and a steel pipe of φ165.2 can be used for the upper chord material and the inclined member. In addition, they may be pipe materials such as PC concrete, logs, paper tubes, or bar materials. Since the building forms a triangular lattice beam with the upper chord material, it is easy to avoid the trees and to hold the floor member and a part of the upper chord material. The main room of the building on the triangular lattice beam is constituted by a hexagon, and it is possible to create a space expansion different from that of a conventional quadrangular room. The construction on the artificial ground is structurally a wall-type structure in which wall panels are mounted on the upper chord material, a wooden structure in which a foundation is built on the upper chord material, and a steel column is built on the upper chord material joint member Any steel structure can be used.
[0036]
12 to 16 show an embodiment of floor panel mounting. 12 is an arrangement plan view of the floor panel mounting pedestal, FIG. 13 is an arrangement plan view of the floor panel and set bolts, FIGS. 14, 15, and 16 are respectively a dd line sectional view and an ee line sectional view. , Ff sectional drawing. Since the upper chord material forms a triangle, it is not deformed by a horizontal force, and the pedestals 11, 12, 13 can be easily attached and disassembled, and are attached by U bolts 17. The floor panel 6 is similarly attached by a set bolt 18. A heat insulating material 19 which is deformable and does not absorb water is packed between the panels. In this embodiment, the upper chord length is 3 m, and the size of the floor panel is unified with a regular triangle with one side being 1.5 m.
[0037]
  FIG. 17 to FIG. 24 are examples of the inclined member. FIG. 17 shows that the inclined member is divided into the shaft tube 20 and the tip member 21 and screwed together, and the length can be adjusted from L to L + 210. 18, 19, and 20, when l0 = 0.25 m, shaft tubes with lengths of l1, l2, l3, and l4 of 2.0 m, 2.5 m, 3.0 m, and 3.5 m are combined. It shows that the inclined member length L can be any length from 2.0 m to 11.0 m. FIG. 20 shows an embodiment in which when the inclined member length L exceeds 7.5 m, a Y-shaped metal piece 24 and a steel wire 25 are attached to reinforce the member. FIG. 21 is a joint sectional view of a shaft tube, and the shaft tube 23 is screw-joined by a joining member 26. FIG. 22 is a cross-sectional view of the joint between the shaft tube and the Y-shaped metal piece, and FIG. The Y-shaped hardware 24 is screwed to the shaft tube 20 and the steel wire 25 is passed through the tip of the Y-shaped hardware. FIG. 24 is a joint sectional view of the shaft tube, the tip member, and the steel wire fitting. The steel wire fitting 26 is screwed to the tip member 21, and the steel wire 25 is tensioned by the tumble buckle 27. Although the inclined member length has been described above, it can be similarly used for the upper chord material length, the horizontal member length, and the lower chord material length.
[0038]
  25 is a plan view of a structural framework of a building, FIG. 26 is a cross-sectional view taken along the line hh of FIG. 27, and FIG. 27 is a perspective view of a triangular pyramid unit frame. As shown in FIG. 27, the truss-like upper chord member 28 and the inclined member 2 are joined to each other via the joining member 29 and the joining member 10 to form a unit pyramid unit frame, and these unit frames are arranged as shown in FIG. The truss beam 31 is connected, and the truss beam 32 is attached to the outer chord on the upper chord material wire. A building having the same area as that of FIG. 1 is constructed by the three unit frames, and this can be freely extended as a basic unit of the building. The truss-like upper chord member 28, the truss beam 31, the truss beam 32, and the upper chord connecting member 33 may be the same member. Further, the triangular pyramid unit frame and the truss beam can be made of PC concrete.
[0039]
  FIG. 28 is a front view of another embodiment. The building 34, the linear building 35, and the multilayer building 36 are configured. Details of the linear building and the multi-layered building will be described later. As shown in the figure, a green city space can be created by using and planting the building as an artificial ground on the beach or desert area.
[0040]
  FIG. 29 is a perspective view of a structural framework of a building, and FIG. 30 is a plan view and a rear view of the same. Three triangular pyramid-shaped unit frames 3 are connected obliquely and laterally to form an integral three-dimensional truss connected by an upper chord connecting member 4, and a small beam 37 is placed in parallel to the upper chord member 1 to form a triangular lattice beam. Since the upper chord member 1, the upper chord connecting member 4 and the small beam 37 form a truss beam by the joining member 38, the bundle 39 and the lower chord member 40, the member can be reduced in weight and can be easily joined and disassembled by pin joining. FIG. 31 is a plan view of an embodiment in which the building is used as an artificial ground and a house is built on the upper part, and FIG. 32 is a side view of the same. In this way, a building for a single house can be formed by the three unit frames and the three foundations.
[0041]
  FIG. 33 is a front view of a fishing rod-shaped tilting member in which the tilting member 2 is integrated with a plurality of shaft tubes 20 having different diameters so that the tilting member 2 can be expanded and contracted like a fishing rod, and FIG. 34 is a front view of the tilting member extended. FIG. 3 is a cross-sectional view of the same shaft pipe joint. As shown in FIG. 35, when the end portions of the upper and lower shaft tubes 20 are fully extended, they are in contact with each other with a tapered surface, and the upper shaft tube 20 is threaded. Therefore, the upper and lower shaft tubes are fixed by tightening the nut 41 and further tightening the return lock nut 42. FIG. 36 shows a jack installation diagram for jack-up using the inclined member in the inclined member of the building shown in FIGS. 29 and 30. The gantry 43 can be placed under the inclined member, and the jacks can be jacked up by placing three jacks underneath. FIG. 37 is a side view before jack-up in FIG. 36, FIG. 38 is a side view of the main installation after jack-up is completed, and FIG. In the first stage, the upper joint portion 45 of the three-order inclined member is fixed, and in the second stage, the lower joint portion 46 and the joint portion 47 of the second-order inclined member are fixed.
[0042]
  FIG. 40 is a reference example before the extension of the jack built-in inclined member, and FIG. 41 is a reference example showing a front view after the extension. The inclined member is composed of the shaft tube 20 and the jack 48 and is screwed to each other. Therefore, when the handle 49 is rotated, the inclined member can freely expand and contract. Therefore, by using the inclined member in the triangular pyramid-shaped unit frame, it can be assembled on the ground and jacked up before being installed. In addition, the level can be adjusted freely against uneven settlement after the main installation.
[0043]
  42 is a perspective view of a structural frame of a building example according to a four-pyramidal unit frame structure, FIG. 43 is a plan view and a rear view of the same, and FIG. 44 is a side view of the same. The upper chord member 51 and the inclined member 52 are joined to each other via joining members 53 and 54 to form a quadrangular pyramid unit frame, and the unit frames are connected in four vertical and horizontal directions. A bundle 55 and a lower chord material 56 are joined to the upper chord material 51 to form a truss beam. Furthermore, lattice beams are formed by placing the small beams 57 parallel to the upper chord material 51 at equal intervals. The small beam 57 is also a truss beam like the upper chord material 51. By setting the member length of the upper chord material and the beam to 3,600 mm, it is possible to construct a structural frame of artificial ground necessary for a single house with an area of 207.36 m2.
[0044]
  45 is a joining plan view of the upper chord member and the inclined member, FIG. 46 is a rear view of the same, and FIG. 47 is a sectional view taken along the line h′-h ′ of FIG. Similar to the triangular pyramid unit frame, the upper chord member 51 and the inclined member 52 are pin-joined and hinge-joined via the joining member 53, respectively. The lower chord material 56 is screwed to a joining member 58 screwed to the upper chord material tip member 60. FIG. 48 is a joint front view of the upper chord member 51 or the small beam 57 and the bundle 55 and the lower chord member 56. The bundle 55 is joined to the joining members 59 and 61, and the lower chord material 56 is joined to the joining member 61 by screws. In this way, by joining single materials by means that can be easily joined and disassembled, a long truss beam having a high cross-sectional property can be easily obtained, and replacement and reuse can be facilitated.
[0045]
  49 is a plan view of an embodiment of a stepped structure structure frame, FIG. 50 is a sectional view taken along the line i′-i ′, and FIG. 51 is a sectional view taken along the line ii. Triangular pyramid-shaped unit frames 3 are connected in series, an upper chord connecting material 4 connecting upper chord material intersections is inserted, and a lower chord material 62 is joined to the lower part of the unit frame to form a solid truss, which is stepped along the slope. A stepped structure is constructed by grounding and attaching a floor member to the upper surface of the upper chord member or the lower chord member. The outer periphery of the building is grounded by a triangular pyramid unit frame 63 or a foundation rising 64 with the lower chord member 62 as the upper chord member. FIG. 52 is a front view of joining members, and FIG. 53 is a specific example of the building. The lower floor can be used as a three-dimensional sidewalk, and the lower floor and the upper floor can be connected by stairs or escalators.
[0046]
  54 is a cross-sectional view taken along the line oo of FIGS. 55 to 59 of the reference example of the multi-layered building structure, and FIGS. 55, 56, 57, 58, and 59 are respectively plan views taken along the line j-j. It is a kk line plan view, an l-l line plan view, a mm line plan view, and an nn line plan view. The structural frame is composed of three triangular pyramid unit frames 68, and each layer becomes a solid truss that forms a triangular lattice beam. It can be used as a building by attaching a floor member to the upper surface of the triangular lattice beam of each layer and attaching an outer material to the outer periphery. FIG. 60 is a joint front view of the inclined member and the horizontal member. The inclined member 52 is screwed by the joining member 70 and the joining member 71 to form an integral inclined member. The horizontal member 69 is pin-joined to the joining member 70 by the pin bolt 9. The building constitutes a three-dimensional truss, and the uppermost layer forms a triangular lattice beam by the upper chord member 51, the upper chord connecting member 67 and the small beam 57, and the middle layer and the lowermost layer form the horizontal member 69, the horizontal member 72 and the small beam 57. And since this triangular lattice beam comprises a truss beam, the weight reduction of this building can be achieved. Moreover, since this building is comprised by the pin joint or screw joint of each member, construction, dismantling, and reuse of a member can also be performed easily.
[0047]
  FIG. 61 is a side view of a reference example of another multi-layered building structure frame, and FIGS. 62 to 66 are a pp line plan view, a gg line plan view, an rr line plan view, and an s-s view, respectively. FIG. The structural frame is a three-dimensional truss composed of four quadrangular pyramid unit frames 74 composed of the upper chord material 51 and the four inclined members 52. The uppermost layer forms a lattice beam by the upper chord material 51 and the small beam 57, and the middle layer and the lowermost layer form a lattice beam by the horizontal member 69, the horizontal member 72 and the small beam 57. The upper chord member 51, the horizontal member 69, the horizontal member 72, and the small beam 57 constitute a truss beam by the bundle 55 and the lower chord member 56. By attaching a floor member to the upper surface of each layer of the multi-layered structural framework and an exterior material on the outer periphery, it can be used as a building. The rigidity of the building against horizontal forces is maintained by attaching a rigid floor member. FIG. 67 is a side view of a multi-layered building structural frame in which the structural frame shown in FIG. 61 is turned upside down, the inclined member 52 is extended and grounded, and a truss beam composed of a horizontal member 72, a bundle 55 and a lower chord material 56 is attached. .
[0048]
  FIG. 68 is a perspective view of another reference example of a multi-layer building structure frame. The steel frames on the inside and the back are omitted. 69 is a plan view of FIG. 68, and FIG. 70 is a sectional view taken along line t′-t ′ of FIG. A triangular pyramid-shaped unit frame 79 composed of upper chord members 75 and 76 and inclined members 77 and 78 is connected in a polygonal shape, and a core 84 'and a structural framework of a tower 84 as a rise are provided in the central portion to connect the upper chord member intersections. In this way, the upper chord connecting member 73 'is inserted, and the upper chord members 75, 76 or the upper chord connecting member 73' are respectively taken with the necessary lengths and the horizontal members 80, 80 ', 80 "are inserted and joined to the inclined member to form a composite. Consists of the main frame of the layered structural frame, and the small chords 83 and 82 are inserted on the upper surface of the triangular pyramid unit frame at equal intervals parallel to the upper chord members 75 and 76, and joined to the upper chord member, and the inclined members are provided on the side surfaces. An inclined member 81 is inserted at equal intervals parallel to 77, joined to the inclined members 77 and 78, the upper chord member 75 or the horizontal member 80, and a truss is formed on the three triangular pyramid unit frames. The upper chord of the unit frame The member, the horizontal member, the beam, and the inclined member can each be pin-joined, and the members are also unified by the length between the joints, and the uppermost layer extends the beam 83 and the beam 82 is the 3 By placing it outside the upper surface of the pyramid-shaped unit frame, the lattice beam is formed by placing the small beams 82 and 83 in parallel with the horizontal members 80 ′ and 80 ″ respectively in the middle layer and the lowermost layer, and the outer surface portion is inclined. Since the lattice frame is formed by extending the member 81, each member of the building is unified with the same member except for the corner. The core part can be used as stairs, elevator shaft, PS. The embodiment is an embodiment of a rectangular building, but polygons such as hexagons and octagons are possible as well. FIG. 71 is a plan view of joining of the structural frame and attachment of the outer wall. Since the inclined members 77 and 81 and the horizontal member 80 and the horizontal member 80 and the small beam 83 form a triangle, the connection may be a pin connection and can be easily attached and disassembled. Further, the outer wall 93 can be easily mounted and disassembled by the pin bolt 92.
[0049]
  FIG. 72 is a plan view of another reference example of a multi-layer building structure frame, in which the upper half shows the outside and the lower half shows the inside. 73 is a front view of the same, and FIG. 74 is a cross-sectional view taken along the line u-u of FIG. A triangular pyramid unit frame 80 'composed of an upper chord member 76' and inclined members 75 ', 77', 79 'is connected in a polygonal shape, and an upper chord connecting member 83' is inserted so as to connect the upper chord member intersections. ′, The upper chord connecting material 83 ′ and the horizontal members 85 ′ and 86 ′ taking the necessary heights to form a multi-layer structure frame, and in order to attach the floor member or the roof member effectively, surrounded by the upper chord material A dome-shaped triangular lattice beam is formed in the formed plane, and a triangular lattice beam made of truss beams is formed in the plane surrounded by the horizontal member. By attaching a roof member to the upper layer part and a floor member to the lower layer part, it can be used as a dome.
[0050]
  FIG. 75 is a perspective view of a reference example of another multilayer structure frame. A triangular pyramid unit frame 3 composed of the upper chord material 1 and the inclined member 2 is connected horizontally and vertically so that the inclined member 2 comes to the outside to form an integral three-dimensional truss. By adjusting the length of the inclined member 2 of the lowermost triangular pyramid-shaped unit frame, it can be grounded on the inclined ground. It is possible to make a sloped roof by attaching a quadrangular pyramid unit frame 96 to the uppermost part and stretching a roof member. A floor member is attached to both upper chord members of each layer of the structural framework, and an outer wall member is attached to the outer periphery, so that it can be used as a building. The internal space can be used effectively by matching the position of the inclined member that goes out to the partition wall position. Moreover, the vertical flow lines of stairs and elevators can be provided inside or combined as separate structures.
[0051]
  76 is a perspective view of a reference example of a linear building structure frame, FIG. 77 is a plan view of the same, FIG. 78 is a side view of the same, and FIG. 79 is a sectional view taken along the line u′-u ′. This is a solid truss formed by alternately connecting a knitted center-of-gravity trigonal pyramid unit frame composed of an upper chord 1 and an inclined member 2 horizontally in a row. Since the inclined member 2 is hinge-joined with the joining members 97 and 98, the inclined member 2 can be freely grounded on an inclined land with unevenness by adjusting its length. Further, by adjusting the lengths of the upper chord member 1 and the inclined member 2, a linear building having a cubic curve is possible. It can be used as a track by attaching a rail to the upper surface of the parallel upper chord material 1 and as a road by attaching a floor member to the upper surface of the upper chord material 1.
[0052]
  80 is a perspective view of another linear building structure, FIG. 81 is a plan view of the same, FIG. 82 is a front view, FIGS. 83 and 84 are cross-sectional views taken along the line v′-v ′ of FIG. It is sectional drawing. Triangular pyramid-shaped unit frames 3 formed by joining the upper chord member 1 and the inclined member 2 to each other are connected in two rows horizontally, the lower member of the inclined member is connected by the lower chord member 62, and the upper chord member 1 at both ends of the unit frame at regular intervals. This is a three-dimensional truss formed by facing a triangular pyramid unit frame 105 formed by joining two crossing points, a lower end portion, and three new inclined members 99 and 100 to each other. By attaching a floor member to the upper chord material upper surface, it can be used as a linear structure such as a road. By adjusting the lengths of the upper chord member 1, the inclined members 2, 99, 100 and the lower chord member 62, the structural framework can form a cubic curve.
[0053]
  85 is a perspective view of another linear building structure frame embodiment, FIG. 86 is a plan view of the same, FIG. 87 is a front view, FIGS. 88 and 89 are cross-sectional views taken along the line w-w of FIG. It is line sectional drawing. A quadrangular pyramid-shaped unit frame 109 formed by joining the upper chord members 106 and 107 and the inclined member 108 to each other is connected horizontally, the lower member of the inclined member is connected by the lower chord member 110, and the upper chord member 106 at both vertical ends of the unit frame at regular intervals. This is a three-dimensional truss formed by facing a triangular pyramid unit frame 113 formed by joining two horizontal intersections, a lower end portion, and three new inclined members 111 and 112 to each other. By attaching a rigid floor member to the upper chord material upper surface, it can be used for a linear structure such as a road. By adjusting the lengths of the upper chord members 106 and 107, the inclined members 108, 111 and 112, and the lower chord member 110, the structural framework can form a cubic curve.
[0054]
  90 is a plan view of a floating building embodiment, FIG. 91 is a side view of the same, and FIG. 92 is a front view. A triangular pyramid unit frame formed by joining the upper chord member 1 and the inclined member 2 to each other is continuously provided, and the upper chord connecting member 4 is provided on the outer peripheral portion, and the lower chord member 119 is provided on the lower portion of the inclined member to form a three-dimensional truss structural framework. A floor member 118 is attached to the upper surface of the upper chord material, and a float is attached below the lower chord material to form a floating building body. The wave energy can be absorbed by making the float a triangular pyramid, providing a sufficient gap between the floats, and providing a sufficient space between the float and the floor. FIG. 93 is a front view of a lower reference example of a floating building. Since the float 120 is pin-bonded to the bonding member 126, it can be easily attached, disassembled, and replaced. FIG. 94 is a perspective view of a float reference example. Since the structural frame 130 is a triangular pyramid solid truss formed by joining the upper chord member 127, the inclined member 128 and the truss member 129 to each other, the weight of the member can be reduced. By floating a durable and strong plate such as titanium on the four surfaces of the structural frame, a float for a floating building can be formed. FIG. 95 shows another reference example of the float. The float is packed inside the triangular pyramid structure frame, and a net is stretched around the outer periphery. Since the float can be easily replaced, it is sufficient if it has strength and durability against water pressure, and an inexpensive product such as a recycled plastic bottle can be used. In addition, since the float is an aggregate of floats, the risk of flooding and flooding of the float is reduced. FIG. 96 is a flowchart from the sensor to the tension of the towline. The sensor senses the water depth, flow velocity and wave height, and the control panel receives it and activates the hoist to float on the towline and apply the tension necessary to prevent horizontal movement and vertical movement of the building. The towline is fixed to the seabed by an earth anchor 125. FIG. 97 is a cross-sectional view of a reference example of a multi-layer floating building. The structural framework conforms to FIGS. 54 to 60 of the multi-layered building reference example. By using the runway at the top and the air terminal below it, it can be used for maritime air navigation.
[0055]
  FIG. 98 is a plan view of the basic assembly example, and FIG. 99 is a front view of the same. Blocks 136 of sufficient thickness and durability with equal thickness are laid on the ground without any gaps in the vertical and horizontal or diagonal directions, and these are connected by applying a tensile force with a steel bar to form the base of the above block. These are independent foundations that are stacked in one or more stages, and these and the base are joined by applying a tensile force with a steel rod to rise the foundation. The blocks may be triangular or quadrangular. In this way, since the foundation is a structure made up of a plurality of blocks of appropriate size, heavy equipment is not required for assembly, and assembly is possible even on slopes such as Yamano, and reuse of components is also possible Is possible. The ground anchor 142 can be fixed to the ground to prevent foundation slip on slopes and to resist wind. The earth anchor 142 has a bar or tube 143 as a core, and one or a plurality of spirally processed plate members 144 are attached to or integrally formed with the earth anchor 142, so that it can be rotary press-fitted and fixed to the ground. The equipment for rotary press-fitting of the earth anchor can be easily transported and moved, and the load for press-fitting uses the water that can be easily increased, recovered and moved.
[0056]
  100 is a plan view of a reference example of an assembly foundation with a foundation beam, FIG. 101 is a sectional view taken along the line yz, and FIG. 102 is a sectional view taken along the line zz. One or more hollow blocks are stacked on the base base, and these and the base are fixed with a steel bar 141. Next, the foundation beam blocks 148 are laid in a bar shape between the independent foundations, and these and the foundation rising are joined with a steel bar or PC steel wire 149 by applying a tensile force. Finally, concrete or grout is filled into the cavity of the foundation rise and the gap between the foundation beam block and the foundation rise. The reason why the foundation rising block 147 is hollow is to make a hole for penetrating the steel rod or the PC steel wire 149 for joining the foundation beam. In this way, a foundation and a building that are more stable against seismic forces can be constructed by connecting independent foundations with foundation beams.
[0057]
  FIG. 103 is a plan view of a foundation embodiment corresponding to uneven settlement, FIG. 104 is a front view of the same, and FIG. 105 is a front view of jack-up after the foundation settlement. Jack extra space 157 and anchor bolt 153 have extra length under base plate 152. After sinking, jack 159 is inserted into jack insertion space, jack up, level adjustment, grout injection, and grout set Can be removed to stabilize the superstructure horizontally. When the ground anchor 142 is attached to the foundation, the nut 145 may be tightened. By using a non-settlement foundation for the building foundation, allowing subsidence and adjusting the non-settlement, the size of the foundation can be reduced, saving resources and economy.
[0058]
  FIG. 106 shows a new space in which a building 200, 201, 202, 203, 204, which uses the building of the present invention as a building for a traffic system and further applies the building of the present invention, is created on a slope in a mountain area. It is posted to show more specifically.
[0059]
【The invention's effect】
  As described above, the building and foundation of the present invention can be constructed on slopes such as mountains and beaches without destroying nature, and a new space for enjoying the view and nature can be created.
[0060]
  In addition, since the building and foundation of the present invention can be used in places where small resources, recycling, and reuse are possible, it can contribute to the formation of a recycling society.
[0061]
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a building of the present invention.
FIG. 2 is a plan view of the three-dimensional truss structure framework.
3 is a cross-sectional view taken along line aa in FIG.
4 is a cross-sectional view taken along line bb in FIG.
FIG. 5 is a plan view of joining the upper chord material and the inclined member.
FIG. 6 is a sectional view taken along the line cc of the same.
FIG. 7 is a joining plan view of a lower part of an inclined member.
FIG. 8 is a front view of the same.
FIG. 9 is a first floor plan view of an embodiment in which the building is used as an artificial ground and a house is built.
FIG. 10 is a plan view of the second floor of the above.
11 is a side view of FIGS. 9 and 10. FIG.
FIG. 12 is an arrangement plan view of a floor panel mounting base.
FIG. 13 is an arrangement plan view of a floor panel and set bolts.
14 is a sectional view taken along line dd in FIG.
15 is a sectional view taken along line ee of FIG.
16 is a cross-sectional view taken along the line ff of FIG.
FIG. 17 is a front view and a sectional view of an inclined member.
FIG. 18 is a front view and a table of a reference example for adjusting the length of an inclined member.
FIG. 19 (same as above).
FIG. 20 is a front view of the same (three-joint) and reinforced Y-shaped hardware, steel wire.
FIG. 21 is a joint cross-sectional view of an inclined member shaft tube.
FIG. 22 is a cross-sectional view of a joint between an inclined member shaft tube and a Y-shaped metal piece.
FIG. 23 is a sectional view taken along the line gg of the above.
FIG. 24 is a cross-sectional view of an inclined member shaft tube, a tip member, and a steel wire mounting hardware joint.
FIG. 25 is a plan view of a structural frame of a building.
FIG. 26 is a sectional view taken along the line hh of FIG.
FIG. 27 is a perspective view of a three-pyramidal unit frame.
FIG. 28 is a front view of another embodiment of a building.
FIG. 29 is a structural frame perspective view of a building.
FIG. 30 is a plan view of the same.
FIG. 31 is a plan view of an embodiment in which the building is used as an artificial ground and a house is built on the top.
FIG. 32 is a side view of the same.
FIG. 33 is a front view when the fishing rod-like inclined member is stored.
FIG. 34 is a front view when a fishing rod-like inclined member is extended.
FIG. 35 is a cross-sectional view of the same shaft pipe joint.
FIG. 36 is a jack installation diagram for jack-up.
FIG. 37 is a side view before building jack-up.
FIG. 38 is a side view of the building jack-up first stage.
FIG. 39 is a side view of the main building after completion of building jackup.
FIG. 40 is a front view of the jack built-in inclined member before extension.
FIG. 41 is a front view after the extension of the jack built-in inclined member.
FIG. 42 is a perspective view of a structural frame of a building example according to a quadrangular pyramid unit frame arrangement.
FIG. 43 is a plan view and a rear view of the same.
FIG. 44 is a side view of the same.
FIG. 45 is a plan view of the joining of the upper chord member and the inclined member.
FIG. 46 is a rear view of the same.
47 is a sectional view taken along the line h′-h ′ of FIG. 45. FIG.
FIG. 48 is a front view of the joining of the truss beams.
FIG. 49 is a plan view of a stepped building structure framework example;
50 is a cross-sectional view taken along the line i′-i ′ in FIG. 4;
51 is a sectional view taken along line ii of FIG. 49. FIG.
FIG. 52 is a front view of member joining.
FIG. 53 shows a specific reference example of the building.
54 is a cross-sectional view taken along the line oo of FIGS. 55 to 59 of a reference example of a multi-layered building structure frame. FIG.
55 is a plan view taken along line j-j in FIG. 54. FIG.
56 is a plan view taken along the line kk of FIG. 54. FIG.
57 is a plan view taken on line ll of FIG. 54. FIG.
FIG. 58 is a plan view taken along line m-m in FIG.
59 is a plan view of the nn line in FIG. 54. FIG.
FIG. 60 is a front view of joining of the inclined member and the horizontal member.
FIG. 61 is a side view of another reference example of a multi-layer building structure frame.
62 is a plan view taken along the line pp of FIG. 61. FIG.
63 is a plan view taken along the line gg of FIG. 61. FIG.
64 is a plan view taken along line rr of FIG. 61. FIG.
65 is a plan view taken along the line ss of FIG. 61. FIG.
66 is a plan view taken along the line tt of FIG. 61. FIG.
FIG. 67 is a side view of another reference example of a multi-layer building structure frame.
FIG. 68 is a perspective view of another reference example of a multi-layer building structure frame.
FIG. 69 is a plan view of the same.
70 is a plan view taken along the line t′-t ′ of FIG. 69. FIG.
FIG. 71 is a plan view of the structural framework and outer wall mounting.
FIG. 72 is a plan view of a reference example of another multi-layer building structure frame.
FIG. 73 is a front view of the same.
74 is a cross-sectional view taken along the line u-u in FIG. 72. FIG.
FIG. 75 is a perspective view of another reference example of a multi-layer building structure frame.
FIG. 76 is a perspective view of a reference example of a linear building structure frame.
Fig. 77 is a plan view of the same.
Fig. 78 is a side view of the same.
79 is a sectional view taken along the line u′-u ′ of FIG. 77. FIG.
FIG. 80 is a perspective view of another linear building structure framework example;
Fig. 81 is a plan view of the same.
Fig. 82 is a side view of the same.
83 is a sectional view taken along the line v′-v ′ of FIG. 81. FIG.
84 is a sectional view taken along the line vv in FIG. 81;
FIG. 85 is a perspective view of another linear building structure framework example;
FIG. 86 is a plan view of the same.
FIG. 87 is a side view of the same.
88 is a cross-sectional view taken along the line w-w of FIG. 86.
89 is a sectional view taken along line xx of FIG. 86. FIG.
FIG. 90 is a plan view of a floating building embodiment.
Fig. 91 is a side view of the same.
Fig. 92 is a front view of the same.
FIG. 93 is a front view of a floating building lower embodiment;
FIG. 94 is a perspective view of a float embodiment.
FIG. 95 is a perspective view of another example of a float.
FIG. 96 is a flow chart from the sensor to the tension of the towline.
FIG. 97 is a cross-sectional view of a reference example of a multi-layer floating building.
FIG. 98 is a plan view of a basic assembly example.
Fig. 99 is a front view of the same.
FIG. 100 is a plan view of a foundation reference example with a foundation beam.
101 is a sectional view taken along line yy in FIG. 100. FIG.
102 is a sectional view taken along line zz in FIG. 101. FIG.
FIG. 103 is a plan view of a basic embodiment for dealing with uneven settlement.
Fig. 104 is a front view of the same.
Fig. 105 is a front view of the jack-up after sinking.
FIG. 106 is a front view of a building example.
[0062]
[Explanation of symbols]
1, 51, 75, 76, 76 ', 85, 86, 106, 107, 127-upper chord material
2, 52, 75 ', 77, 77', 78, 79 ', 81, 87, 88, 99, 100, 108, 111, 112, 128-inclined members
3, 30, 63, 68, 79, 80 ', 89, 105, 113-3-pyramidal unit frame
4, 33, 67, 73 ', 83'-Upper string connecting material
5, 34--the building
6--Floor material
7, 21, 60, 132-tip member
8, 10, 29, 38, 53, 54, 58, 59, 61, 70, 71, 90, 91, 97, 98, 101, 102, 103, 104, 114, 115, 116, 117, 126, 131 ─ Joining member
9: Pin bolt
11, 12, 13--pedestal
17--U Bolt
18--Set bolt
19--Insulation
20--shaft tube
23-Screw connection
24--Y-shaped hardware
25--Steel Wire
26--Shaft tube joint members
27--Tumbuckle
28 ── truss-like upper chord material
31, 32, 90'─ Truss beam
35--Line Building
36--Multi-layer building
37, 57, 82, 83--Beam
39, 55--bundle
40, 56, 62, 110, 119--Lower chord material
41--Nut
42--Returning nut
43: Mount
45, 46, 47-joints
48── Jack with built-in inclined member
49--handle
50, 74, 96, 109-4-pyramidal unit frame
64: The basic rise
65── 3D walkway
66--Escalator
69, 72, 80, 80 ', 80 ", 85', 86 '-horizontal member
73 ── Skew elevator
84--Toya
84 '-core in the center
93--Outer wall
94: Sealing material
95: Backup material
120-Float
121--Tugline
122── Machine room entrance
123-Sensor
124-Machine room
125-Earth anchor
129-Truss member
130--Structural framework
133--Metal plate
134--Net
135: Float alone
136, 137--Block
138, 141, 149-steel bars
139, 145, 154-nuts
140--Notch
142-Earth anchor
143: Steel bars or pipes
144-Board material
146, 151, 155-Maruza
147--Cavity Block
148: Foundation beam block
149--Steel Bar or PC Steel Wire
150--concrete or grout
152-Base plate
153: Anchor bolt
156, 158-Grout
157--Jack insertion space
159: Jack

Claims (12)

上弦材1及び傾斜部材2の各端部どうしをピンボルト9で角度調整できるヒンジ接合することにより3角錐状単位架構3を構成し、前記3角錐状単位架構3を、上弦材1を重複しないように連接することにより立体トラスとし、前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつないで一体化した立体トラスの上部に床部材6を取り付け、前記傾斜部材2は複数の直径の異なる軸管20からなり、上の軸管20は下の軸管20に内蔵され、前記上弦材1等をジャッキアップまたは吊り上げるなどして、傾斜部材2を伸ばして上下の軸管20の端部のテーパー面で相互に接するようにし、上の軸管20に装着されたナット41を下の軸管20に向けて締め付け、上の軸管20と下の軸管20が接する面を締め付けて、ナット41の戻りをなくする為、戻り止めナット42で締め付ける構造になっていることを特徴とする建造物。The end portions of the upper chord member 1 and the inclined member 2 are hinge- joined so that the angle can be adjusted with pin bolts 9 to form a triangular pyramid unit frame 3 so that the upper chord member 1 is not overlapped with the triangular pyramid unit frame 3. The floor member 6 is attached to the upper part of the three-dimensional truss integrated by connecting the intersection of the upper chord material 1 of the upper outer periphery of the three-dimensional truss with the upper chord connecting material 4, and the inclined member 2 includes a plurality of inclined members 2. The upper shaft tube 20 is built in the lower shaft tube 20, and the inclined member 2 is extended by jacking up or lifting the upper chord material 1 or the like so that the upper and lower shaft tubes 20 are connected to each other. The end 41 is in contact with the tapered surface, the nut 41 mounted on the upper shaft tube 20 is tightened toward the lower shaft tube 20, and the surface where the upper shaft tube 20 and the lower shaft tube 20 are in contact is tightened. And nut 41 In order to eliminate the return, detent buildings, characterized in that it has a structure to tighten a nut 42. 前記上弦材1または上弦つなぎ材4をトラス梁28、31としたことを特徴とする請求項1記載の建造物。The building according to claim 1, wherein the upper chord member 1 or the upper chord connecting member 4 is truss beams 28, 31. 前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつなぎ、さらに前記傾斜部材2の交点を下弦材62でつないで一体化した立体トラスを斜面に沿って段状に連接し、上弦材1または下弦材62上部に床部材を取り付けてなることを特徴とする請求項1または2記載の建造物。 Connecting the intersection of the upper chord material 1 of the upper periphery of the three-dimensional truss with the upper chord connecting material 4 and connecting the intersection of the inclined member 2 with the lower chord material 62 to connect the three-dimensional truss in a step shape along the slope; The building according to claim 1 or 2 , wherein a floor member is attached to the upper chord member 1 or the lower chord member 62 . 前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつないで一体化した立体トラスを、前記3角錐状単位架構3を多角形状に連接することにより構成した立体トラスにしたことを特徴とする請求項1または2記載の建造物。 That the intersection of the top chord member 1 of the three-dimensional truss upper outer peripheral portion of the space truss integrated by connecting them with upper chord ties 4, and the space truss constructed by connecting the 3 pyramidal units Frame 3 polygonal The building according to claim 1 or 2, characterized in that 前記3角錘状単位架構を1列または複数列横に上弦材1によって構成される3角形の底辺が外周にくるように連接し、前記3角錐状単位架構3の傾斜部材2下端部交点を下弦材62でつなぎ、外周に面した前記3角錘状単位架構3の上弦材1の横2交点と傾斜部材2下端部交点にそれぞれ傾斜部材99、100を接合すると共に傾斜部材99、100の下端部どうしを接合することによってなる3角錘状単位架構105を一定間隔で構成したことを特徴とする請求項1または2記載の建造物。 The triangular pyramid-shaped unit frames are connected so that the base of the triangle formed by the upper chord material 1 is arranged in a row or a plurality of rows in a row, and the lower end intersection of the inclined member 2 of the triangular pyramid-shaped unit frame 3 is connected. Inclined members 99, 100 are joined to the intersection of the horizontal chord 1 of the triangular pyramid-shaped unit frame 3 facing the outer periphery and the two intersections of the upper chord member 1 and the lower end of the inclined member 2 respectively. The building according to claim 1 or 2, wherein the triangular pyramid unit frame 105 formed by joining the lower ends is formed at a constant interval. 前記立体トラス上部外周部の上弦材1の交点を上弦つなぎ材4でつなぎ、さらに前記傾斜部材2の交点を下弦材119でつないで一体化し、傾斜部材2の交点に、下弦材119と同長または複数倍を3辺とする3角形を上面としてなる3角錐状のフロート120を結合し、水深、波高、流速を探知するセンサー123、制御機、巻揚げ機、引き綱121及びアンカーまたはアースアンカー125を取り付けてなることを特徴とする請求項1または2記載の建造物。 The intersection of the upper chord material 1 on the outer periphery of the three-dimensional truss is connected by the upper chord connecting material 4, and the intersection of the inclined member 2 is connected by the lower chord material 119 to be integrated, and the intersection of the inclined member 2 is the same length as the lower chord material 119. Alternatively, a triangular pyramid-shaped float 120 whose upper surface is a triangle having three sides of multiple times is coupled, and a sensor 123 for detecting water depth, wave height, and flow velocity, a controller, a hoist, a tow rope 121, and an anchor or earth anchor 125. A building according to claim 1 or 2, wherein 125 is attached . 前記3角錐状単位架構3を4角錐状単位架構50に替えてなることを特徴とする請求項1から4までまたは6のいずれか一つに記載の建造物。  The building according to any one of claims 1 to 4 or 6, wherein the triangular pyramid unit frame 3 is replaced with a quadrangular pyramid unit frame 50. 前記上弦材1または上弦つなぎ材4で囲まれた面内に水平、平行及び等間隔に小梁37を取り付け適当な間隔の格子梁を構成し、この格子梁に格子梁で囲まれた大きさと同形または等分割の床部材6を取り付けてなることを特徴とする請求項1から7までのいずれか一つに記載の建造物。  A small beam 37 is mounted horizontally, in parallel and at equal intervals in a plane surrounded by the upper chord material 1 or the upper chord connecting material 4 to form a lattice beam with an appropriate interval, and the size of the lattice beam surrounded by the lattice beam The building according to any one of claims 1 to 7, wherein a floor member 6 of the same shape or equally divided is attached. 前記傾斜部材2または上弦材1の先端部21と軸管または軸棒20をねじ接合して伸縮可能ならしめ、一本または複数の軸管または軸棒20の接合によって任意の長さにでき、かつ軸管20どうしの接合部に、Y字型腕木24を取り付けた軸管20をねじ接合し、このY字型腕木24の3端部と傾斜部材2または上弦材1両先端部に鋼線25を張り補強することもできるようにしたことを特徴とする請求項1から8までのいずれか一つに記載の建造物。The tip portion 21 of the inclined member 2 or the upper chord material 1 and the shaft tube or the shaft rod 20 are screwed together so that they can expand and contract, and can be of any length by joining one or a plurality of shaft tubes or shaft rods 20, In addition, the shaft tube 20 with the Y-shaped arm 24 attached to the joint portion between the shaft tubes 20 is screw-joined, and a steel wire is attached to the three ends of the Y-shaped arm 24 and the both ends of the inclined member 2 or the upper chord material 1. The building according to any one of claims 1 to 8, wherein 25 can be reinforced. 前記3角錐状単位架構3または4角錐状単位架構50の上弦材1または傾斜部材2によって囲まれた面内にトラスを構成して、錐状単位架構にかかる水平力を前記面内トラスで受けることを特徴とする請求項1から9までのいずれか一つに記載の建造物。A truss is formed in a plane surrounded by the upper chord material 1 or the inclined member 2 of the triangular pyramid unit frame 3 or the quadrangular pyramid unit frame 50, and a horizontal force applied to the pyramidal unit frame is received by the in-plane truss. The building according to any one of claims 1 to 9, characterized in that 基礎を棒材または管材143を芯材とし、これに一つまたは複数のらせん状加工された板材144を取り付けまたは一体成形され、回転圧入できるように造られたアースアンカー142で地盤に固定されることを特徴とする請求項1から5までまたは7から10までのいずれか一つに記載の建造物。 The base material is a bar or tube material 143, and one or a plurality of spirally processed plate materials 144 are attached or integrally formed thereto, and are fixed to the ground by an earth anchor 142 that can be rotationally press-fitted. The building according to any one of claims 1 to 5, or 7 to 10. 基礎を前記建造物の傾斜部材下端部交点下にベースプレート152を取り付け、前記ベースプレート152と基礎の間にジャッキ挿入スペースを設け、前記ベースプレート52を固定する為のアンカーボルト153上部の余長を取り、不同沈下後ベースプレート152をジャッキアップ、ベースプレート152と基礎の間にグラウト156を注入またはキャンバーを入れ、レベル調整できることを特徴とする請求項1から5までまたは7から10までのいずれか一つに記載の建造物。 A base plate 152 is attached to the foundation below the intersection of the lower end of the inclined member of the building, a jack insertion space is provided between the base plate 152 and the foundation, and an extra length above the anchor bolt 153 for fixing the base plate 52 is taken. The level can be adjusted by jacking up the base plate 152 and pouring grout 156 or inserting a camber between the base plate 152 and the base after the uneven settlement , according to any one of claims 1 to 5 and 7 to 10. Building.
JP2001178723A 2001-06-13 2001-06-13 Building Expired - Fee Related JP4032093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178723A JP4032093B2 (en) 2001-06-13 2001-06-13 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178723A JP4032093B2 (en) 2001-06-13 2001-06-13 Building

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007007605A Division JP4069215B2 (en) 2007-01-17 2007-01-17 Transportation system

Publications (2)

Publication Number Publication Date
JP2002371625A JP2002371625A (en) 2002-12-26
JP4032093B2 true JP4032093B2 (en) 2008-01-16

Family

ID=19019383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178723A Expired - Fee Related JP4032093B2 (en) 2001-06-13 2001-06-13 Building

Country Status (1)

Country Link
JP (1) JP4032093B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285867A (en) * 2005-01-18 2010-12-24 Fujika:Kk Evacuation device
WO2011089273A1 (en) * 2010-01-22 2011-07-28 Tempero 2000 S.L. Energy-collecting building-covering structure
JP2017022850A (en) * 2015-07-09 2017-01-26 株式会社サカタ製作所 Mounting frame
CN108643435A (en) * 2018-05-04 2018-10-12 深装总建设集团股份有限公司 Adjustable hypersurface triangle aluminium sheet furred ceiling and its construction method
US20230265645A1 (en) * 2020-07-16 2023-08-24 Safway Services, Llc Modular space frame support system, work platform system and methods of erecting the same
JP7313022B1 (en) 2022-01-29 2023-07-24 株式会社プラント・ツリース Site elevation method and raised site structure
CN114703969B (en) * 2022-03-11 2024-09-03 山西四建集团有限公司 Inclined triangular pyramid truss type frame structure and construction method thereof

Also Published As

Publication number Publication date
JP2002371625A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
US4051570A (en) Road bridge construction with precast concrete modules
US3991532A (en) Sign post construction
ES2562757T3 (en) Foundation construction of a maritime installation, particularly of a marine wind turbine, to be installed silently, and assembly procedure for it
US8528296B1 (en) Method of installing a foundation system for modular system—smart buildings
US8966855B1 (en) Foundation system for modular system smart buildings
CN102418381B (en) Building structure system combined with steel beam and pre-tensioned prestressing superposed beam and construction method for building structure system
CN110593110A (en) Box girder cast-in-place support suitable for curves and longitudinal and transverse slopes and construction method thereof
JP4032093B2 (en) Building
CN112853935A (en) Bridge tower with spatial diagonal bracing arranged between tower limbs and construction method
CN203487487U (en) Anti-collision guardrail structure
CN203213001U (en) Antique landscape footway
KR970011188A (en) Prefabricated Overpass and Construction Method
CN111119222A (en) Assembling device for ultra-high voltage direct current transmission line iron tower in alpine region
JP4017922B2 (en) Supports and support foundations
US20150240472A1 (en) Cantilevered structure
US5325557A (en) Portable, demountable bridge to ford rivers and the like
CN100366856C (en) A tourist sign tower
CN111691600A (en) Tree-shaped three-fork steel pipe column for supporting outdoor concrete platform
CN110735394A (en) Cable tower structure and construction method thereof
CN212376139U (en) Tree-shaped three-fork steel pipe column for supporting outdoor concrete platform
CN210712576U (en) Multi-hoop truss supporting bailey bracket for cast-in-situ large-span box girder
JP4431805B2 (en) Tetrahedral frame, hexahedral frame bonding apparatus and structure
WO2011154799A2 (en) Pre-stressed concrete foundation for a marine building structure
CN113175196A (en) Cable net construction platform
KR20120114078A (en) A fixing structure of pillar and construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees