JP4017851B2 - Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst - Google Patents
Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst Download PDFInfo
- Publication number
- JP4017851B2 JP4017851B2 JP2001309171A JP2001309171A JP4017851B2 JP 4017851 B2 JP4017851 B2 JP 4017851B2 JP 2001309171 A JP2001309171 A JP 2001309171A JP 2001309171 A JP2001309171 A JP 2001309171A JP 4017851 B2 JP4017851 B2 JP 4017851B2
- Authority
- JP
- Japan
- Prior art keywords
- titanium dioxide
- rutile
- catalyst
- anatase
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title description 216
- 239000004408 titanium dioxide Substances 0.000 title description 77
- 239000003054 catalyst Substances 0.000 title description 34
- 150000001491 aromatic compounds Chemical class 0.000 title description 29
- 238000000034 method Methods 0.000 title description 18
- 230000001590 oxidative effect Effects 0.000 title description 8
- 239000002245 particle Substances 0.000 description 60
- 239000000843 powder Substances 0.000 description 29
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 28
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 19
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- NKUFAJLJAJWLPR-ZZXKWVIFSA-N 2-[(e)-3-oxoprop-1-enyl]benzaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1C=O NKUFAJLJAJWLPR-ZZXKWVIFSA-N 0.000 description 15
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 14
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 229910052719 titanium Inorganic materials 0.000 description 12
- -1 aromatic aldehyde compound Chemical class 0.000 description 11
- 229910001882 dioxygen Inorganic materials 0.000 description 10
- 150000002978 peroxides Chemical class 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 125000004430 oxygen atom Chemical group O* 0.000 description 7
- 238000009210 therapy by ultrasound Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000011941 photocatalyst Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000000527 sonication Methods 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000004053 quinones Chemical class 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 238000007248 oxidative elimination reaction Methods 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- 125000006650 (C2-C4) alkynyl group Chemical group 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical class C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- MSBVBOUOMVTWKE-UHFFFAOYSA-N 2-naphthalen-2-ylnaphthalene Chemical group C1=CC=CC2=CC(C3=CC4=CC=CC=C4C=C3)=CC=C21 MSBVBOUOMVTWKE-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- 125000005330 8 membered heterocyclic group Chemical group 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 125000005915 C6-C14 aryl group Chemical group 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 241001024304 Mino Species 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical group C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- ILNQBWPWHQSSNX-UHFFFAOYSA-N [hydroperoxy(diphenyl)methyl]benzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OO)C1=CC=CC=C1 ILNQBWPWHQSSNX-UHFFFAOYSA-N 0.000 description 1
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000004967 organic peroxy acids Chemical class 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 125000004149 thio group Chemical group *S* 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000001166 thiolanyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は新規な二酸化チタン触媒と、該触媒を用いた芳香族化合物の酸化方法及び酸素原子含有芳香族化合物の製造法に関する。
【0002】
【従来の技術】
芳香族化合物の酸化により得られる芳香族アルデヒドやキノン類などの酸素原子含有芳香族化合物(芳香族酸化生成物)は、有機合成化学品又はその中間原料等として有用な化合物である。芳香族化合物の酸化方法として、過酸化水素と硫酸鉄(II)、アスコルビン酸、エチレンジアミン四酢酸などの還元剤との組み合わせからなる試薬を用いる方法、過酸化水素と三フッ化ホウ素エーテラート、塩化アルミニウム、フッ化水素などの酸との組み合わせからなる試薬を用いる方法、有機過酸又は過酸化物とルイス酸との組み合わせからなる試薬を用いる方法などが知られている。しかし、これらの方法は一般に収率が低い、反応速度や反応の選択性が反応条件の影響を受けやすい等の欠点を有する。また、比較的高価な試薬や後処理が煩雑となる試薬を用いるため、工業的に有利な方法とは言えない。
【0003】
一方、半導体光触媒を用いて光エネルギーを化学エネルギーに変換し、これを有害物質の分解や有用な化合物の合成に利用する研究が精力的に行われている。この方法は、反応を室温付近で行うことができる、環境に対して温和である等の大きな利点を有しており、近年、芳香族化合物の酸化についても研究が進められている。例えば、特開2000−336051号公報には、二酸化チタン等の半導体光触媒の存在下、ナフタレン類を紫外線照射下で酸素酸化することを特徴とするヒドロキシナフタレン類の製造法が開示されている。しかし、この方法は、酸化反応生成物の収率や選択性の点で必ずしも十分満足できるものではない。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、芳香族化合物を効率よく酸化する上で有用な光触媒を提供することにある。
本発明の他の目的は、芳香族化合物を光照射下で効率よく酸化する方法を提供することにある。
本発明のさらに他の目的は、芳香族化合物を光照射下に酸化して対応する酸素原子含有芳香族化合物を効率よく製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意検討を重ねた結果、特定構造の二酸化チタン光触媒を用いると、芳香族化合物を効率よく酸化できることを見出し、本発明を完成した。
【0006】
すなわち、本発明は、粒子径100nm以上のルチル型二酸化チタン粒子の表面に比表面積30m 2 /g以上の二酸化チタン微粒子が分散担持されている担持型二酸化チタンの存在下、芳香族化合物を光照射下に分子状酸素及び/又は過酸化物により酸化して、対応する芳香族アルデヒド化合物及び/又はキノン類を生成させることを特徴とする酸素原子含有芳香族化合物の製造法を提供する。
ルチル型二酸化チタン粒子の表面に分散担持されている二酸化チタン微粒子と前記ルチル型二酸化チタン粒子との比率は、前者/後者(重量比)=0.1/99.9〜99.5/0.5程度が好ましい。
【0009】
【発明の実施の形態】
[担持型二酸化チタン触媒]
本発明の担持型二酸化チタン触媒の特徴は、ルチル型二酸化チタン粒子(以下、「粒子A」と称する場合がある)の表面に二酸化チタン微粒子(以下、「粒子B」と称する場合がある)が分散担持されている点にある。このような二酸化チタン触媒は、非担持型である通常のルチル型二酸化チタン、アナターゼ型二酸化チタンや、これらの単なる混合物と比較して、光触媒活性が著しく高い。
【0010】
発明者らのこれまでの研究によれば、ルチル型二酸化チタンはアナターゼ型二酸化チタンと比較して高い酸化力を示すが、粒子表面への酸素吸着量が一般的に少なく、還元側の反応である酸素への電子移動が非常に進行しにくいという欠点を有する。しかも、ルチル型二酸化チタンの伝導体の電位は−0.5V[対SCE(飽和カロメル電極)]であり、酸素の一電子還元の電位−0.56Vとの関係から、酸素への励起電子の移動過程が律速になっていると推測される。しかし、このようなルチル型二酸化チタンの表面に、アナターゼ型二酸化チタン等の二酸化チタン微粒子を担持すると、触媒の表面積が見かけ上増大し、酸素の吸着量が増加するため、酸素の還元反応(酸素への励起電子の移動)が大幅に促進され、これにより反応効率(触媒活性)が飛躍的に増大するものと考えられる。
【0011】
本発明の担持型二酸化チタン触媒において、前記粒子Aの粒子径は、二酸化チタン微粒子(粒子B)の担体として機能できる程度の大きさがあればよく、例えば100nm以上(100〜2000nm程度)、好ましくは150nm以上(150〜1000nm程度)である。前記粒子Bの粒子径は、担体としての粒子Aに担持できる範囲で適宜選択でき、例えば90nm以下(1〜90nm程度)、好ましくは70nm以下(例えば2〜70nm程度)である。また、粒子Bの比表面積は、好ましくは30m2/g以上(例えば、30〜200m2/g程度)、さらに好ましくは40m2/g以上(例えば、40〜150m2/g程度)である。粒子Bの比表面積が小さすぎると触媒活性が低下しやすい。粒子Bはアナターゼ型二酸化チタン微粒子、ルチル型二酸化チタン微粒子、及びこれらの混合物等の何れであってもよい。
【0012】
本発明の担持型二酸化チタン触媒において、前記粒子Bと粒子Aとの比率(前者/後者)が大きすぎると、粒子Bが担体である粒子Aの表面を覆って、粒子Aに励起光が有効に当たらなくなり、触媒活性が低下しやすくなる。また、逆に、粒子Bと粒子Aとの比率(前者/後者)が小さすぎると、吸着酸素量がさほど増大しないためか、触媒活性が低下しやすくなる。したがって、粒子Bと粒子Aとの比率(前者/後者)は、一般に、0.1/99.9〜99.5/0.5、好ましくは1/99〜95/5、さらに好ましくは2/98〜65/35、特に好ましくは5/95〜50/50(とりわけ15/85〜45/55)程度である。
【0013】
本発明の担持型二酸化チタン触媒は、例えば、担体として機能するルチル型二酸化チタンの粉末とその表面に分散担持させる二酸化チタンの粉末とを適当な溶媒中に入れ、所定時間超音波処理を施すことにより調製できる。なお、アナターゼ型二酸化チタンは、一般に1次粒子は非常に小さいものの、平均粒径10μm程度の大きな凝集体を形成しており、これをルチル型二酸化チタン粒子と共に超音波処理に付すと、アナターゼ型二酸化チタンの凝集体が解れて生成した1次粒子がルチル型二酸化チタン粒子上に分散担持される。
【0014】
前記超音波処理時に用いる溶媒としては、特に限定されず、例えば、ヘキサンなどの脂肪族炭化水素、シクロヘキサンなどの脂環式炭化水素、トルエンなどの芳香族炭化水素、塩化メチレンなどのハロゲン化炭化水素、ジエチルエーテルやテトラヒドロフランなどのエーテル類、アセトニトリルなどのニトリル、酢酸エチルなどのエステル、アセトンなどのケトン、N,N−ジメチルホルムアミドなどのアミド、水、及びこれらの混合溶媒などが例示できる。好ましい溶媒には、アセトニトリル等の極性溶媒、水、又はこれらの混合溶媒が含まれる。
【0015】
超音波処理の温度は、特に限定されないが、通常0〜100℃程度、好ましくは10〜50℃程度である。超音波処理の時間は、例えば10分以上(10〜120分程度)、好ましくは15分以上(15〜60分程度)である。超音波処理時間が短すぎると、ルチル型粒子上にアナターゼ型又はルチル型微粒子が分散担持された構造が形成されにくい。
【0016】
[芳香族化合物の酸化方法及び酸素原子含有芳香族化合物の製造法]
本発明の方法において、基質として用いる芳香族化合物としては、芳香族性の炭素環又は複素環を有し、且つ少なくとも1つの被酸化部位を有する化合物であれば特に限定されない。前記芳香族性の炭素環を有する化合物として、例えば、ベンゼン、ナフタレン、ビフェニル、インデン、インダン、テトラリン、2,2′−ビナフチル、アセナフテン、フルオレン、フェナントレン、アントラセン、トリフェニレン、ピレン、クリセン、ナフタセン、コロネンなどが挙げられる。また、芳香族性の複素環を有する化合物として、ピリジン、インドール、キノリンなどの含窒素化合物、フラン、ベンゾフランなどの含酸素化合物、チオフェン、ベンゾチオフェンなどの含硫黄化合物などが挙げられる。
【0017】
前記芳香族化合物における芳香族性炭素環又は複素環には、反応を阻害しない範囲で、置換基が結合していてもよい。該置換基として、例えば、ハロゲン原子、ヒドロキシル基、メルカプト基、置換オキシ基[例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ基などのアルコキシ基(好ましくはC1-4アルコキシ基);フェノキシ基などのアリールオキシ基;アセチルオキシ、プロピオニルオキシ基などのアシルオキシ基など]、置換チオ基(例えば、メチルチオ、エチルチオ基などのアルキルチオ基など)、カルボキシル基、置換オキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、プロピルオキシカルボニル基などのC1-4アルコキシ−カルボニル基など)、置換又は無置換カルバモイル基、アシル基(アセチル、プロピオニル、ベンゾイル基などのC2-11アシル基など)、シアノ基、ニトロ基、置換又は無置換アミノ基(例えば、アミノ基;N,N−ジメチルアミノ基などのN,N−ジC1-4アルキルアミノ基;N−アセチルアミノ基などのN−C2-11アシルアミノ基など)、アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t−ブチル基などのC1-4アルキル基など)、アルケニル基(例えば、ビニル基、アリル基などのC2-4アルケニル基など)、アルキニル基(例えば、エチニル基などのC2-4アルキニル基など)、シクロアルキル基(例えば、シクロペンチル、シクロヘキシル基などの3〜8員シクロアルキル基など)、アリール基(例えば、フェニル、ナフチル基などのC6-14アリール基など)などが挙げられる。
【0018】
また、前記芳香族化合物における芳香族性炭素環又は複素環には、非芳香族性の炭素環又は複素環が縮合していてもよい。このような非芳香族性の炭素環として、例えば、シクロペンタン環、シクロヘキサン環などの3〜8員シクロアルカン環などが挙げられる。非芳香族性の複素環としては、ピロリジン環、オキソラン環、チオラン環、ピペリジン環、テトラヒドロピラン環などの、窒素原子、酸素原子、硫黄原子から選択された少なくとも1つのヘテロ原子を1〜3個有する3〜8員の複素環などが例示される。
【0019】
本発明の方法において、前記担持型二酸化チタン触媒の使用量は、基質として用いる芳香族化合物100重量部に対して、例えば1〜100重量部、好ましくは5〜60重量部、さらに好ましくは10〜30重量部程度である。
【0020】
本発明の方法では、基質としての芳香族化合物を光照射下に分子状酸素及び/又は過酸化物で酸化する。照射する光としては、通常、390nm以下の紫外線が使用されるが、可視光線も使用できる。好ましい光の波長域は420nm以下(可視光線の一部及び紫外線)である。
【0021】
分子状酸素としては、純粋な酸素を用いてもよく、窒素、ヘリウム、アルゴン、二酸化炭素などの不活性ガスで希釈した酸素や空気を用いてもよい。分子状酸素の使用量は、基質として用いる芳香族化合物1モルに対して、例えば0.5モル以上、好ましくは1モル以上である。芳香族化合物に対して過剰モルの分子状酸素を用いることが多い。
【0022】
過酸化物としては、特に限定されず、ペルオキシド、ヒドロペルオキシド等の何れも使用できる。代表的な過酸化物として、過酸化水素、クメンヒドロペルオキシド、t−ブチルヒドロペルオキシド、トリフェニルメチルヒドロペルオキシド、t−ブチルペルオキシド、ベンゾイルペルオキシドなどが挙げられる。上記過酸化水素としては、純粋な過酸化水素を用いてもよいが、取扱性の点から、通常、適当な溶媒、例えば水に希釈した形態(例えば、30重量%過酸化水素水)で用いられる。過酸化物の使用量は、基質として用いる芳香族化合物1モルに対して、例えば0.1〜5モル程度、好ましくは0.3〜1.5モル程度である。
【0023】
本発明では、分子状酸素と過酸化物のうち一方のみを用いてもよいが、分子状酸素と過酸化物とを組み合わせることにより、反応速度が大幅に向上する場合がある。
【0024】
反応は、通常、溶媒存在下で行われる。該溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、リグロイン、石油エーテル等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン等の脂環式炭化水素;エチルエーテル、イソプロピルエーテル、テトラヒドロフラン等のエーテル類;酢酸エチル等のエステル類;、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等のニトリル類;N,N−ジメチルホルムアミド等の非プロトン性極性溶媒;酢酸等の有機酸;水;これらの混合溶媒などが挙げられる。
【0025】
反応温度は、反応速度及び反応選択性を考慮して適宜選択できるが、一般には−20℃〜100℃程度である。反応は室温付近で行われることが多い。反応はバッチ式、セミバッチ式、連続式などの何れの方法で行ってもよい。
【0026】
上記反応により、芳香族化合物から対応する酸化開裂生成物(例えば、芳香族アルデヒド化合物)、キノン類、ヒドロキシル基含有芳香族化合物などの酸素原子含有芳香族化合物などが生成する。例えば、ナフタレンからは2−ホルミルシンナムアルデヒド(酸化開裂生成物)、1,4−ナフトキノンなどが生成する。これらの生成物の生成割合(選択率)は、反応条件等を適宜選択することにより調整できる。
【0027】
反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。また、二酸化チタン触媒は濾過により容易に分離でき、分離した触媒は、必要に応じて洗浄等の処理を施した後、リサイクル使用できる。
【0028】
【発明の効果】
本発明によれば、芳香族化合物を光照射下に効率よく酸化することができ、例えば、芳香族アルデヒド化合物やキノン類などの酸素原子含有芳香族化合物を生産効率よく製造できる。
【0029】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。反応生成物の分析及び同定は、キャピラリーガスクロマトグラフ、高速液体クロマトグラフ、GC−マススペクトル、及び核磁気共鳴スペクトルにより行った。二酸化チタンの比表面積は、Micromeritics社製の表面積測定装置「FlowSorb II 2300」を用いて測定した。
【0030】
実施例1
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=9/1となるようにはかりとり(総量0.015g)、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加え、室温で超音波処理を30分間行った。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが6.9μmol、1,4−ナフトキノンが2.7μmol生成していた。
[2−ホルミルシンナムアルデヒドのスペクトルデータ]
1H−NMR(CDCl3)δ:6.67(1H,dd,J=16.1,7.8Hz),7.6−8.0(4H,m),8.58(1H,d,J=16.1Hz),9.81(1H,d,J=7.8Hz),10.23(1H,s)
MS(m/z):131(M+−29)
【0031】
実施例2
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=7/3となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが10.9μmol、1,4−ナフトキノンが2.2μmol生成していた。
【0032】
実施例3
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=5/5となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.1μmol、1,4−ナフトキノンが2.8μmol生成していた。
【0033】
実施例4
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=3/7となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.6μmol、1,4−ナフトキノンが3.7μmol生成していた。
【0034】
実施例5
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/9となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが15.7μmol、1,4−ナフトキノンが1.8μmol生成していた。
【0035】
実施例6
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/49となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが12.8μmol、1,4−ナフトキノンが0.9μmol生成していた。
【0036】
実施例7
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/98となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが10.1μmol、1,4−ナフトキノンが0.8μmol生成していた。
【0037】
実施例8
反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、アナターゼ型二酸化チタンとルチル型二酸化チタンの比率が、前者/後者=1/374となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが8.0μmol、1,4−ナフトキノンが0.75μmol生成していた。
【0038】
比較例1
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、アナターゼ型二酸化チタン粉末[商品名「ST−01」、アナターゼ型含量100%、石原産業(株)製、平均粒子径7nm、比表面積236m2/g]を0.015gはかりとり、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加えた。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが1.4μmol、1,4−ナフトキノンが0.75μmol生成していた。
【0039】
比較例2
冷却管と酸素供給管を設置した内容積30mlの外部照射型反応器に、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]を0.015gはかりとり、これに、ナフタレン0.1g、アセトニトリル3.63g、水0.3gを加えた。
スターラーピースにより反応液を攪拌しながら、室温で、酸素ガスを2ml/minの流量で吹き込み、500W超高圧水銀ランプを用いて光照射を1時間行った。この時、光照射によるナフタレンの直接励起を避けるために340nm以下の光をカットするフィルターを通して光を照射した。また、二酸化チタン粉末をスターラーにより分散させながら光照射した。反応混合液を濾過し、濾液を高速液体クロマトグラフィーで定量分析した。その結果、2−ホルミルシンナムアルデヒドが4.6μmol、1,4−ナフトキノンが0.4μmol生成していた。
【0040】
実施例9
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=7/3となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが22.3μmol、1,4−ナフトキノンが1.9μmol生成していた。
【0041】
実施例10
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径:40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=5/5となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが16.4μmol、1,4−ナフトキノンが1.8μmol生成していた。
【0042】
実施例11
反応器に、ルチル型二酸化チタン粉末[触媒学会参照触媒「JRC−TIO−3」、平均粒子径40nm、比表面積48.1m2/g]と、ルチル型二酸化チタン粉末[商品名「NS−51」、ルチル型(ルチル型含量98.6%)、東邦チタニウム(株)製、平均粒子径200nm、比表面積6.5m2/g]とを、これらの比率が、前者/後者=3/7となるようにはかりとった(総量0.015g)点以外は、実施例1と同様の操作を行った。その結果、2−ホルミルシンナムアルデヒドが18.3μmol、1,4−ナフトキノンが2.3μmol生成していた。
【0043】
二酸化チタン触媒の粒子構造の解析
実施例5で調製した二酸化チタン触媒(超音波処理後の触媒)、実施例8で調製した二酸化チタン触媒(超音波処理後の触媒)、比較例1で用いた二酸化チタン触媒、比較例2で用いた二酸化チタン触媒の粒子像を走査型電子顕微鏡(SEM)により観察した。そのSEM写真を、それぞれ、図1〜図4に示す。
【図面の簡単な説明】
【図1】 実施例5で調製した二酸化チタン触媒(超音波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。
【図2】 実施例8で調製した二酸化チタン触媒(超音波処理後の触媒)の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=800nmに相当)。
【図3】 比較例1で用いた二酸化チタン触媒の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。
【図4】 比較例2で用いた二酸化チタン触媒の粒子構造を示す走査型電子顕微鏡写真である(写真の横方向の長さ=1092nmに相当)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel titanium dioxide catalyst, a method for oxidizing an aromatic compound using the catalyst, and a method for producing an oxygen atom-containing aromatic compound.
[0002]
[Prior art]
Oxygen atom-containing aromatic compounds (aromatic oxidation products) such as aromatic aldehydes and quinones obtained by oxidation of aromatic compounds are useful compounds as organic synthetic chemicals or intermediate raw materials thereof. As a method for oxidizing aromatic compounds, a method using a reagent consisting of a combination of hydrogen peroxide and a reducing agent such as iron (II) sulfate, ascorbic acid, ethylenediaminetetraacetic acid, hydrogen peroxide and boron trifluoride etherate, aluminum chloride A method using a reagent comprising a combination with an acid such as hydrogen fluoride, a method using a reagent comprising an organic peracid or a combination of a peroxide and a Lewis acid, and the like are known. However, these methods generally have disadvantages such as low yield and reaction rate and reaction selectivity that are easily influenced by reaction conditions. In addition, it is not an industrially advantageous method because a relatively expensive reagent or a reagent that complicates post-treatment is used.
[0003]
On the other hand, vigorous research has been conducted to convert light energy into chemical energy using a semiconductor photocatalyst and to use it for decomposition of harmful substances and synthesis of useful compounds. This method has great advantages such that the reaction can be carried out near room temperature and is mild to the environment. In recent years, studies on oxidation of aromatic compounds have been conducted. For example, Japanese Patent Application Laid-Open No. 2000-336051 discloses a method for producing hydroxynaphthalenes, characterized by oxygen oxidation of naphthalenes under ultraviolet irradiation in the presence of a semiconductor photocatalyst such as titanium dioxide. However, this method is not always satisfactory in terms of the yield and selectivity of the oxidation reaction product.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a photocatalyst useful for efficiently oxidizing an aromatic compound.
Another object of the present invention is to provide a method for efficiently oxidizing an aromatic compound under light irradiation.
Still another object of the present invention is to provide a method for efficiently producing a corresponding oxygen atom-containing aromatic compound by oxidizing an aromatic compound under light irradiation.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that an aromatic compound can be efficiently oxidized when a titanium dioxide photocatalyst having a specific structure is used, and the present invention has been completed.
[0006]
That is, the present invention irradiates an aromatic compound in the presence of supported titanium dioxide in which titanium dioxide fine particles having a specific surface area of 30 m 2 / g or more are dispersed and supported on the surface of rutile titanium dioxide particles having a particle diameter of 100 nm or more. There is provided a method for producing an oxygen atom-containing aromatic compound characterized in that it is oxidized with molecular oxygen and / or peroxide to produce a corresponding aromatic aldehyde compound and / or quinones .
The ratio of the titanium dioxide fine particles dispersedly supported on the surface of the rutile type titanium dioxide particles and the rutile type titanium dioxide particles is the former / the latter (weight ratio) = 0.1 / 99.9 to 99.5 / 0.00. About 5 is preferable.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
[Supported titanium dioxide catalyst]
The supported titanium dioxide catalyst of the present invention is characterized in that fine particles of titanium dioxide (hereinafter sometimes referred to as “particle B”) are formed on the surface of rutile titanium dioxide particles (hereinafter sometimes referred to as “particle A”). It is in the point of being dispersedly supported. Such a titanium dioxide catalyst has remarkably high photocatalytic activity as compared with ordinary unsupported rutile type titanium dioxide, anatase type titanium dioxide, and a simple mixture thereof.
[0010]
According to the inventors' previous research, rutile-type titanium dioxide shows higher oxidizing power than anatase-type titanium dioxide, but the amount of oxygen adsorbed on the particle surface is generally small, and the reaction on the reduction side It has a drawback that electron transfer to certain oxygen is very difficult to proceed. In addition, the potential of the rutile titanium dioxide conductor is -0.5 V [vs SCE (saturated calomel electrode)], and from the relationship with the one-electron reduction potential of oxygen -0.56 V, the excitation electrons to oxygen It is presumed that the movement process is rate limiting. However, when titanium dioxide fine particles such as anatase titanium dioxide are supported on the surface of such a rutile type titanium dioxide, the surface area of the catalyst is apparently increased and the amount of oxygen adsorbed is increased. It is considered that the reaction efficiency (catalytic activity) is remarkably increased.
[0011]
In the supported titanium dioxide catalyst of the present invention, the particle diameter of the particle A may be a size that can function as a carrier for titanium dioxide fine particles (particle B), for example, 100 nm or more (about 100 to 2000 nm), preferably Is 150 nm or more (about 150 to 1000 nm). The particle diameter of the particle B can be appropriately selected within a range that can be supported on the particle A as a carrier, and is, for example, 90 nm or less (about 1 to 90 nm), preferably 70 nm or less (for example, about 2 to 70 nm). Further, the specific surface area of the particle B, and preferably 30 m 2 / g or more (e.g., about 30 to 200 m 2 / g), more preferably 40 m 2 / g or more (e.g., 40 to 150 m approximately 2 / g). If the specific surface area of the particles B is too small, the catalyst activity tends to decrease. The particles B may be any of anatase type titanium dioxide fine particles, rutile type titanium dioxide fine particles, and a mixture thereof.
[0012]
In the supported titanium dioxide catalyst of the present invention, if the ratio of the particle B to the particle A (the former / the latter) is too large, the particle B covers the surface of the particle A as a carrier, and excitation light is effective for the particle A. The catalytic activity tends to decrease. Conversely, if the ratio of the particles B to the particles A (the former / the latter) is too small, the amount of adsorbed oxygen does not increase so much, or the catalytic activity tends to decrease. Therefore, the ratio of the particle B to the particle A (the former / the latter) is generally 0.1 / 99.9 to 99.5 / 0.5, preferably 1/99 to 95/5, more preferably 2 / It is about 98 to 65/35, particularly preferably about 5/95 to 50/50 (especially 15/85 to 45/55).
[0013]
The supported titanium dioxide catalyst of the present invention is obtained, for example, by placing rutile titanium dioxide powder functioning as a carrier and titanium dioxide powder dispersed and supported on the surface in an appropriate solvent and subjecting it to ultrasonic treatment for a predetermined time. Can be prepared. Anatase-type titanium dioxide generally has very small primary particles but forms large aggregates with an average particle size of about 10 μm. When subjected to ultrasonic treatment together with rutile-type titanium dioxide particles, anatase-type titanium dioxide is formed. The primary particles generated by the dissolution of the titanium dioxide aggregate are dispersed and supported on the rutile titanium dioxide particles.
[0014]
The solvent used in the ultrasonic treatment is not particularly limited, and examples thereof include aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene, and halogenated hydrocarbons such as methylene chloride. Examples thereof include ethers such as diethyl ether and tetrahydrofuran, nitriles such as acetonitrile, esters such as ethyl acetate, ketones such as acetone, amides such as N, N-dimethylformamide, water, and mixed solvents thereof. Preferred solvents include polar solvents such as acetonitrile, water, or mixed solvents thereof.
[0015]
The temperature of the ultrasonic treatment is not particularly limited, but is usually about 0 to 100 ° C, preferably about 10 to 50 ° C. The sonication time is, for example, 10 minutes or more (about 10 to 120 minutes), preferably 15 minutes or more (about 15 to 60 minutes). When the ultrasonic treatment time is too short, it is difficult to form a structure in which anatase type or rutile type fine particles are dispersed and supported on rutile type particles.
[0016]
[Method for oxidizing aromatic compound and method for producing oxygen-containing aromatic compound]
In the method of the present invention, the aromatic compound used as a substrate is not particularly limited as long as it is a compound having an aromatic carbocyclic or heterocyclic ring and having at least one oxidizable site. Examples of the compound having an aromatic carbocycle include benzene, naphthalene, biphenyl, indene, indane, tetralin, 2,2′-binaphthyl, acenaphthene, fluorene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, coronene. Etc. Examples of the compound having an aromatic heterocyclic ring include nitrogen-containing compounds such as pyridine, indole and quinoline, oxygen-containing compounds such as furan and benzofuran, and sulfur-containing compounds such as thiophene and benzothiophene.
[0017]
A substituent may be bonded to the aromatic carbocycle or heterocycle in the aromatic compound as long as the reaction is not inhibited. Examples of the substituent include a halogen atom, a hydroxyl group, a mercapto group, and a substituted oxy group [for example, an alkoxy group such as methoxy, ethoxy, propoxy, isopropoxy, butoxy group (preferably a C 1-4 alkoxy group); phenoxy group Aryloxy groups such as; acyloxy groups such as acetyloxy and propionyloxy groups], substituted thio groups (such as alkylthio groups such as methylthio and ethylthio groups), carboxyl groups, substituted oxycarbonyl groups (such as methoxycarbonyl and ethoxy) C 1-4 alkoxy-carbonyl groups such as carbonyl and propyloxycarbonyl groups), substituted or unsubstituted carbamoyl groups, acyl groups (such as C 2-11 acyl groups such as acetyl, propionyl and benzoyl groups), cyano groups, nitro groups Group, substituted or unsubstituted Mino group (eg, amino group; N, N-diC 1-4 alkylamino group such as N, N-dimethylamino group; N—C 2-11 acylamino group such as N-acetylamino group), alkyl group (For example, C 1-4 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl group, etc.), alkenyl group (eg, C 2-4 alkenyl group such as vinyl group, allyl group, etc.) Alkynyl group (for example, C 2-4 alkynyl group such as ethynyl group), cycloalkyl group (for example, 3-8 membered cycloalkyl group such as cyclopentyl, cyclohexyl group, etc.), aryl group (for example, phenyl, naphthyl group, etc.) And C 6-14 aryl groups).
[0018]
Further, the aromatic carbocyclic or heterocyclic ring in the aromatic compound may be condensed with a non-aromatic carbocyclic or heterocyclic ring. Examples of such non-aromatic carbocycles include 3- to 8-membered cycloalkane rings such as cyclopentane ring and cyclohexane ring. The non-aromatic heterocycle includes 1 to 3 heteroatoms selected from a nitrogen atom, an oxygen atom, and a sulfur atom, such as a pyrrolidine ring, an oxolane ring, a thiolane ring, a piperidine ring, and a tetrahydropyran ring. Examples thereof include a 3- to 8-membered heterocyclic ring.
[0019]
In the method of the present invention, the supported titanium dioxide catalyst is used in an amount of, for example, 1 to 100 parts by weight, preferably 5 to 60 parts by weight, more preferably 10 to 100 parts by weight of the aromatic compound used as the substrate. About 30 parts by weight.
[0020]
In the method of the present invention, an aromatic compound as a substrate is oxidized with molecular oxygen and / or peroxide under light irradiation. As light to irradiate, ultraviolet rays of 390 nm or less are usually used, but visible light can also be used. A preferable wavelength range of light is 420 nm or less (part of visible light and ultraviolet light).
[0021]
As molecular oxygen, pure oxygen may be used, or oxygen or air diluted with an inert gas such as nitrogen, helium, argon, or carbon dioxide may be used. The amount of molecular oxygen used is, for example, 0.5 mol or more, preferably 1 mol or more, with respect to 1 mol of the aromatic compound used as the substrate. Often molar excess of molecular oxygen is used relative to the aromatic compound.
[0022]
The peroxide is not particularly limited, and any of peroxide, hydroperoxide and the like can be used. Representative peroxides include hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide, triphenylmethyl hydroperoxide, t-butyl peroxide, benzoyl peroxide, and the like. As the hydrogen peroxide, pure hydrogen peroxide may be used, but from the viewpoint of handleability, it is usually used in a form diluted with an appropriate solvent such as water (for example, 30% by weight hydrogen peroxide). It is done. The usage-amount of a peroxide is about 0.1-5 mol with respect to 1 mol of aromatic compounds used as a substrate, Preferably it is about 0.3-1.5 mol.
[0023]
In the present invention, only one of molecular oxygen and peroxide may be used, but the reaction rate may be significantly improved by combining molecular oxygen and peroxide.
[0024]
The reaction is usually performed in the presence of a solvent. Examples of the solvent include aliphatic hydrocarbons such as hexane, heptane, octane, ligroin and petroleum ether; alicyclic hydrocarbons such as cyclopentane, cyclohexane and cycloheptane; ethers such as ethyl ether, isopropyl ether and tetrahydrofuran. Esters such as ethyl acetate; nitriles such as acetonitrile, propionitrile, butyronitrile, and benzonitrile; aprotic polar solvents such as N, N-dimethylformamide; organic acids such as acetic acid; water; mixed solvents thereof Etc.
[0025]
Although reaction temperature can be suitably selected in view of reaction rate and reaction selectivity, it is generally about -20 ° C to 100 ° C. The reaction is often performed near room temperature. The reaction may be carried out by any method such as batch, semi-batch and continuous methods.
[0026]
By the above reaction, a corresponding oxidative cleavage product (for example, an aromatic aldehyde compound), a quinone, and an oxygen atom-containing aromatic compound such as a hydroxyl group-containing aromatic compound are generated from the aromatic compound. For example, 2-formylcinnamaldehyde (oxidative cleavage product), 1,4-naphthoquinone and the like are produced from naphthalene. The production ratio (selectivity) of these products can be adjusted by appropriately selecting reaction conditions and the like.
[0027]
The reaction product can be separated and purified by a separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination means combining these. Further, the titanium dioxide catalyst can be easily separated by filtration, and the separated catalyst can be recycled after being subjected to a treatment such as washing as necessary.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, an aromatic compound can be oxidized efficiently under light irradiation, for example, oxygen atom containing aromatic compounds, such as an aromatic aldehyde compound and quinones, can be manufactured efficiently.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. The analysis and identification of the reaction product were performed by capillary gas chromatograph, high performance liquid chromatograph, GC-mass spectrum, and nuclear magnetic resonance spectrum. The specific surface area of titanium dioxide was measured using a surface area measuring device “FlowSorb II 2300” manufactured by Micromeritics.
[0030]
Example 1
An anatase-type titanium dioxide powder [trade name “ST-01”, 100% anatase-type content, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter, in an external irradiation reactor with an internal volume of 30 ml provided with a cooling pipe and an oxygen supply pipe 7 nm, specific surface area 236 m 2 / g], rutile titanium dioxide powder [trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, ratio The surface area of 6.5 m 2 / g] was measured so that the ratio of anatase-type titanium dioxide and rutile-type titanium dioxide would be the former / the latter = 9/1 (total amount 0.015 g). 1 g, 3.63 g of acetonitrile, and 0.3 g of water were added, and sonication was performed at room temperature for 30 minutes.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 6.9 μmol of 2-formylcinnamaldehyde and 2.7 μmol of 1,4-naphthoquinone were produced.
[Spectral data of 2-formylcinnamaldehyde]
1 H-NMR (CDCl 3 ) δ: 6.67 (1H, dd, J = 16.1, 7.8 Hz), 7.6-8.0 (4H, m), 8.58 (1H, d, J = 16.1 Hz), 9.81 (1H, d, J = 7.8 Hz), 10.23 (1H, s)
MS (m / z): 131 (M <+>- 29)
[0031]
Example 2
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter was 7/3 (total amount 0.015 g). As a result, 2-formylcinnamaldehyde was produced at 10.9 μmol and 1,4-naphthoquinone was produced at 2.2 μmol.
[0032]
Example 3
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 5/5 (total amount 0.015 g). As a result, 15.1 μmol of 2-formylcinnamaldehyde and 2.8 μmol of 1,4-naphthoquinone were produced.
[0033]
Example 4
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed, except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 3/7 (total amount 0.015 g). As a result, 15.6 μmol of 2-formylcinnamaldehyde and 3.7 μmol of 1,4-naphthoquinone were produced.
[0034]
Example 5
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/9 (total amount 0.015 g). As a result, 15.7 μmol of 2-formylcinnamaldehyde and 1.8 μmol of 1,4-naphthoquinone were produced.
[0035]
Example 6
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/49 (total amount 0.015 g). As a result, 12.8 μmol of 2-formylcinnamaldehyde and 0.9 μmol of 1,4-naphthoquinone were generated.
[0036]
Example 7
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/98 (total amount 0.015 g). As a result, 10.1 μmol of 2-formylcinnamaldehyde and 0.8 μmol of 1,4-naphthoquinone were generated.
[0037]
Example 8
In the reactor, anatase-type titanium dioxide powder [trade name “ST-01”, anatase-type content 100%, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter 7 nm, specific surface area 236 m 2 / g] and rutile-type titanium dioxide powder [Trade name “NS-51”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], anatase type titanium dioxide and The same operation as in Example 1 was performed, except that the ratio of rutile titanium dioxide was measured so that the former / the latter = 1/374 (total amount 0.015 g). As a result, 8.0 μmol of 2-formylcinnamaldehyde and 0.75 μmol of 1,4-naphthoquinone were generated.
[0038]
Comparative Example 1
An anatase-type titanium dioxide powder [trade name “ST-01”, 100% anatase-type content, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter, in an external irradiation reactor with an internal volume of 30 ml provided with a cooling pipe and an oxygen supply pipe 7 nm, specific surface area 236 m 2 / g] was weighed out to 0.015 g, and 0.1 g of naphthalene, 3.63 g of acetonitrile, and 0.3 g of water were added thereto.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 1.4 μmol of 2-formylcinnamaldehyde and 0.75 μmol of 1,4-naphthoquinone were generated.
[0039]
Comparative Example 2
To an external irradiation type reactor with an internal volume of 30 ml equipped with a cooling pipe and an oxygen supply pipe, rutile type titanium dioxide powder [trade name “NS-51”, rutile type (rutile type content 98.6%), Toho Titanium Co., Ltd. ), Average particle diameter 200 nm, specific surface area 6.5 m 2 / g] was weighed out to 0.015 g, and 0.1 g of naphthalene, 3.63 g of acetonitrile and 0.3 g of water were added thereto.
While stirring the reaction solution with a stirrer piece, oxygen gas was blown at a flow rate of 2 ml / min at room temperature, and light irradiation was performed using a 500 W ultrahigh pressure mercury lamp for 1 hour. At this time, in order to avoid direct excitation of naphthalene by light irradiation, light was irradiated through a filter that cuts light of 340 nm or less. The titanium dioxide powder was irradiated with light while being dispersed with a stirrer. The reaction mixture was filtered, and the filtrate was quantitatively analyzed by high performance liquid chromatography. As a result, 4.6 μmol of 2-formylcinnamaldehyde and 0.4 μmol of 1,4-naphthoquinone were generated.
[0040]
Example 9
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS-51 ”Rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle size 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 7/3 The same operation as in Example 1 was performed except that the weight was measured (total amount 0.015 g). As a result, 22.3 μmol of 2-formylcinnamaldehyde and 1.9 μmol of 1,4-naphthoquinone were produced.
[0041]
Example 10
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size: 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS- 51 ”, rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 5 / The same operation as in Example 1 was performed, except that the weight was 5 (total amount 0.015 g). As a result, 16.4 μmol of 2-formylcinnamaldehyde and 1.8 μmol of 1,4-naphthoquinone were produced.
[0042]
Example 11
In the reactor, rutile type titanium dioxide powder [Catalyst Society Reference Catalyst “JRC-TIO-3”, average particle size 40 nm, specific surface area 48.1 m 2 / g] and rutile type titanium dioxide powder [trade name “NS-51 ”Rutile type (rutile type content 98.6%), manufactured by Toho Titanium Co., Ltd., average particle diameter 200 nm, specific surface area 6.5 m 2 / g], the ratio of the former / the latter = 3/7 The same operation as in Example 1 was performed except that the weight was measured (total amount 0.015 g). As a result, 18.3 μmol of 2-formylcinnamaldehyde and 2.3 μmol of 1,4-naphthoquinone were produced.
[0043]
Analysis of Titanium Dioxide Catalyst Particle Structure Titanium dioxide catalyst prepared in Example 5 (catalyst after sonication), titanium dioxide catalyst prepared in Example 8 (catalyst after sonication), and Comparative Example 1 The particle images of the titanium dioxide catalyst and the titanium dioxide catalyst used in Comparative Example 2 were observed with a scanning electron microscope (SEM). The SEM photographs are shown in FIGS.
[Brief description of the drawings]
1 is a scanning electron micrograph showing the particle structure of a titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 5 (corresponding to a lateral length of the photograph = 1092 nm). FIG.
FIG. 2 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst (catalyst after ultrasonic treatment) prepared in Example 8 (corresponding to a lateral length of the photograph = 800 nm).
FIG. 3 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst used in Comparative Example 1 (corresponding to the horizontal length of the photograph = 1092 nm).
FIG. 4 is a scanning electron micrograph showing the particle structure of the titanium dioxide catalyst used in Comparative Example 2 (corresponding to the horizontal length of the photograph = 1092 nm).
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001309171A JP4017851B2 (en) | 2001-03-07 | 2001-10-04 | Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001063879 | 2001-03-07 | ||
JP2001-63879 | 2001-03-07 | ||
JP2001309171A JP4017851B2 (en) | 2001-03-07 | 2001-10-04 | Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002331244A JP2002331244A (en) | 2002-11-19 |
JP4017851B2 true JP4017851B2 (en) | 2007-12-05 |
Family
ID=26610805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001309171A Expired - Fee Related JP4017851B2 (en) | 2001-03-07 | 2001-10-04 | Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4017851B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130040819A (en) | 2010-04-12 | 2013-04-24 | 닛토덴코 가부시키가이샤 | Ion-conducting organic-inorganic composite particles, particle-containing resin composition, and ion-conducting molded body |
JP6058250B2 (en) * | 2010-04-12 | 2017-01-11 | 日東電工株式会社 | Particle-dispersed resin composition, particle-dispersed resin molded body, and production method thereof |
-
2001
- 2001-10-04 JP JP2001309171A patent/JP4017851B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002331244A (en) | 2002-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation | |
Chatterjee et al. | Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system | |
Mitsudome et al. | Efficient aerobic oxidation of alcohols using a hydrotalcite‐supported gold nanoparticle catalyst | |
Mohamed et al. | Photocatalytic oxidation of selected aryl alcohols in acetonitrile | |
Soana et al. | Titanium dioxide photocatalyzed oxygenation of naphthalene and some of its derivatives | |
Xiao et al. | Light switching of amine oxidation products from oximes to imines: Superior activity of plasmonic gold nanorods-loaded TiO2 (B) nanofibers under visible-near IR light | |
CN102448886A (en) | Rutile titanium dioxide nanoparticles each having novel exposed crystal plane and method for producing same | |
KR920000904B1 (en) | Process for preparing cycloalkanone and / or cycloalkanol | |
WO2003055600A1 (en) | Catalysts comprising cyclic acylurea compounds and processes for production of organic compounds with the same | |
EP0695217B1 (en) | Catalyst based on silica and titanium, and utilisation of said catalyst for the epoxydation of olefins | |
Bisht et al. | Effect of Ag–Fe–Cu tri-metal loading in bismuth oxybromide to develop a novel nanocomposite for the sunlight driven photocatalytic oxidation of alcohols | |
Zhang et al. | TiO2 encapsulated Au nanostars as catalysts for aerobic photo-oxidation of benzyl alcohol under visible light | |
CN1840517B (en) | Method for manufacturing cycloalkanol and/or cycloalkanone | |
Saeidian et al. | Benign synthesis of N-aryl-3, 10-dihydroacridin-1 (2H)-one derivatives via ZnO nanoparticle-catalyzed Knoevenagel condensation/intramolecular enamination reaction | |
JP4628011B2 (en) | Titanium oxide crystal, photocatalyst, and organic compound oxidation method | |
Dabestani et al. | Photochemistry of tetracene adsorbed on dry silica: products and mechanism | |
JP4017851B2 (en) | Supported titanium dioxide catalyst and method for oxidizing aromatic compounds using the catalyst | |
Ohno et al. | TiO2-photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide | |
JP2011001238A (en) | Method for producing brookite-type titanium dioxide nanoparticle | |
JP2011032241A (en) | Method for producing aromatic group-substituted aliphatic ketone compound | |
JP4526273B2 (en) | Carbon-doped titanium oxide and method for producing the same, photocatalyst, and method for oxidizing organic compound using the catalyst | |
JP2004516213A (en) | Method for regenerating working solution in hydrogen peroxide production process | |
JPH09208511A (en) | Method for producing aromatic hydroxy compound | |
JP2005270736A (en) | Compound titanium dioxide catalyst, production method therefor and oxidation method for organic compound using the catalyst | |
Julliard et al. | Oxidation of methyl aromatic compounds by redox photosensitization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040924 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070613 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070822 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070919 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |