JP4019679B2 - Method for producing photocatalyst body - Google Patents
Method for producing photocatalyst body Download PDFInfo
- Publication number
- JP4019679B2 JP4019679B2 JP2001307222A JP2001307222A JP4019679B2 JP 4019679 B2 JP4019679 B2 JP 4019679B2 JP 2001307222 A JP2001307222 A JP 2001307222A JP 2001307222 A JP2001307222 A JP 2001307222A JP 4019679 B2 JP4019679 B2 JP 4019679B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- photocatalyst
- esr
- present
- action
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Catalysts (AREA)
- Paints Or Removers (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は光触媒体の製造方法に関するものである。詳細には、可視光線を照射することにより高い光触媒作用を示す光触媒体の製造方法に関するものである。
【0002】
【従来の技術】
半導体に紫外線を照射すると強い還元作用を持つ電子と強い酸化作用を持つ正孔が生成し、半導体に接触した分子種を酸化還元作用により分解する。このような作用を光触媒作用と呼び、この光触媒作用を利用することによって、大気中のNOxの分解、居住空間や作業空間での悪臭物質やカビ等の分解除去、あるいは水中の有機溶剤や農薬、界面活性剤等の環境汚染物質の分解除去を行うことができる。光触媒作用を有する物質として酸化チタンが注目され、酸化チタンからなる光触媒体が市販されている。市販品として、例えば、ST−01(商品名:石原産業製)がある。
【0003】
しかしながら、現在市販されている酸化チタンからなる光触媒体は、可視光線を照射する場合には十分な光触媒作用を示すものではなかった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、可視光線を照射することにより高い光触媒作用を示す光触媒体の製造方法を提供することにある
。
【0005】
【課題を解決するための手段】
本発明者等は上記課題を解決するため鋭意検討を行った結果、本発明を完成するに至った。
【0006】
すなわち本発明は、触媒成分として、電子スピン共鳴スペクトルにおいてg値1.930〜2.030の間に3つ以上のピークを有し、かつそれらピークの内の極大となるピークがg値1.990〜2.020の間に存在する酸化チタンを含む光触媒体を製造する方法であり、
窒素雰囲気下で、酸と四塩化チタンとの混合物に、アンモニアを添加し、得られた生成物を空気中で焼成することを特徴とする前記光触媒体の製造方法を提供するものである。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の製造方法により得られる酸化チタンは、電子スピン共鳴(以下、ESRという。)スペクトルにおいてg値1.930〜2.030の間に3つ以上のピークを有し、かつそれらピークの内の極大となるピークがg値1.990〜2.020の間に存在するものである。
【0010】
ESRとは、不対電子に基づく原子ないし分子の永久磁気双極子のエネルギー順位が磁場を加えることにより分裂し、その準位間のエネルギーに等しいエネルギーを電磁エネルギーの形で与えると、共鳴的に電磁エネルギーを吸収して不対電子は相隣る準位間で遷移を起こす現象のことをいう。ESR分析は、例えば、鉄族元素を含む結晶の結晶軸の方向及び化学結合の性質を調べたり、また有機分子の遊離基の不対電子がその分子中のどこに存在するかを調べることに応用されている。本発明では、ESR分析から求められるg値を指標として用い酸化チタンの結晶構造を特定した。
【0011】
g値は、ESR装置でESRスペクトルを測定し、そのスペクトルのピークの位置から算出することができる。ESRの原理およびg値の算出方法は概略以下のとおりである。不対電子が磁場の中に置かれると、ゼーマン効果によりエネルギー準位が分裂する。この分裂したエネルギー差をΔEとし、下式(I)
ΔE=hν (I)
〔式(I)中、hはプランク定数(=6.6255×10-34Js)、νはMicrowave Frequencyを表す。)
を満たすマイクロ波領域の電磁場(周波数ν)を照射しながら磁場の強さを変化させていくと、磁場の強さHが下式(II)
hν=gβH (II)
〔式(II)中、gはg値、βはボーア磁子(=9.274×10-24JT-1)、Hは磁束密度を表す。〕
を満たすときに共鳴吸収が起こり、横軸を磁場の強さ、縦軸を電磁場の吸収とする共鳴吸収曲線にピークが現れる。このピークの位置から不対電子の存在状態を表す指標としてg値が得られ、g値は式(II)から導かれる下式(III)
g=hν/(βH) (III)
により求められる。通常、ESRスペクトルは、検出感度を向上させる為、共鳴吸収曲線の一次微分形で表される。
【0012】
特定のESRスペクトルをもつ酸化チタンが何故、可視光線の照射により優れた光触媒活性を発現し得るか明らかではないが、Journal of the Physical Chemistry, 89, 5689-5694 (1985)によれば、このESRスペクトルにおけるg値1.930〜2.030の間のピークは窒素(原子量14)を含むラジカル種に由来すると思われることから、窒素の存在及びその存在に起因する酸化チタンの結晶格子内に生じる歪みが酸化チタンの光触媒活性に影響を及ぼしていると考えられる。
【0013】
酸化チタンは、例えば、粒子、繊維状のような各種形状のものが挙げられ、使用方法に応じて適当な形状が選定される。また、酸化チタンは、可視光線の照射による光触媒活性を損なわない範囲で、無機化合物が混合されたものであってもよいし、また無機化合物が混合された後、熱処理等が施されて無機化合物と複合化されたものであってもよい。酸化チタンに混合される無機化合物としては、例えば、シリカ(SiO2)、アルミナ(Al2O3)、ジルコニア(ZrO2)、マグネシア(MgO)、酸化亜鉛(ZnO)等が挙げられる。
【0014】
本発明の製造方法では、窒素雰囲気下で、酸と四塩化チタンとの混合物にアンモニアを添加し、得られた生成物を空気中で焼成する。このときに用いる酸としては、例えば、塩酸、硫酸のような鉱酸等が挙げられる。
【0015】
本発明の製造方法により製造される光触媒体は、触媒成分として上述した特定のESRスペクトルをもつ酸化チタンを含む。
【0016】
この光触媒体は、例えば、前記酸化チタンだけからなるもののほか、粒子状の酸化チタンに成形助剤を添加し押出成形して得られたシート状のもの、繊維状の酸化チタンと有機繊維とを交絡させて得られたシート状のもの、又は金属若しくは樹脂製の支持体に酸化チタンを塗布又は被覆して得られたもの等が挙げられる。光触媒体は、その機械的強度、成形性を向上させることを目的に、本発明の特定のESRスペクトルをもつ酸化チタン以外の無機酸化物、高分子樹脂、成形助剤、結合剤、帯電防止剤又は吸着剤等を添加したものであってもよい。酸化チタンに添加される無機酸化物としては、例えば、シリカ、アルミナ、ジルコニア、マグネシア、酸化亜鉛、紫外線を照射することにより光触媒活性を示す酸化チタン等が挙げられる。
【0017】
光触媒体の使用に際しては、例えば、可視光線を透過するガラス製容器に光触媒体と被処理液又は被処理気体とを入れ、光源を用いて光触媒体に波長が430nm以上である可視光線を照射すればよい。このとき用いる光源としては、波長が430nm以上である可視光線を含む光線を照射できるものであれば制限されるものではなく、例えば、太陽光線、蛍光灯、ハロゲンランプ、ブラックライト、キセノンランプ、水銀灯、ナトリウムランプ等が適用できる。
【0018】
本発明の光触媒体コーティング剤は、上述した特定のESRスペクトルをもつ酸化チタンと溶媒とを含む。この光触媒体コーティング剤は、建築材料、自動車材料等に酸化チタンを塗布すること、又は建築材料、自動車材料等を酸化チタンで被覆することを容易にし、かつ建築材料、自動車材料等に高い光触媒活性を付与することを可能とする。溶媒としては、塗布後又は被覆後に蒸発して酸化チタンに残存しない溶媒が好ましく、例えば、水、塩酸、アルコール類、ケトン類等が挙げられる。
【0019】
この光触媒体コーティング剤は、例えば、前記の酸化チタンを水に分散させてスラリー化する方法又は酸化チタンを酸等で解膠させる方法等で製造することができる。酸化チタンの分散では、必要に応じて分散剤を添加し行ってもよい。
【0020】
【実施例】
以下、本発明を実施例により詳細に説明する。本実施例では、酢酸の光分解作用について述べるが、本発明は本実施例に限定されるものではない。なお、ESRスペクトルの測定及びg値の算出は、以下の方法で行った。
【0021】
電子スピン共鳴装置(商品名“ESP−300”、BRUKER製)を用い、温度:室温、圧力:大気圧、Microwave Frequncy:9.47GHz(=9.47×109s-1)、Center Field:3400G、Sweep Width:500G、Sweep Time:83.885s、Time Const.:1310.72ms、Mod. Amp. :5.054G、ピーク位置算出:DPPHのg値2.0037で補正、の条件でESRスペクトルを測定し、このESRスペクトルのピークから共鳴吸収が起きる磁束密度H(T)を求め、この磁束密度を式(III)に導入することより、g値を算出する。ESRスペクトルに複数のピークが存在するときは、それぞれのピークについて磁束密度を求め、g値を算出する。
【0022】
実施例1
0.5N塩酸110gと四塩化チタン(特級、和光純薬工業製)25gを300mLフラスコ中に入れ、窒素雰囲気下で攪拌し、フラスコを氷水で冷却しながら、フラスコ内に25%アンモニア水(特級、和光純薬工業製)146gを20分間で滴下し加水分解を行った。この加水分解物を濾過洗浄し乾燥した。この乾燥物を400℃の空気中で1時間焼成して、黄色に着色した粒子状酸化チタン(TiO2)を得た。この酸化チタンのESRスペクトルを図1に、ESRスペクトルから求められるg値を表1に示す。
【0023】
直径8cm、高さ10cm、容量約0.5Lのパイレックス(登録商標)ガラス製密閉式反応容器内に直径5cmのガラス製シャーレを設置し、そのシャーレ上に上で得られた粒子状酸化チタンだけからなる光触媒体0.3gを置いた。反応容器内を、酸素と窒素の体積比が1:4である混合ガスで満たした後、該容器内に酢酸33μmolを封入し、波長430nm以上の可視光線を照射した。光触媒体の光分解作用を、可視光線の照射により生成した酢酸の酸化分解生成物である二酸化炭素の濃度をキャリアーガスとしてヘリウムを用いたガスクロマトグラフィー(商品名“カラムPorapak Q”、島津製作所製)で測定することによって、評価した。尚、光源には、図2の分光特性を有する紫外線カットフィルター(商品名“Y−45”、東芝硝子製)を装着した500Wキセノンランプ(商品名“ランプハウスUI―502Q,ランプUXL−500D、点灯装置XB−50101AA−A”、ウシオ電機製)を用いた。このときの二酸化炭素の生成速度は光触媒体1gあたり5.86μmol/hであった。
【0024】
比較例1
市販の酸化チタン(商品名“ST−01”、石原産業製)だけからなる光触媒体を用いた以外は、実施例1と同様にして光触媒体の光分解作用を評価した。このときの二酸化炭素の生成速度は光触媒体1gあたり0.46μmol/hであった。酸化チタンST−01のESRスペクトルを図1に、このESRスペクトルから求められたg値を表1に示す。
【0025】
【表1】
表1中、○印のものは極大ピークのg値を示す。
【0026】
波長が430nm以上である可視光線を光触媒体に照射する条件で、酢酸から二酸化炭素への分解作用について調べた結果、本発明の製造方法により製造された光触媒体は市販の酸化チタンからなる光触媒体に比べて、光分解作用(光触媒作用)が高かった。
【0027】
【発明の効果】
本発明によれば、触媒成分として可視光線の照射により高い光触媒作用を示す酸化チタンを含む光触媒体が提供され、この光触媒体を使用することによって酢酸等の有機酸をはじめ各種有機物を分解除去することができ、また、大気中NOxの分解、居住空間や作業空間の悪臭物質、カビ等の分解除去、あるいは水中の有機溶剤、農薬、界面活性剤の分解除去に適用することもできる。さらに本発明によれば、酸化チタンと溶媒とを含む光触媒体コーティング剤が提供され、このコーティング剤を使用することによって、建築材料、自動車材料等に酸化チタンを塗布すること、又は建築材料、自動車材料等を酸化チタンで被覆することが容易になり、これらの材料に高い光触媒作用を付与することができる。
【図面の簡単な説明】
【図1】 実施例1で得られた酸化チタン及び比較例1で使用した市販の酸化チタンのESRスペクトル。
【図2】 実施例1、比較例1に用いた光源に装着した紫外線カットフィルターの分光特性を示す波長−透過率線図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the production how the photocatalyst. In particular, it relates to the production how the photocatalyst showing high photocatalytic activity by irradiation of visible light.
[0002]
[Prior art]
When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, decomposition of NOx in the atmosphere, decomposition and removal of malodorous substances and molds in living spaces and work spaces, or organic solvents and agricultural chemicals in water, It is possible to decompose and remove environmental pollutants such as surfactants. Titanium oxide attracts attention as a substance having a photocatalytic action, and a photocatalyst made of titanium oxide is commercially available. As a commercial item, there is ST-01 (trade name: manufactured by Ishihara Sangyo), for example.
[0003]
However, the currently commercially available photocatalyst made of titanium oxide does not exhibit a sufficient photocatalytic action when irradiated with visible light.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a manufacturing how photocatalyst showing high photocatalytic activity by irradiation of visible light.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems , the present inventors have completed the present invention.
[0006]
That is, in the present invention, the catalyst component has three or more peaks between g values of 1.930 to 2.030 in the electron spin resonance spectrum, and the peak that is the maximum of these peaks has a g value of 1. A method for producing a photocatalyst containing titanium oxide present between 990 and 2.020,
Under a nitrogen atmosphere, to a mixture of the acid and four titanium chloride emissions, by adding ammonia, the resulting product is to provide a method for producing the photocatalyst material and firing in air.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The titanium oxide obtained by the production method of the present invention has three or more peaks between g values of 1.930 to 2.030 in an electron spin resonance (hereinafter referred to as ESR) spectrum, and of these peaks. The peak that becomes the maximum of is present between g values of 1.990 to 2.020.
[0010]
ESR means that when the energy level of a permanent magnetic dipole of an atom or molecule based on unpaired electrons is split by applying a magnetic field, and energy equal to the energy between the levels is given in the form of electromagnetic energy, A phenomenon in which unpaired electrons undergo a transition between adjacent levels by absorbing electromagnetic energy. ESR analysis is applied to, for example, examining the direction of the crystal axis of a crystal containing an iron group element and the nature of a chemical bond, and examining where in the molecule an unpaired electron of a free radical of an organic molecule exists. Has been. In the present invention, the crystal structure of titanium oxide is specified using the g value obtained from ESR analysis as an index.
[0011]
The g value can be calculated from an ESR spectrum measured by an ESR apparatus and a peak position of the spectrum. The principle of ESR and the calculation method of the g value are as follows. When unpaired electrons are placed in a magnetic field, the energy level is split by the Zeeman effect. This divided energy difference is assumed to be ΔE, and the following formula (I)
ΔE = hν (I)
[In Formula (I), h represents Planck's constant (= 6.6255 × 10 −34 Js), and ν represents Microwave Frequency. )
When the strength of the magnetic field is changed while irradiating the electromagnetic field (frequency ν) in the microwave region that satisfies the above, the strength H of the magnetic field is expressed by the following formula (II)
hν = gβH (II)
[In the formula (II), g represents a g value, β represents a Bohr magneton (= 9.274 × 10 −24 JT −1 ), and H represents a magnetic flux density. ]
Resonance absorption occurs when satisfying, and a peak appears in a resonance absorption curve with the horizontal axis representing the strength of the magnetic field and the vertical axis representing the electromagnetic field absorption. From this peak position, a g value is obtained as an index representing the presence state of unpaired electrons, and the g value is derived from the following formula (III) derived from formula (II):
g = hν / (βH) (III)
Is required. Usually, the ESR spectrum is represented by a first derivative form of a resonance absorption curve in order to improve detection sensitivity.
[0012]
Although it is not clear why titanium oxide having a specific ESR spectrum can exhibit excellent photocatalytic activity upon irradiation with visible light, according to Journal of the Physical Chemistry, 89, 5689-5694 (1985) The peak between the g-values of 1.930 and 2.030 in the spectrum appears to be derived from radical species containing nitrogen (atomic weight of 14) and therefore occurs in the crystal lattice of titanium oxide due to the presence of nitrogen and its presence. It is considered that the strain affects the photocatalytic activity of titanium oxide.
[0013]
Examples of titanium oxide include various shapes such as particles and fibers, and an appropriate shape is selected according to the method of use. In addition, the titanium oxide may be a mixture of inorganic compounds within a range that does not impair the photocatalytic activity due to irradiation with visible light, or after the inorganic compounds are mixed, heat treatment or the like is performed. And may be combined. Examples of the inorganic compound mixed with titanium oxide include silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), magnesia (MgO), zinc oxide (ZnO), and the like.
[0014]
In the production method of the present invention, under a nitrogen atmosphere, the ammonia is added to a mixture of acid and titanium tetrachloride, the resulting product you fired in air. Examples of the acid used at this time include mineral acids such as hydrochloric acid and sulfuric acid .
[0015]
The photocatalyst produced by the production method of the present invention contains titanium oxide having the specific ESR spectrum described above as a catalyst component.
[0016]
This photocatalyst is, for example, composed of only the above-mentioned titanium oxide, a sheet-like product obtained by adding a molding aid to particulate titanium oxide and extrusion molding, fibrous titanium oxide and organic fibers. Examples thereof include a sheet-like material obtained by entanglement, or a material obtained by applying or coating titanium oxide on a metal or resin support. For the purpose of improving the mechanical strength and moldability of the photocatalyst, the inorganic oxide other than titanium oxide having the specific ESR spectrum of the present invention, a polymer resin, a molding aid, a binder, and an antistatic agent Or what added adsorbent etc. may be used. Examples of the inorganic oxide added to titanium oxide include silica, alumina, zirconia, magnesia, zinc oxide, and titanium oxide that exhibits photocatalytic activity when irradiated with ultraviolet rays.
[0017]
When using the photocatalyst, for example, the photocatalyst and the liquid or gas to be treated are placed in a glass container that transmits visible light, and the photocatalyst is irradiated with visible light having a wavelength of 430 nm or more using a light source. That's fine. The light source used at this time is not limited as long as it can irradiate light including visible light having a wavelength of 430 nm or more. For example, sunlight, fluorescent lamp, halogen lamp, black light, xenon lamp, mercury lamp Sodium lamp etc. can be applied.
[0018]
The photocatalyst coating agent of the present invention contains titanium oxide having the specific ESR spectrum described above and a solvent. This photocatalyst coating agent makes it easy to apply titanium oxide to building materials, automobile materials, etc., or to coat building materials, automobile materials, etc. with titanium oxide, and has high photocatalytic activity on building materials, automobile materials, etc. Can be granted. As the solvent, a solvent that evaporates after coating or coating and does not remain in titanium oxide is preferable, and examples thereof include water, hydrochloric acid, alcohols, and ketones.
[0019]
This photocatalyst coating agent can be produced by, for example, a method of dispersing the above titanium oxide in water to form a slurry or a method of peptizing titanium oxide with an acid or the like. In the dispersion of titanium oxide, a dispersant may be added as necessary.
[0020]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. In this example, the photodecomposition action of acetic acid will be described, but the present invention is not limited to this example. The measurement of the ESR spectrum and the calculation of the g value were performed by the following method.
[0021]
Using an electron spin resonance apparatus (trade name “ESP-300”, manufactured by BRUKER), temperature: room temperature, pressure: atmospheric pressure, Microwave Frequncy: 9.47 GHz (= 9.47 × 10 9 s −1 ), Center Field: ESR spectrum under conditions of 3400G, Sweep Width: 500G, Sweep Time: 83.885s, Time Const .: 1310.72ms, Mod. Amp .: 5.054G, Peak position calculation: DPPH g value corrected to 2.0037 The magnetic flux density H (T) at which resonance absorption occurs is obtained from the peak of this ESR spectrum, and the g value is calculated by introducing this magnetic flux density into the formula (III). When there are a plurality of peaks in the ESR spectrum, the magnetic flux density is obtained for each peak, and the g value is calculated.
[0022]
Example 1
Place 110 g of 0.5 N hydrochloric acid and 25 g of titanium tetrachloride (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) in a 300 mL flask, stir in a nitrogen atmosphere, and cool the flask with ice water. , Manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise over 20 minutes for hydrolysis. This hydrolyzate was filtered, washed and dried. The dried product was fired in air at 400 ° C. for 1 hour to obtain yellow colored particulate titanium oxide (TiO 2 ). FIG. 1 shows the ESR spectrum of this titanium oxide, and Table 1 shows the g value obtained from the ESR spectrum.
[0023]
A glass petri dish with a diameter of 5 cm is placed in a Pyrex (registered trademark) glass sealed reaction vessel having a diameter of 8 cm, a height of 10 cm, and a capacity of about 0.5 L, and only the particulate titanium oxide obtained above is placed on the petri dish. A photocatalyst body consisting of 0.3 g was placed. After filling the reaction container with a mixed gas having a volume ratio of oxygen and nitrogen of 1: 4, 33 μmol of acetic acid was sealed in the container and irradiated with visible light having a wavelength of 430 nm or more. The photocatalytic action of the photocatalyst is analyzed by gas chromatography using helium as a carrier gas with the concentration of carbon dioxide, which is an oxidative decomposition product of acetic acid produced by irradiation with visible light (trade name “Column Porapak Q”, manufactured by Shimadzu Corporation). ) And evaluated. As a light source, a 500 W xenon lamp (trade name “Lamphouse UI-502Q, Lamp UXL-500D, which is equipped with an ultraviolet cut filter having a spectral characteristic shown in FIG. 2 (trade name“ Y-45 ”, manufactured by Toshiba Glass), Lighting device XB-50101AA-A ″, manufactured by USHIO INC.) Was used. At this time, the production rate of carbon dioxide was 5.86 μmol / h per 1 g of the photocatalyst.
[0024]
Comparative Example 1
The photocatalytic activity of the photocatalyst was evaluated in the same manner as in Example 1 except that a photocatalyst composed only of commercially available titanium oxide (trade name “ST-01”, manufactured by Ishihara Sangyo) was used. The production rate of carbon dioxide at this time was 0.46 μmol / h per 1 g of the photocatalyst. FIG. 1 shows an ESR spectrum of titanium oxide ST-01, and Table 1 shows a g value obtained from the ESR spectrum.
[0025]
[Table 1]
In Table 1, those marked with ◯ show the g value of the maximum peak.
[0026]
As a result of investigating the decomposition action from acetic acid to carbon dioxide under the condition of irradiating the photocatalyst with visible light having a wavelength of 430 nm or more, the photocatalyst produced by the production method of the present invention is a photocatalyst comprising a commercially available titanium oxide. Compared with, the photodecomposition action (photocatalysis action) was higher.
[0027]
【The invention's effect】
According to the present invention, there is provided a photocatalyst comprising titanium oxide exhibiting a high photocatalytic action when irradiated with visible light as a catalyst component, and by using this photocatalyst, various organic substances including organic acids such as acetic acid are decomposed and removed. It can also be applied to decomposition of atmospheric NOx, decomposition and removal of malodorous substances and fungi in living spaces and work spaces, or decomposition and removal of organic solvents, agricultural chemicals and surfactants in water. Furthermore, according to this invention, the photocatalyst body coating agent containing a titanium oxide and a solvent is provided, By using this coating agent, a titanium oxide is apply | coated to a building material, a motor vehicle material, etc., or a building material, a motor vehicle It becomes easy to coat materials with titanium oxide, and high photocatalytic action can be imparted to these materials.
[Brief description of the drawings]
1 is an ESR spectrum of titanium oxide obtained in Example 1 and commercially available titanium oxide used in Comparative Example 1. FIG.
FIG. 2 is a wavelength-transmittance diagram showing spectral characteristics of an ultraviolet cut filter mounted on the light source used in Example 1 and Comparative Example 1.
Claims (1)
窒素雰囲気下で、酸と四塩化チタンとの混合物に、アンモニアを添加し、得られた生成物を空気中で焼成することを特徴とする前記光触媒体の製造方法。As a catalyst component, in the electron spin resonance spectrum, there are three or more peaks between g values of 1.930 to 2.030, and the peak among these peaks is the maximum value of 1.990 to 2.020. Is a method for producing a photocatalyst containing titanium oxide existing between
Under a nitrogen atmosphere, to a mixture of the acid and four titanium chloride emissions, by adding ammonia, the production method of the photocatalyst of the resulting product and firing in air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001307222A JP4019679B2 (en) | 1999-10-29 | 2001-10-03 | Method for producing photocatalyst body |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31025099 | 1999-10-29 | ||
JP11-310250 | 1999-10-29 | ||
JP2001307222A JP4019679B2 (en) | 1999-10-29 | 2001-10-03 | Method for producing photocatalyst body |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000330201A Division JP2001190953A (en) | 1999-10-29 | 2000-10-30 | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002166179A JP2002166179A (en) | 2002-06-11 |
JP4019679B2 true JP4019679B2 (en) | 2007-12-12 |
Family
ID=26566246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001307222A Expired - Fee Related JP4019679B2 (en) | 1999-10-29 | 2001-10-03 | Method for producing photocatalyst body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4019679B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001190953A (en) * | 1999-10-29 | 2001-07-17 | Sumitomo Chem Co Ltd | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same |
JP4580197B2 (en) * | 2004-08-20 | 2010-11-10 | テイカ株式会社 | Titanium oxide photocatalyst having photocatalytic activity in a wide wavelength region and method for producing the same |
CN115254155A (en) * | 2022-08-24 | 2022-11-01 | 上饶昌浩玻璃有限公司 | Preparation method of full-spectrum response photocatalyst, full-spectrum response photocatalyst glass and preparation method thereof |
-
2001
- 2001-10-03 JP JP2001307222A patent/JP4019679B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002166179A (en) | 2002-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6830741B1 (en) | Titanium-oxide and photocatalyst and photocatalyst coating composition | |
KR100642973B1 (en) | Titanium oxide, photocatalyst comprising same and photocatalytic coating agent | |
US7011808B2 (en) | Titanium oxide and photocatalyst | |
KR100385301B1 (en) | Novel titania photocatalyst and its manufacturing method | |
US6673331B2 (en) | Titanium hydroxide, photocatalyst, and coating agent | |
JP2001190953A (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same | |
JP2002126517A (en) | Photocatalyst, method for producing the same, and photocatalyst coating using the same | |
KR100364729B1 (en) | Method for preparing Titanium dioxide film on polymer substrate | |
CN115155624B (en) | Heterojunction composite material for removing aldehyde through visible light catalysis, preparation method of heterojunction composite material and method for degrading VOCs through visible light catalysis | |
JP4019679B2 (en) | Method for producing photocatalyst body | |
JP4103324B2 (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same | |
JP4265685B2 (en) | Photocatalyst body, method for producing the same, and photocatalyst body coating agent using the same | |
JP3797573B2 (en) | Method for producing anatase type fine particle titanium oxide | |
JP3959226B2 (en) | Photocatalyst body and photocatalyst body coating agent | |
JP2002029749A (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same | |
KR20030084174A (en) | Direct adhesion method of photocatalyst on substrate | |
JPH0924281A (en) | Photocatalyst and its manufacture | |
JP2006187677A (en) | Visible light responsible photocatalyst and its manufacturing method | |
JP2003300729A (en) | Titanium oxide | |
JP2004075528A (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same | |
JP2002346382A (en) | Visible light-responsive photocatalyst | |
JP2002143691A (en) | Photocatalyst, method for producing the same, and photocatalyst coating using the same | |
JP2002358929A (en) | Fluorescent lamp with photocatalyst and method of manufacturing the same | |
JP2003335521A (en) | Titanium oxide, photocatalyst body and photocatalyst body coating agent using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070904 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070917 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |