[go: up one dir, main page]

JP4024566B2 - Airflow pulverizer / classifier - Google Patents

Airflow pulverizer / classifier Download PDF

Info

Publication number
JP4024566B2
JP4024566B2 JP2002078897A JP2002078897A JP4024566B2 JP 4024566 B2 JP4024566 B2 JP 4024566B2 JP 2002078897 A JP2002078897 A JP 2002078897A JP 2002078897 A JP2002078897 A JP 2002078897A JP 4024566 B2 JP4024566 B2 JP 4024566B2
Authority
JP
Japan
Prior art keywords
cyclone
classifier
fine powder
pulverizer
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002078897A
Other languages
Japanese (ja)
Other versions
JP2003275685A (en
Inventor
信康 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002078897A priority Critical patent/JP4024566B2/en
Publication of JP2003275685A publication Critical patent/JP2003275685A/en
Application granted granted Critical
Publication of JP4024566B2 publication Critical patent/JP4024566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Cyclones (AREA)
  • Disintegrating Or Milling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微粉や粗大粒子の混入を抑制し、粒度分布のシャープなトナー粉を効率良く製造する装置に関する。
【0002】
【従来の技術】
従来、トナーの粉砕・分級方法としては1台の分級機と1台の粉砕機が2組の組合わせ又は2台の分級機と1台の粉砕機の組み合わせが知られている。その例としては高圧気流をジェットノズルから噴出させ、そのジェット気流中に原料粒子を巻き込み、粒子の相互衝突又は壁その他の衝突体との衝突で粉砕を進めるいわゆるジェット式粉砕手段であるジェットミルを用い、該粉砕手段1〜2ケと、粗粉分級手段2ケが結合されて、粉砕に供されたのち分級手段2ケが結合されて微粉分級している。
【0003】
図1および図2はそれぞれ従来行われているフローの例である。うち図1について説明する。粉砕原料1は原料供給管を経て供給され、粉砕物と共に原料は、第1分級機2に導入され、粗粉と微粉にわけられる。粗粉は粉砕手段を備えた第1粉砕機3で粉砕され、サイクロン4で一旦捕集され、再び第2分級機5へ導入され粉砕と微粉にわけられる。粗粉は粉砕手段を備えた第2粉砕機6で粉砕され、サイクロン7で捕集される。そして再び第3分級機8で粗粉と微粉に分けられ粗粉は9で製品として捕集され、微粉は一旦捕集サイクロン10で捕集後、さらに第4分級機11で粗粉と微粉にわけられ粗粉は再び分級機8に、微粉はサイクロン12で微粉13として回収される。分級機より、またはサイクロン上部より集塵機回収される超微粉は14、および前記13は、図3オフラインでコンパクション造粒され再練り活用される。
【0004】
しかしながら、この系では、分級手段に供給される粉体は、原料の粉体の他、粉砕の過程にある種々の粒径のトナーが粉砕手段と分級手段の間を循環して供給されるため、粒度が非常にブロードであり、且つ目的の粒度を得るためには、非常に負荷の大きい状態で運転されることになる。従って、分級された製品には、品質上悪影響を及ぼす粗粒子が多くなる。
一方、再度粉砕へ戻される粗粉側には、本来、これ以上粉砕の必要のない微粉が多く混入してこれらの微粉がさらに粉砕されることから、粉砕品中の微粉の割合が多くなって,微粉の凝集物等が発生することもあり、次工程の分級工程で微粉除去を行って所望の粒度を得ても収率が低い。又、先に述べたように、粗粉、微粉等の割合が多くなり、粒度分布がブロードとなるので、このようにして作った現像剤を用いて得た画像は濃度も低く、帯電量も安定しない。
すなわち、トナーの帯電量に影響を及ぼし過粉砕されたトナーは地汚れ現象が生じ、粉砕不十分のトナーは転写不良で共に画質を低下させる。又、生産においては分級機に過大な負荷がかかるため分級の効率が悪く、そして粉砕のエネルギー効率が悪いという問題を有している。
【0005】
【発明が解決しようとする課題】
近年の乾式トナーにおいては、高画質を目指してデジタル化が進み、粒径の制御すなわちトナー要求粒径に対し、過剰微粉や粗大粒子混入が少ないシャープな粒径が要求されている。従来の粉砕プロセスでは、微粉砕工程での消費エネルギーが大きく経済的に有利な方法とは言えない。また、ジェット式粉砕機による粉砕では、製品として不要な微粉の発生が個数割合で15〜50%とかなり多く、それがために、製品トナーへの微粉の混入を招き易く、微粉を除去するための生産効率が悪く、しかも、除去した微粉を再利用する際には追加エネルギーを必要とする。さらに上記従来の微粉砕機では粉砕処理能力および消費動力などの点で粉砕性能が不十分であるだけでなく、画像品質面で粒度や分布の不満足による、帯電量分布などに悪影響を与える問題があった。
【0006】
本発明は上記問題点を解決しようとするもので、その目的は目標粒径に対し、過剰微粉や粗粉の混入を容易に抑制でき、かつ発生する余剰微粉をも効率的に再利用可能とし消費動力も効率化できる、乾式トナーの製造に好適な方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、気流式粉砕・分級機において微粉を分離するサイクロンにその分離を促進する手段を設けることにより、その分離をより確実に行い、粗粉に同伴されて次工程以降での粉砕機により必要以上に粉砕される微粉の量を極力少なくして、そのことにより分級精度を向上し微粉含有量、微粉発生率を抑制することができ、また生産効率の面でも優れることを見出し、本発明に至った。
【0008】
すなわち、本発明は、
(1)微粉砕・粗粉砕分級上がりを捕集するサイクロンに、粉砕時に発生する4μm以下の微の含有量を11〜14%の範囲にする超微分離促進手段と、超微を回収するためのサイクロン上部管を設けた気流式粉砕・分級機であって、該超微分離促進手段としてサイクロンに強制エアーを流入させる配管を設け、該配管の出口側の開口がサイクロン上部管に向いていることを特徴とする気流式粉砕・分級機。
(2)前記(1)記載の気流式粉砕・分級機において、サイクロンに強制エアーを流入させ流量を管理したことを特徴とする気流式粉砕・分級機。
(3)前記(1)又は(2)記載の気流式粉砕・分級機において、微粉砕・分級上がりを捕集するサイクロンに連通する集塵機ブロワ−を設け、その静圧が−1500mm〜−4000mm/Aqであることを特徴とする気流式粉砕・分級機。
(4)前記(1)〜(3)のいずれか1項に記載の気流式粉砕・分級機において、分級機で分級した粗粉を主原料側に戻すことを特徴とする気流式粉砕・分級機。
(5)前記(1)〜(3)のいずれか1項に記載の気流式粉砕・分級機において、分級機で分級した粗粉を粉砕機側に戻すことを特徴とする気流式粉砕・分級機。
(6)前記(1)〜(5)のいずれか1項に記載の気流式粉砕・分級機において、サイクロンまたは集塵機で捕集した超微を造粒後、これを主原料側に戻すことを特徴とする気流式粉砕・分級機。
(7)前記(1)〜(5)のいずれか1項に記載の気流式粉砕・分級機において、サイクロンまたは集塵機で捕集した超微を造粒後、粉砕機側に戻すことを特徴とする気流式粉砕/分級機に関する。
【0009】
【発明の実施の態様】
本発明の、気流式粉砕・分級機は、基本的には粉砕機、粉砕された粒子を分級する分級機、および微粉砕・粗粉分級上りを捕集する、すなわち粉砕・分級された粉砕物を捕集するサイクロンから構成される。そして、そのサイクロンに超微粉の分離促進手段を設けたことが重要である。
本発明において、その分離促進手段としては、ローター、エアー流入部位、エアー強制流入配管等をサイクロンに設けることが好ましい。またサイクロンーに連通する集塵機のブロワー静圧をコントロールすること、サイクロンの内筒径を変更自在とすることによる手段も有用である。
このような分離促進手段をサイクロンに設けることにより、サイクロン内部の旋回流をコントロールすることができる。これにより本発明は分級精度を向上させて粗粉や微粉の含有量を低減することができ、この装置を使用して高品質のトナーを得ることができる。
また、本発明においては更に粉砕・分級機に、分離回収した超微粉をコンパクション(造粒)して再利用する工程を付加することができる。この場合には従来の図3に示すような混練・冷却・粗粉砕工程を経て粉砕原料に戻すオフラインの造粒工程を経る場合に比べて以下に示す利点が得られる。
A.超微粉中の樹脂成分の分子量分布が変化しない
B.再練に比べてエネルギーコストが低い
C.超微粉発生量が一定のため造流微粉戻し量が一定となり品質が安定する
D.超微粉発生量はトナー製品量に対して20%未満程度なので造粒製造機も小型(小生産機)で可能である
【0010】
図面により本発明の実施例を説明する。
図5は、本発明の第1の実施例を示すものである。この実施例は従来技術を示す図1、2の粉砕・分級機において、サイクロン4、7、10の上部に、粉砕時に発生し、分級された粗粉中に含まれている超微粉の分離を促進するローター4a、7a、10aを設けたものである。このローターは、図4に示すようにローターの回転数をモーター4b、7b、10bで制御駆動するように構成されている。そして、ローターは要求されるトナー仕様に応じて、その設置台数を選ぶことができ、またローターの周速もたとえば10〜50m/sに自在にコントロールできる。
また粉砕装置は圧縮エアーを用いる粉砕機で、例えば日本ニューマチック社製のI式ミル粉砕機、分級機は旋回気流式で例えば日本ニューマチック社製のDS分級等を用いて粉砕分級を行うことができる。
【0011】
この装置を使用した実施例を以下に示す。
実施例1(参考例)
ポリエステル樹脂75重量%とスチレンアクリル共重合樹脂10重量%とカーボンブラック15重量%の混合物をロールミルにて溶融混練し、冷却固化した後ハンマーミルで粗粉砕したトナー原料を用意した。これを図5に示すフローにおいて4、7で示すサイクロンーとして図4に示すローター4aを周速25m/sに、またローター7aを同30m/sになるようにコントロールしたサイクロンを用い、図5のフローで80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含有率が重量平均で1.0Vol%のトナー粒径を85%得ることができた。
この粒径測定に際してはコールターカウンター社のマルチサイザーを用いた。
【0012】
比較例1
実施例1と同一の混練品をトナー原料として用い、ただしサイクロンにローターを設けていない図1に示す工程フローで同様にして粉砕分級をおこなったところ、80kg/hrの原材料供給で、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で17POP.%、16μm以下粗粉含有率が重量平均で2.5Vol%のトナー粒径を80%得ることができた。このように実施例1の態様では、従来法に比べて分級精度が向上しており、製品に混入する微粉の含有量が減少し、同時に微粉の発生率の抑制が可能となり、生産効率にも優れている。
【0013】
実施例2(参考例)
この実施例は、図8に示すように、従来の気流式粉砕・分級機において、サイクロンとして図6に、またそのAB断面である図7に示すようなサイクロン4、7、10の内部に二次エアーを流入させることが可能な部位4c、7c、10cを設けたサイクロンを設置したものである。
【0014】
この気流式粉砕・分級機では、前記サイクロン4、7、10の内部に二次エアーを流入させることが可能な部位4c、7c、10cを設置したことにより、外気エアーを流入させサイクロン内部の遠心力と向心力をコントロールさせ、粉砕時に発生する超微粉の分離を一層効果的に行うことができる。すなわち、超微粉はサイクロン上部管を通過し14−1、14−2、14−3で回収できる。なおサイクロンに装着する二次エアー流入口は図7の断面図に示すようにサイクロンの外周部より均等に流入できる構成とし、そのエアー量は従来法サイクロンが吸引する全風量の1〜50%の調整が可能である。トナー仕様に応じて該サイクロンは、気流式粉砕・分級機において1〜3機設置することができる。この実施例で使用する粉砕装置は、圧縮エアーを用いる粉砕機で、例えば日本ニューチック社製のI式ミル粉砕機、また、分級機は旋回気流式で例えば日本ニューマチック社製のDS分級等を用いることができる。
【0015】
この気流式粉砕・分級機を用いた実施例(参考例)を以下に示す。
実施例1と同様なトナー原料を、図7のフローで図6に示す二次エアー流入式サイクロン4aでサイクロンの通過(吸引)全風量10%二次エアーを流入できるようにコントロールし図7のフローで80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で13POP.%、16μm以下粗粉含有率が重量平均で1.2Vol%のトナー粒径を84%得ることができた。
【0016】
実施例3
この態様は、図10に示すように従来の気流式粉砕・分級機において、サイクロンとしてサイクロン4、7、10の内部に、強制エアーを流入させることが可能な配管4d、7d、10dを設置したものである。この態様では粉砕時に発生する超微粉の分離を効率化するため、図9に示す配管によって圧縮エアーを流入させサイクロン内部の遠心力と向心力をコントロールさせ、超微粉はエアー流入によってサイクロン上部管を通過し14−1、14−2、14−3で回収できるように構成したものである。
なおサイクロンに装着する圧縮エアー配管のエアー量は従来法サイクロンが吸引する全風量の1〜50%の調整が可能で、トナー仕様に応じて該サイクロンを1〜3機設置することができる。また粉砕装置は圧縮エアーを用いる粉砕機で、例えば日本ニューチック社製のI式ミル粉砕機、また、分級機は旋回気流式で例えば日本ニューマチック社製のDS分級等を用いることができる。
【0017】
この気流式粉砕・分級機を用いた実施例を以下に示す。
実施例1と同様なトナー原料を、図10のフローにおいて、サイクロンとして図9に示す二次エアー流入式サイク ロンを用いた。サイクロンの通過(吸引)全風量の10%の二次エアーを流入できるようにコントロールし、図10のフローで80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で14POP.%、16μm以下粗粉含有率が重量平均で1.2Vol%のトナー粒径を85%得ることができた。
上記実施例2、3に示す態様では、従来法に比べて分級精度が向上したことにより製品に混入する微粉含有量が減少し、同時に微粉の発生率の抑制が可能であり、生産効率にも優れている。また、実施例1の態様に比してサイクロンの改造に要するコストも低く、その点有利である。
【0018】
実施例4
この態様では、前記実施例3に使用した気流式粉砕・分級機の強制エアーを流入させることが可能な配管4d、7d、10dに、図11に示すように流入するエアー流量を制御できるコントローラー4e、7e、10eと調整バルブ4f、7f、10fを設置し、粉砕時に発生する超微粉を図10に示すレイアウト構成によって圧縮エアーを流入させ、サイクロン内部の遠心力と向心力を精密コントロール可能とさせ、分離した超微粉はエアー流入によってサイクロン上部管を通過し14−1、14−2、14−3で回収できるように構成したものである。なおサイクロンに装着する圧縮エアー配管のエアー量は従来法サイクロンが吸引する全風量の1〜50%の調整が設定値に対して±1〜10%の範囲でコントロール可能である。該サイクロンをトナー仕様に応じて1〜3機設置することができる。この態様において、粉砕装置は圧縮エアーを用いる粉砕機で、例えば日本ニューマチック社製のI式ミル粉砕機、分級機は旋回気流式で例えば日本ニューチック社製のDS分級等を用いて粉砕分級を行うことができる。
この態様は従来法に比べて分級精度が向上したことにより製品に混入する微粉含有量が減少し同時に微粉の発生率の抑制が可能となり、生産効率にも優れている。更に微粉含有率のコントロールが容易であり、長時間にわたって安定したトナー粒径が得られる。
【0019】
このような気流式粉砕・分級機を使用した実施例を以下に示す。
実施例1と同様なトナー原料を使用して、図10のフローでサイクロンとして図11に示す二次エアー流入式サイクロンを用いてサイクロンの通過(吸引)全風量の10%の二次エアーを流入できるようにコントロールし、図10のフローで80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で13POP.%、16μm以下粗粉含有率が重量平均で1.1Vol%のトナー粒径を85%得ることができた。
【0020】
実施例5
この態様では、前記実施例に使用したサイクロンの内部の遠心力と向心力のコントロールをサイクロンに連通する各集塵機のブロワーの静圧を−1500〜−4000mm/Aqの範囲で稼働させて行うものである。なお、このブロワー静圧は−1800〜−3500mm/Aqとすることによりより鮮明な効果が得られる。
【0021】
この気流式粉砕・分級機を使用した実施例を以下に示す。
実施例1と同様なトナー原料および装置を用いて、サイクロンに連通する集塵機のブロワー静圧をサイクロン内の通過静圧として−2500mm/Aqで設定し、80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で11POP.%、16μm以下粗粉含有率が重量平均で1.0Vol%のトナー粒径を86%得ることができた。
【0022】
実施例6
この態様では、気流式粉砕・分級機においてサイクロの構成を、サイクロン外形と微粉が通過する内筒径を1:0.1〜0.5に変更可能とし、サイクロン内の遠心力と向心力のコントロールをさせるように構成したものである。なおサイクロン外形に対しサイクロン内筒径を1:0.2〜0.4に設定させるとより鮮明な効果が得られる。
この装置を使用した実施例を以下に示す。
実施例1と同様なトナー原料/工程フローを用いサイクロン外形に対しサイ内筒径を1:0.2に設定し、80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含有率が重量平均で1.0Vol%のトナー粒径を85.5%得ることができた。
上記した実施例5、6では従来法に比べて分級精度が向上し製品に混入する微粉含有量が減少する。同時に微粉の発生率の抑制が可能となり、生産効率にも優れている。更に微粉含有率のコントロールが容易で長時間にわたって安定した粒径のトナーが得られる。
【0023】
実施例7
この態様では、フロー図5、8、10、12を図13に示すように第3分級機を粗粉分級機として活用し、主原料側に戻すように構成した気流式粉砕・分級機である。
この装置を使用した実施例を以下に示す。
実施例1と同様なトナー原料で図12に示す工程フローを用い80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含量が重量平均で0.7Vol%のトナー粒径を85.5%得ることができた。
【0024】
実施例8
この態様では、工程フロー図5、8、10、12を図14に示すように第3分級機を粗粉分級機として活用し、第2粉砕機に戻すように構成した気流式粉砕・分級機である。
この装置を使用した実施例を以下に示す。
実施例1と同様なトナー原料で図14に示す工程フローを用い80kg/hrの原材料供給で粉砕分級を行ったところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径を85.5%得ることができた。
上記実施例7,8に示す態様では従来法に比べて分級精度が向上し製品に混入する微粉並びに粗粉含有量が減少する。同時に微粉発生率の抑制が可能となり生産効率にも優れている。
【0025】
実施例9
この態様では、工程フロー図5、8、10、12、13、14を図15、16に示すように集塵機およびサイクロンで捕集した超微粉をライン上で10〜300μm造粒(コンパクション)して主原料側に戻すように構成した気流式粉砕・分級機である。
この実施例を以下に示す。
実施例1と同様なトナー原料で図15に示す工程フローを用い、80kg/hrの原材料供給で粉砕分級を行い発生した微粉は造粒機ローラーコンパクターを用いて200μmに造粒し主原料側に戻したところところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径で回収したを98.5%得ることができた。
【0026】
実施例10
この態様では、工程フロー図5、8、10、12、13、14を図17、18に示すように集塵機およびサイクロンで捕集した超微粉をライン上で10〜300μm造粒(コンパクション)して粉砕機側に戻すように構成した気流式粉砕・分級機である。
この実施例を以下に示す。
実施例1と同様なトナー原料で図17に示す工程フローを用い、80kg/hrの原材料供給で粉砕分級を行い発生した微粉は造粒機ローラーコンパクターを用いて200μmに造粒し粉砕機側に戻したところところ、重量平均粒径7.5μmで4μm以下微粉含有率が個数平均で12POP.%、16μm以下粗粉含有率が重量平均で0.5Vol%のトナー粒径で回収したを99.0%得ることができた。
上記実施例9,10の態様によれば従来法に比べて分級精度が向上し製品に混入する微粉並びに粗粉含有量が減少する。同時に微粉の発生率の抑制が可能でかつ発生した微粉も従来法より低減したエネルギーで再生可能となり生産効率も優れている。
【0027】
【発明の効果】
以上説明したように、本発明によれば超微粉をサイクロンから効率的に分離回収できるので、分級精度が向上し、製品に混入する微粉含有量を減少することができる。同時に微粉の発生率を抑制でき、生産効率も優れている。
また、本発明の粉砕・分級機を使用して得られたトナーは、シャープな粒度分布を有することからトナーの帯電量も安定しており、このトナーを用いて地汚れや転写不良のない優れた画像品質の画像を形成できる。
【0028】
【図面の簡単な説明】
【図1】従来の気流式粉砕・分級機を示す説明図。
【図2】別の従来の粉砕・分級機を示す説明図。
【図3】図1、2における微粉の再利用の工程説明図。
【図4】本発明に使用するローターを設けたサイクロンの説明図。
【図5】本発明の粉砕・分級機の実施例を示す説明図。
【図6】本発明に使用する二次エアーを流入させることが可能な部位を設けたサイクロンの説明図。
【図7】図6AB線断面説明図。
【図8】本発明の粉砕・分級機の別の実施例を示す説明図。
【図9】本発明に使用する強制エアーを流入させることが可能な配管を設けたサイクロンの説明図。
【図10】本発明の粉砕・分級機の更に別の実施例を示す説明図。
【図11】本発明に使用する流入するエアー流量を制御するコントローラーと調整バルブを設けたサイクロンの説明図。
【図12】本発明の粉砕・分級機の更に別の実施例を示す説明図。
【図13】本発明の粉砕・分級機の更に別の実施例を示す説明図。
【図14】本発明の粉砕・分級機の更に別の実施例を示す説明図。
【図15】本発明の粉砕・分級機の更に別の実施例を示す説明図
【図16】図15の粉砕・分級機内の微粉の再生利用の説明図。
【図17】本発明の粉砕・分級機の更に別の実施例を示す説明図。
【図18】図17の粉砕・分級機内の微粉の再生利用の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for efficiently producing toner powder having a sharp particle size distribution by suppressing the mixing of fine powder and coarse particles.
[0002]
[Prior art]
Conventionally, as a method for pulverizing and classifying toner, a combination of two sets of one classifier and one pulverizer, or a combination of two classifiers and one pulverizer is known. As an example, a jet mill, which is a so-called jet type pulverizing means, in which a high-pressure air stream is ejected from a jet nozzle, raw material particles are entrained in the jet air stream, and pulverization is performed by mutual collision of particles or collision with a wall or other collision object. The pulverizing means 1 to 2 and the coarse powder classification means 2 are combined, and after being subjected to pulverization, the classification means 2 are combined to finely classify.
[0003]
1 and 2 are examples of conventional flows. Of these, FIG. 1 will be described. The pulverized raw material 1 is supplied through a raw material supply pipe, and the raw material together with the pulverized material is introduced into the first classifier 2 and divided into coarse powder and fine powder. The coarse powder is pulverized by a first pulverizer 3 equipped with a pulverizing means, once collected by a cyclone 4, and again introduced into the second classifier 5 to be divided into pulverized powder and fine powder. The coarse powder is pulverized by a second pulverizer 6 equipped with pulverizing means and collected by a cyclone 7. Then, the coarse powder is again divided into fine powder and fine powder by the third classifier 8, and the coarse powder is collected as a product by 9, and the fine powder is once collected by the collecting cyclone 10, and further converted into coarse powder and fine powder by the fourth classifier 11. The coarse powder is again collected by the classifier 8 and the fine powder is recovered by the cyclone 12 as the fine powder 13. The ultrafine powder recovered from the dust collector from the classifier or from the upper part of the cyclone 14 and 13 are compacted and granulated and re-kneaded in FIG. 3 offline.
[0004]
However, in this system, the powder supplied to the classification means is not only the raw material powder, but also toners of various particle sizes in the pulverization process are circulated and supplied between the pulverization means and the classification means. In order to obtain the target particle size, the particle size is very broad, and it is operated under a very heavy load. Therefore, the classified product has a large number of coarse particles that adversely affect the quality.
On the other hand, on the coarse powder side that is returned to pulverization again, many fine powders that do not need to be further pulverized are mixed and these fine powders are further pulverized, so the proportion of fine powder in the pulverized product increases. In some cases, agglomerates of fine powder may be generated, and the yield is low even if a desired particle size is obtained by removing the fine powder in the subsequent classification step. In addition, as described above, the ratio of coarse powder, fine powder, etc. increases, and the particle size distribution becomes broad. Therefore, the image obtained using the developer thus produced has a low density and a high charge amount. Not stable.
In other words, the excessively pulverized toner that affects the charge amount of the toner causes a scumming phenomenon, and the insufficiently pulverized toner causes poor transfer and deteriorates the image quality. Further, in production, since an excessive load is applied to the classifier, there is a problem that classification efficiency is low and energy efficiency of pulverization is low.
[0005]
[Problems to be solved by the invention]
In recent dry toners, digitization has progressed with the aim of high image quality, and a sharp particle size with less excess fine particles and coarse particles mixed is required for the control of the particle size, that is, the toner required particle size. In the conventional pulverization process, the energy consumption in the pulverization step is large and it cannot be said that the method is economically advantageous. In addition, in the pulverization by the jet type pulverizer, the generation of fine powder unnecessary as a product is considerably large at 15 to 50% in number ratio, which is likely to cause the fine powder to be mixed into the product toner and to remove the fine powder. The production efficiency is low, and additional energy is required to reuse the removed fine powder. Furthermore, the conventional fine pulverizers have not only insufficient pulverization performance in terms of pulverization processing capacity and power consumption, but also have a problem of adversely affecting the charge amount distribution due to unsatisfactory particle size and distribution in terms of image quality. there were.
[0006]
The present invention is intended to solve the above-mentioned problems, and the object of the present invention is to easily suppress the mixing of excess fine powder and coarse powder with respect to the target particle size, and to make it possible to efficiently reuse the generated excess fine powder. It is an object of the present invention to provide a method suitable for producing a dry toner that can improve the power consumption.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have provided a means for promoting the separation of the cyclone that separates the fine powder in the airflow type pulverizer / classifier, thereby performing the separation more reliably and being accompanied by the coarse powder. The amount of fine powder pulverized more than necessary by the pulverizer after the process is reduced as much as possible, thereby improving the classification accuracy and suppressing the fine powder content and fine powder generation rate, and also in terms of production efficiency As a result, the present invention was found.
[0008]
That is, the present invention
A cyclone for collecting (1) finely ground and coarse ground and classified up, the ultra fine powder separating enhancing means in the range amount of from 11 to 14% content of 4μm or less fine powder generated during crushing, the ultrafine powder a air flow type pulverizing and classifying machine cyclone provided with upper tube for recovering, said ultra fine powder piping for flowing the forced air into the cyclone is provided as a separation promotion means, the outlet opening cyclone upper tube of the tubing Airflow crushing and classifying machine characterized by being suitable for.
(2) The airflow pulverizing / classifying machine according to (1), wherein forced air is introduced into the cyclone to control a flow rate.
(3) In the airflow type pulverizer / classifier according to (1) or (2), a dust collector blower communicating with a cyclone for collecting fine pulverization / classification is provided, and the static pressure is -1500 mm to -4000 mm / An airflow type pulverizer / classifier characterized by being Aq.
(4) The airflow pulverization / classification apparatus according to any one of (1) to (3), wherein the coarse powder classified by the classifier is returned to the main raw material side. Machine.
(5) The airflow pulverization / classification apparatus according to any one of (1) to (3), wherein the coarse powder classified by the classifier is returned to the pulverizer side. Machine.
(6) the (1) to (5) in a gas stream pulverizing and classifying machine according to any one of, returning the ultrafine powder was collected in a cyclone or precipitator After granulation, this to the main feed side Airflow type pulverizer / classifier.
(7), characterized in (1) to (5) a gas stream pulverizing and classifying machine according to any one of, after granulating the ultra fine powder was collected in a cyclone or dust collector, to return to the crusher side The present invention relates to an airflow type pulverizing / classifying machine.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The airflow type pulverizer / classifier of the present invention is basically a pulverizer, a classifier for classifying the pulverized particles, and the finely pulverized / coarse powder classification, ie, pulverized / classified pulverized product. It consists of a cyclone that collects. It is important that the cyclone is provided with means for promoting the separation of ultrafine powder.
In the present invention, as the separation promoting means, it is preferable to provide a rotor, an air inflow portion, an air forced inflow piping and the like in the cyclone. It is also useful to control the blower static pressure of the dust collector communicating with the cyclone and to make the inner cylinder diameter of the cyclone freely changeable.
By providing such separation promoting means in the cyclone, the swirl flow inside the cyclone can be controlled. As a result, the present invention can improve the classification accuracy and reduce the content of coarse powder and fine powder, and a high-quality toner can be obtained using this apparatus.
In the present invention, a step of reusing the separated and recovered ultrafine powder by compaction can be added to the pulverizer / classifier. In this case, the following advantages can be obtained as compared with the case where the conventional granulation step shown in FIG.
A. B. The molecular weight distribution of the resin component in the ultrafine powder does not change. C. Low energy cost compared to reconsideration D. Since the amount of ultrafine powder generated is constant, the flow rate of fine powder flow is constant and the quality is stable. Since the amount of ultrafine powder generated is less than 20% of the amount of toner product, the granulating machine can be small (small production machine).
Embodiments of the present invention will be described with reference to the drawings.
FIG. 5 shows a first embodiment of the present invention. In this embodiment, in the pulverizing / classifying machine shown in FIGS. 1 and 2, the ultrafine powder generated in the pulverization and classified in the classified coarse powder is separated on the upper part of the cyclones 4, 7, and 10. Rotors 4a, 7a and 10a to be promoted are provided. As shown in FIG. 4, this rotor is configured to control and drive the rotational speed of the rotor by motors 4b, 7b and 10b. The number of rotors can be selected according to the required toner specifications, and the peripheral speed of the rotor can be freely controlled to, for example, 10 to 50 m / s.
The pulverizer is a pulverizer using compressed air. For example, the I-type mill pulverizer manufactured by Nippon Pneumatic Co., Ltd., and the classifier is a swirling air flow type, and the pulverization classification is performed using, for example, DS class manufactured by Nippon Pneumatic Co. Can do.
[0011]
An example using this apparatus is shown below.
Example 1 (Reference Example)
A mixture of 75% by weight of a polyester resin, 10% by weight of a styrene acrylic copolymer resin and 15% by weight of carbon black was melt-kneaded with a roll mill, cooled and solidified, and then coarsely pulverized with a hammer mill. In the flow shown in FIG. 5, the cyclone shown in FIGS. 4 and 7 is used as a cyclone in which the rotor 4a shown in FIG. 4 is controlled to a peripheral speed of 25 m / s and the rotor 7a is controlled to be 30 m / s. When pulverization and classification were performed with a raw material supply of 80 kg / hr in the flow, the weight average particle size was 7.5 μm and the fine powder content was 12 POP. %, A particle size of 16 μm or less, and 85% toner particle diameter with a weight average of 1.0 Vol% was obtained.
A multisizer manufactured by Coulter Counter was used for the particle size measurement.
[0012]
Comparative Example 1
The same kneaded product as in Example 1 was used as a toner raw material, but the pulverization and classification were carried out in the same manner as in the process flow shown in FIG. 1 in which no rotor was provided in the cyclone. 7.5 μm diameter and 4 μm or less fine powder content is 17 POP. %, A particle diameter of 16 μm or less, and 80% toner particle diameter with a weight average of 2.5 Vol% was obtained. Thus, in the aspect of Example 1, the classification accuracy is improved compared to the conventional method, the content of fine powder mixed in the product is reduced, and at the same time, the generation rate of fine powder can be suppressed, and the production efficiency is also improved. Are better.
[0013]
Example 2 (Reference Example)
In this embodiment, as shown in FIG. 8, in a conventional airflow crusher / classifier, a cyclone is installed in FIG. 6 and in the cyclones 4, 7, 10 as shown in FIG. A cyclone provided with portions 4c, 7c and 10c through which the next air can flow is installed.
[0014]
In this airflow type pulverizer / classifier, by installing the portions 4c, 7c, and 10c into which the secondary air can flow into the cyclones 4, 7, and 10, the outside air is introduced and the cyclone inside the cyclone is centrifuged. By controlling the force and centripetal force, it is possible to more effectively separate the ultrafine powder generated during pulverization. That is, the ultrafine powder passes through the cyclone upper tube and can be recovered at 14-1, 14-2, and 14-3. As shown in the cross-sectional view of FIG. 7, the secondary air inlet installed in the cyclone is configured to be able to flow uniformly from the outer periphery of the cyclone, and the amount of air is 1 to 50% of the total air volume sucked by the conventional cyclone. Adjustment is possible. Depending on the toner specifications, 1 to 3 cyclones can be installed in the airflow pulverizer / classifier. The pulverizer used in this example is a pulverizer using compressed air, for example, an I-type mill pulverizer manufactured by Nippon Nutic Co., Ltd., and a classifier is a swirling air flow type, for example, DS classification manufactured by Nihon Pneumatic Co., Ltd. Can be used.
[0015]
Examples (reference examples) using this airflow type pulverizer / classifier are shown below.
7 is controlled by the secondary air inflow type cyclone 4a shown in FIG. 6 so that secondary air can flow through the cyclone (suction) 10% of the total air volume in the flow of FIG. When pulverization and classification were performed with a raw material supply of 80 kg / hr in the flow, the weight average particle size was 7.5 μm and the fine powder content was 13 POP. %, A particle diameter of 16 μm or less, and a toner particle size of 1.2% by volume on a weight average basis was 84%.
[0016]
Example 3
In this mode, as shown in FIG. 10, pipes 4d, 7d, and 10d in which forced air can flow into cyclones 4, 7, and 10 are installed as cyclones in a conventional airflow crushing and classifying machine. Is. In this embodiment, in order to improve the efficiency of separating the ultra fine powder generated during pulverization, compressed air is introduced by the piping shown in FIG. 9 to control the centrifugal force and centripetal force inside the cyclone, and the ultra fine powder passes through the upper cyclone tube by the air inflow. 14-1, 14-2, and 14-3.
Note that the air amount of the compressed air pipe attached to the cyclone can be adjusted by 1 to 50% of the total air amount sucked by the conventional cyclone, and one to three cyclones can be installed according to the toner specifications. Further, the pulverizer is a pulverizer using compressed air, for example, an I-type mill pulverizer manufactured by Nippon Nutic Co., Ltd., and the classifier can be a swirling air flow type, such as a DS classifier manufactured by Nihon Pneumatic Co., Ltd.
[0017]
Examples using this airflow type pulverizer / classifier are shown below.
A toner raw material similar to that in Example 1 was a secondary air inflow type cyclone shown in FIG. 9 as a cyclone in the flow of FIG. Control was performed so that secondary air of 10% of the total air volume of the cyclone passing (suction) could flow in, and pulverization classification was performed with the raw material supply of 80 kg / hr in the flow of FIG. A fine powder content of 4 μm or less is 14 POP. %, A particle size of 16 μm or less, and 85% toner particle diameter with a weight average of 1.2 Vol% can be obtained.
In the embodiments shown in Examples 2 and 3 above, the fine powder content mixed into the product is reduced due to the improved classification accuracy compared to the conventional method, and at the same time, the generation rate of fine powder can be suppressed, and the production efficiency is also improved. Are better. Further, the cost required for remodeling the cyclone is lower than that of the first embodiment, which is advantageous.
[0018]
Example 4
In this mode, the controller 4e that can control the flow rate of air flowing into the pipes 4d, 7d, and 10d that can be forced into the air flow type pulverizer / classifier used in the third embodiment as shown in FIG. , 7e, 10e and adjusting valves 4f, 7f, 10f are installed, compressed air is introduced into the fine powder generated during pulverization by the layout configuration shown in FIG. 10, and the centrifugal force and centripetal force inside the cyclone can be precisely controlled. The separated ultrafine powder is configured to pass through the cyclone upper tube by air inflow and be recovered by 14-1, 14-2, 14-3. Note that the air amount of the compressed air pipe attached to the cyclone can be controlled within a range of ± 1 to 10% of the set value by adjusting 1 to 50% of the total air volume sucked by the conventional cyclone. One to three cyclones can be installed according to the toner specifications. In this embodiment, the pulverizer is a pulverizer using compressed air, for example, I-type mill pulverizer manufactured by Nippon Pneumatic Co., Ltd. It can be performed.
In this aspect, since the classification accuracy is improved as compared with the conventional method, the content of fine powder mixed in the product is reduced, and at the same time, the generation rate of fine powder can be suppressed, and the production efficiency is also excellent. Further, the fine powder content can be easily controlled, and a stable toner particle diameter can be obtained over a long period of time.
[0019]
Examples using such an airflow type pulverizer / classifier will be described below.
Using the same toner raw material as in Example 1, the secondary air inflow of 10% of the total flow rate of the cyclone passing (suction) is introduced as a cyclone in the flow of FIG. 10 using the secondary air inflow type cyclone shown in FIG. When the pulverization and classification were performed with the raw material supply of 80 kg / hr in the flow of FIG. 10, the weight average particle size was 7.5 μm and the fine powder content was 13 POP. %, A particle size of 16 μm or less, and a toner particle diameter of 1.1% by volume on a weight average basis was 85%.
[0020]
Example 5
In this aspect, the centrifugal force and centripetal force control of the cyclone used in the above-described embodiment is performed by operating the static pressure of the blower of each dust collector communicating with the cyclone in the range of −1500 to −4000 mm / Aq. . In addition, a clearer effect can be obtained by setting the static pressure of the blower to −1800 to −3500 mm / Aq.
[0021]
Examples using this airflow type pulverizer / classifier are shown below.
Using the same toner raw material and apparatus as in Example 1, the blower static pressure of the dust collector communicating with the cyclone is set to -2500 mm / Aq as the passing static pressure in the cyclone, and pulverization classification is performed by supplying raw materials of 80 kg / hr. As a result, a weight average particle size of 7.5 μm and a fine powder content of 4 μm or less was 11 POP. %, 16 μm or less, and 86% toner particle diameter with a coarse powder content of 1.0 Vol% in weight average could be obtained.
[0022]
Example 6
In this aspect, the cyclone configuration of the airflow crusher / classifier can be changed to 1: 0.1 to 0.5 for the cyclone outer shape and the inner cylinder diameter through which the fine powder passes, and the centrifugal force and centripetal force control in the cyclone can be controlled. It is comprised so that it may carry out. Note that a clearer effect can be obtained by setting the inner diameter of the cyclone to 1: 0.2 to 0.4 with respect to the outer shape of the cyclone.
An example using this apparatus is shown below.
Using the same toner raw material / process flow as in Example 1, the cylinder inner diameter was set to 1: 0.2 with respect to the cyclone outer shape, and pulverization classification was performed by supplying raw materials at 80 kg / hr. .5 μm and 4 μm or less Fine powder content is 12 POP. %, A particle size of 16 μm or less was 85.5% with a toner particle diameter of 1.0 vol% on a weight average.
In the above-described Examples 5 and 6, the classification accuracy is improved as compared with the conventional method, and the content of fine powder mixed in the product is reduced. At the same time, the generation rate of fine powder can be suppressed, and the production efficiency is excellent. Furthermore, it is easy to control the fine powder content, and a toner having a stable particle size over a long time can be obtained.
[0023]
Example 7
In this embodiment, as shown in FIG. 13, the flow diagrams 5, 8, 10, and 12 utilize the third classifier as a coarse powder classifier and are configured to return to the main raw material side to be an airflow type pulverizer / classifier. .
An example using this apparatus is shown below.
Using the process flow shown in FIG. 12 with the same toner raw material as in Example 1, pulverization classification was performed by supplying raw materials at 80 kg / hr. As a result, the weight average particle size was 7.5 μm and the particle content was 12 μP. %, A particle diameter of 16 μm or less, and a toner particle diameter of 85.5% with a weight average of 0.7 Vol% was obtained.
[0024]
Example 8
In this aspect, as shown in FIG. 14 in the process flow diagrams 5, 8, 10, and 12, the third classifier is utilized as a coarse powder classifier, and the airflow type pulverizer / classifier is configured to return to the second pulverizer. It is.
An example using this apparatus is shown below.
When the pulverization classification was performed by supplying the raw materials at 80 kg / hr using the same process flow shown in FIG. 14 with the same toner raw material as in Example 1, the weight average particle size was 7.5 μm and the content of fine powder was 12 POP. %, A particle diameter of 16 μm or less, and a toner particle size of 0.5 vol% on a weight average was 85.5%.
In the embodiments shown in Examples 7 and 8, the classification accuracy is improved as compared with the conventional method, and the content of fine powder and coarse powder mixed in the product is reduced. At the same time, the generation rate of fine powder can be suppressed and the production efficiency is excellent.
[0025]
Example 9
In this embodiment, as shown in FIGS. 15 and 16 in the process flow diagrams 5, 8, 10, 12, 13, and 14, the ultrafine powder collected by the dust collector and the cyclone is granulated (compacted) by 10 to 300 μm on the line. It is an airflow type pulverizer and classifier configured to return to the main raw material side.
This example is shown below.
Using the process flow shown in FIG. 15 with the same toner raw material as in Example 1, the fine powder generated by pulverizing and classifying with the raw material supply of 80 kg / hr was granulated to 200 μm using a granulator roller compactor and moved to the main raw material side. When returned, the weight average particle size was 7.5 μm and the content of fine powder of 4 μm or less was 12 POP. %, And a coarse powder content of 16 μm or less was recovered with a toner particle diameter of 0.5 Vol% on a weight average, and 98.5% could be obtained.
[0026]
Example 10
In this embodiment, as shown in FIGS. 17 and 18, process flow diagrams 5, 8, 10, 12, 13, and 14 are granulated (compact) 10 to 300 μm on the line with ultrafine powder collected by a dust collector and a cyclone. This is an airflow type pulverizer / classifier configured to return to the pulverizer side.
This example is shown below.
Using the process flow shown in FIG. 17 with the same toner raw material as in Example 1, pulverization classification was performed by supplying raw materials at 80 kg / hr, and the generated fine powder was granulated to 200 μm using a granulator roller compactor. When returned, the weight average particle size was 7.5 μm and the content of fine powder of 4 μm or less was 12 POP. %, 16 μm or less, and the coarse powder content was 99.0% recovered with a toner particle diameter of 0.5 Vol% on a weight average.
According to the embodiments of Examples 9 and 10, the classification accuracy is improved as compared with the conventional method, and the content of fine powder and coarse powder mixed in the product is reduced. At the same time, the generation rate of fine powder can be suppressed, and the generated fine powder can be regenerated with less energy than the conventional method, resulting in excellent production efficiency.
[0027]
【The invention's effect】
As described above, according to the present invention, the ultrafine powder can be efficiently separated and recovered from the cyclone, so that the classification accuracy is improved and the content of fine powder mixed into the product can be reduced. At the same time, the generation rate of fine powder can be suppressed and the production efficiency is excellent.
In addition, the toner obtained using the pulverizer / classifier of the present invention has a sharp particle size distribution, so the toner charge amount is also stable. An image with a high image quality can be formed.
[0028]
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a conventional airflow type pulverizer / classifier.
FIG. 2 is an explanatory view showing another conventional pulverizer / classifier.
FIG. 3 is an explanatory diagram of a process of reusing fine powder in FIGS.
FIG. 4 is an explanatory diagram of a cyclone provided with a rotor used in the present invention.
FIG. 5 is an explanatory view showing an embodiment of a pulverizer / classifier according to the present invention.
FIG. 6 is an explanatory diagram of a cyclone provided with a portion into which secondary air used in the present invention can be introduced.
7 is a cross-sectional explanatory view taken along line AB in FIG. 6;
FIG. 8 is an explanatory view showing another embodiment of the pulverizer / classifier of the present invention.
FIG. 9 is an explanatory diagram of a cyclone provided with a pipe through which forced air used in the present invention can flow.
FIG. 10 is an explanatory view showing still another embodiment of the pulverizer / classifier of the present invention.
FIG. 11 is an explanatory diagram of a cyclone provided with a controller and an adjustment valve for controlling the inflow air flow rate used in the present invention.
FIG. 12 is an explanatory view showing still another embodiment of the pulverizer / classifier of the present invention.
FIG. 13 is an explanatory view showing still another embodiment of the pulverizer / classifier of the present invention.
FIG. 14 is an explanatory view showing still another embodiment of the pulverizer / classifier according to the present invention.
15 is an explanatory view showing still another embodiment of the pulverizing / classifying machine of the present invention. FIG. 16 is an explanatory view of recycling of fine powder in the pulverizing / classifying machine of FIG.
FIG. 17 is an explanatory view showing still another embodiment of the pulverizer / classifier according to the present invention.
18 is an explanatory diagram of recycling of fine powder in the crushing / classifying machine of FIG.

Claims (7)

微粉砕・粗粉砕分級上がりを捕集するサイクロンに、粉砕時に発生する4μm以下の微の含有量を11〜14%の範囲にする超微分離促進手段と、超微を回収するためのサイクロン上部管を設けた気流式粉砕・分級機であって、該超微分離促進手段としてサイクロンに強制エアーを流入させる配管を設け、該配管の出口側の開口がサイクロン上部管に向いていることを特徴とする気流式粉砕・分級機。A cyclone for collecting the pulverized-coarse pulverization and classification increases, and super-fine powder separating enhancing means in the range content of 11 to 14% of 4μm or less fine powder generated during crushing, to recover the ultrafine powder a provided cyclonic upper tube airflow pulverizing and classifying machine, a pipe for flowing the forced air into the cyclone is provided as the ultra fine powder separation promotion means, the outlet opening of the pipe is oriented in the cyclone top tube An air-flow pulverizer / classifier. 請求項1記載の気流式粉砕・分級機において、サイクロンに強制エアーを流入させ流量を管理したことを特徴とする気流式粉砕・分級機。  The airflow type pulverizing / classifying machine according to claim 1, wherein forced air is introduced into the cyclone to control a flow rate. 請求項1又は2記載の気流式粉砕・分級機において、微粉砕・分級上がりを捕集するサイクロンに連通する集塵機ブロワ−を設け、その静圧が−1500mm〜−4000mm/Aqであることを特徴とする気流式粉砕・分級機。  3. An airflow type pulverizer / classifier according to claim 1 or 2, wherein a dust collector blower communicating with a cyclone for collecting fine pulverization / classification is provided, and the static pressure is -1500 mm to -4000 mm / Aq. Airflow type pulverizer / classifier. 請求項1〜3のいずれか1項に記載の気流式粉砕・分級機において、分級機で分級した粗粉を主原料側に戻すことを特徴とする気流式粉砕・分級機。  The airflow type pulverizing / classifying machine according to any one of claims 1 to 3, wherein the coarse powder classified by the classifier is returned to the main raw material side. 請求項1〜3のいずれか1項に記載の気流式粉砕・分級機において、分級機で分級した粗粉を粉砕機側に戻すことを特徴とする気流式粉砕・分級機。  The airflow type pulverizer / classifier according to any one of claims 1 to 3, wherein the coarse powder classified by the classifier is returned to the pulverizer side. 請求項1〜5のいずれか1項に記載の気流式粉砕・分級機において、サイクロンまたは集塵機で捕集した超微を造粒後、これを主原料側に戻すことを特徴とする気流式粉砕・分級機。In airflow pulverizing and classifying machine according to any one of claims 1 to 5, after granulating the ultra fine powder was collected in a cyclone or dust collector, a gas stream, characterized in that return it to the main feed side Crushing / classifying machine. 請求項1〜5のいずれか1項に記載の気流式粉砕・分級機において、サイクロンまたは集塵機で捕集した超微を造粒後、粉砕機側に戻すことを特徴とする気流式粉砕/分級機。In airflow pulverizing and classifying machine according to any one of claims 1 to 5, a gas stream and returning the ultrafine powder was collected in a cyclone or precipitator After granulation, the crusher side grinding / Classifier.
JP2002078897A 2002-03-20 2002-03-20 Airflow pulverizer / classifier Expired - Fee Related JP4024566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078897A JP4024566B2 (en) 2002-03-20 2002-03-20 Airflow pulverizer / classifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078897A JP4024566B2 (en) 2002-03-20 2002-03-20 Airflow pulverizer / classifier

Publications (2)

Publication Number Publication Date
JP2003275685A JP2003275685A (en) 2003-09-30
JP4024566B2 true JP4024566B2 (en) 2007-12-19

Family

ID=29206166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078897A Expired - Fee Related JP4024566B2 (en) 2002-03-20 2002-03-20 Airflow pulverizer / classifier

Country Status (1)

Country Link
JP (1) JP4024566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403149B2 (en) 2005-11-18 2013-03-26 Ricoh Company, Ltd. Cyclone classifier, flash drying system using the cyclone classifier, and toner prepared by the flash drying system
CN103008071A (en) * 2011-09-30 2013-04-03 江苏中远机械设备制造有限公司 Micro-powder preparation system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320963C (en) * 2002-10-18 2007-06-13 昭和电工株式会社 Dry grinding system and dry grinding method
JP4911991B2 (en) * 2005-03-14 2012-04-04 株式会社リコー Airflow classifier, vibration device
JP2007054677A (en) * 2005-08-22 2007-03-08 Kanto Auto Works Ltd Cyclone filter
JP2007275863A (en) * 2006-03-15 2007-10-25 Ricoh Co Ltd Cyclone classifier, manufacturing method of toner by classification using cyclone classifier and toner
JP5010337B2 (en) 2006-06-30 2012-08-29 株式会社リコー Toner production method
CN102225396B (en) * 2011-04-27 2013-05-01 北京化工大学 Narrow-sized level multi-stage vortex air classifier classification system
CN109746105B (en) * 2019-03-08 2024-03-26 卢继升 Grinding system
CN113996435A (en) * 2021-10-26 2022-02-01 南京中科药业有限公司 Method for screening ganoderma lucidum spore powder by ultrasonic treatment pulse dust removal air flow classification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403149B2 (en) 2005-11-18 2013-03-26 Ricoh Company, Ltd. Cyclone classifier, flash drying system using the cyclone classifier, and toner prepared by the flash drying system
CN103008071A (en) * 2011-09-30 2013-04-03 江苏中远机械设备制造有限公司 Micro-powder preparation system

Also Published As

Publication number Publication date
JP2003275685A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
JP4787788B2 (en) Crushed coarse powder classifier, fine powder classifier
US8668091B2 (en) Air classifier
JP5610132B2 (en) Airflow classifier and fine particle manufacturing apparatus
JP4024566B2 (en) Airflow pulverizer / classifier
CN210187391U (en) Air classification miropowder crushing apparatus
JP3570265B2 (en) Crusher
JPH09187732A (en) Preparation of toner
JPH0666034B2 (en) Toner powder manufacturing method and apparatus system for manufacturing toner powder
JP3740202B2 (en) Toner production method
JP5472612B2 (en) Toner manufacturing method
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPH07295294A (en) Manufacturing system for fine powder toner for electrostatic charge development
JPH0910623A (en) Lumpy material pulverizer and method thereof
JPH0792735A (en) Manufacture of toner and device for manufacturing the same
JP3102902B2 (en) Collision type supersonic jet crusher
JPH0534977A (en) Production of electrostatic charge image developing toner
JP4287173B2 (en) Counter jet mill type pulverizer
JPH01205172A (en) Production of toner for developing electrostatic charge image
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH0666033B2 (en) Toner powder manufacturing method and apparatus system for manufacturing toner powder
CN119500365A (en) Crushing-grading multifunctional machine set
JP3382468B2 (en) Manufacturing method of toner
JPH0578392B2 (en)
JPH0651129B2 (en) Collision type airflow crusher and crushing method
JPH0651130B2 (en) Collision type airflow crusher and crushing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees