[go: up one dir, main page]

JP3992251B2 - Master alloy for adjusting the magnesium content used during recasting of zinc alloys - Google Patents

Master alloy for adjusting the magnesium content used during recasting of zinc alloys Download PDF

Info

Publication number
JP3992251B2
JP3992251B2 JP08436498A JP8436498A JP3992251B2 JP 3992251 B2 JP3992251 B2 JP 3992251B2 JP 08436498 A JP08436498 A JP 08436498A JP 8436498 A JP8436498 A JP 8436498A JP 3992251 B2 JP3992251 B2 JP 3992251B2
Authority
JP
Japan
Prior art keywords
alloy
weight
magnesium
zinc alloy
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08436498A
Other languages
Japanese (ja)
Other versions
JPH11279670A (en
Inventor
耕平 久保田
孝 大上
文憲 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP08436498A priority Critical patent/JP3992251B2/en
Publication of JPH11279670A publication Critical patent/JPH11279670A/en
Application granted granted Critical
Publication of JP3992251B2 publication Critical patent/JP3992251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金に係わり、より詳しくは、プレス成形用、プラスチック成形用等の亜鉛合金金型を鋳返しして再生する場合に、又は亜鉛合金ダイカスト品や亜鉛合金加工品(板材、線材、押出品等)を鋳返しして再生する場合に、或いは亜鉛合金インゴットを鋳返しして亜鉛合金インゴット中のマグネシウム含量を変更する場合に、その鋳返し時にその亜鉛合金中のマグネシウム含量を調整するために添加するマグネシウム含量調整用母合金に係わる。
【0002】
【従来の技術】
金型の製作に用いる場合には、亜鉛合金は鉄合金に比較して融点が低く、湯流れ性も良好であるので鋳造し易く、その上、バランスのとれた機械的強度を有し、機械加工性も良く、短納期が可能であり、更に、不要になった金型は鋳返しして使用できるため低コストである等の特徴があることから、試作用または少量生産用のプレス成形用金型やプラスチック成形用金型として従来から数多く使用されている。また、亜鉛合金は上記の特徴を有するので、ダイカスト用亜鉛合金として自動車部品、家電部品、その他各方面に使用されている。通常、それ等に用いられる亜鉛合金はアルミニウム3重量%〜7重量%を含む合金、またはアルミニウム3重量%〜7重量%及び銅4重量%以下を含む合金であり、マグネシウムについては粒間腐食を抑えるために0.05重量%以下の含量としたものが用いられている。
【0003】
しかしながら、従来の亜鉛合金は、例えばプレス成形用金型として用いる場合には加工するワーク材の材質、厚さ、加工形状等の加工条件によっては金型の耐磨耗性の不足が言われており、プラスチック成形用金型でもピンホールの多発や耐磨耗性の不足が言われており、またダイカスト部品についてはクリープ特性の不足等が言われていた。最近、アルミニウム、銅の他に合金成分として従来添加されていなかったマグネシウムを1〜3重量%添加して耐磨耗性、鋳造性及び耐クリープ特性を向上させた亜鉛合金が開発され、高耐久性金型またはダイカスト品として用いられるようになってきた。
【0004】
このようなマグネシウム含有亜鉛合金を新規に調製するのではなく、マグネシウム含量が0.05重量%以下の従来組成の亜鉛合金を操業条件下で鋳返しし、その際にマグネシウムを添加してマグネシウム含量を調整し、マグネシウム添加亜鉛合金として使用することができればコスト低減効果は非常に大きい。マグネシウムの添加方法については、マグネシウム含有亜鉛合金を新規に溶製する場合にはマグネシウム原料としてマグネシウムメタルを使用することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、マグネシウム含量が0.05重量%以下の従来組成の亜鉛合金の鋳返し時にマグネシウムメタルを添加する試みにおいては、操業条件下での溶湯温度は430℃〜450℃であって、マグネシウムメタルの融点650℃に比べて200〜220℃低く、またマグネシウムメタルの比重が1.74であるのに対し亜鉛合金溶湯の比重は例えば鋳物用合金やダイカスト用合金では6.7であって比重差が大きく、その結果としてマグネシウムメタルが溶湯表面に浮くためマグネシウムメタルを溶湯中に沈めながらの溶解となり、また、溶解するまでの時間がかかり、マグネシウム表面の酸化が激しく、困難な溶解作業となるとともに合金組成の目標値への調整が困難になる。
【0006】
本発明の課題は、亜鉛合金の鋳返し時にマグネシウムを添加する際に、上記のような問題を生じることなしに容易且つ簡便にマグネシウムを添加することのできる手段、即ち、従来の操業条件下の亜鉛合金溶湯温度で簡単に溶解でき、より高品質なマグネシウム添加亜鉛合金の調製を可能とするマグネシウム含量調整用母合金を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は上記の課題について鋭意検討した結果、マグネシウム含量調整用母合金として特定量のマグネシウムを含有する亜鉛合金を用いることにより上記課題が達成されることを見いだし、本発明を完成した。
【0008】
即ち、本発明のマグネシウム含量調整用母合金は、マグネシウム20〜80重量%を含み、或いは更にアルミニウム10重量以下%及び銅5重量%以下の何れか一方又は両方を含み、残部が不可避不純物を除いて亜鉛からなることを特徴とする、亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金である。
【0009】
【発明の実施の形態】
本発明のマグネシウム含量調整用母合金(以下、単に母合金と記載する)は亜鉛合金溶湯に添加して使用するものであるが、この亜鉛合金溶湯は、使用済みのプレス成形用、プラスチック成形用等の亜鉛合金金型や、使用済みの亜鉛合金ダイカスト品や亜鉛合金加工品(板材、線材、押出品等)や、亜鉛合金スクラップ等を再生するため溶解したものであっても、或いは未使用の亜鉛合金インゴット中のマグネシウム含量を変更するために溶解したものであってもよい。しかし、本発明の母合金は使用済み亜鉛合金金型の再生に特に好適に利用できる。
【0010】
本発明の母合金においては、マグネシウム含量を20〜80重量%に限定することが好ましい。マグネシウム含量が20重量%よりも少ない母合金を用いる場合には、母合金の必要添加量が多くなり、その結果として、母合金を溶湯に添加してから、母合金が完全に溶解し適正な溶湯温度になるまで時間がかかり、その間のタイムロスはコストアップの要因となる。また、本発明の母合金を亜鉛合金金型の鋳返し調製に用いる場合には、亜鉛合金金型の総重量が増加することになる。例えばマグネシウム含量が10重量%の母合金を用いてマグネシウム含量が2重量%の亜鉛合金を調製すると、金型総重量は20重量%増加することになり、在庫量が増加し、コスト高の原因になる。
【0011】
また、マグネシウム含量が80重量%を越えると母合金の融点が570℃を越えることになる。そのように融点の高い母合金を用いると、通常の操業で用いる亜鉛合金溶湯温度430℃〜450℃では、母合金を溶湯に添加してから、母合金が完全に溶解し適正な溶湯温度になるまで時間がかかり、その間のタイムロスはコストアップの要因となるとともに母合金の酸化が進み、所定量のマグネシウムの添加が出来なくなる。溶解時間を短縮させる方法としては溶湯温度を上げることが考えられるが、溶湯温度を450℃よりも高くするとマグネシウムの酸化が進むとともに溶解鍋が浸食されるため、450℃を越える溶湯温度での操業は好ましくない。430℃〜450℃の溶湯温度で溶解するためにはマグネシウム含量が80重量%以下の母合金を用いる必要がある。従って、母合金のマグネシウム含量は20〜80重量%であり、好ましくは30〜50重量%である。
【0012】
アルミニウムを含む亜鉛合金を鋳返しすると、溶湯中のアルミニウム含量より若干多めのアルミニウムを含有するノロが生成してアルミニウムが除去されるため溶湯中のアルミニウム量は減少する。従って、母合金のみで溶湯中のアルミニウム含量を調整するためには、母合金は鋳返し前の亜鉛合金のアルミニウム含量よりも多めにアルミニウムを含有する必要がある。しかし、母合金中のアルミニウム含量が10重量%を越えると、母合金を必要なマグネシウム量になるように添加した時に調整後の溶湯中のアルミニウム含量がスペックオーバーすることがあり、溶湯組成の調整が困難となる。また、母合金を溶湯に添加してから、母合金が完全に溶解し適正な溶湯温度になるまで時間がかかり、その間のタイムロスはコストアップの要因となる。従って、アルミニウムを含む亜鉛合金の鋳返し時に用いる母合金のアルミニウム含量は10重量%以下、好ましくは4〜7重量%とする。しかしながら、アルミニウムを含む亜鉛合金の鋳返し時に用いる母合金が必ずしもアルミニウムを含有している必要はなく、アルミニウムを含有しない母合金を添加した後の溶湯中のアルミニウム含量を分析し、必要量のアルミニウムを別個に用意したアルミニウム含量調整用母合金によって添加してもよい。
【0013】
亜鉛合金の鋳返しによる銅の組成変化は少ない。従って、銅を含む亜鉛合金の鋳返しに使用する母合金は鋳返し前の亜鉛合金が含有する量とほぼ同じ量の銅を含有することで足りる。亜鉛合金の銅含量は例えばJIS H 2201のダイカスト用亜鉛合金塊2種では0.03重量%以下、また一般の鋳物用亜鉛合金では2〜4重量%である。銅含量が5重量%を越えると母合金の融点が580℃以上になり、通常の操業で用いる亜鉛合金溶湯温度430℃〜450℃では、母合金を溶湯に添加してから、母合金が完全に溶解し適正な溶湯温度になるまで時間がかかり、その間のタイムロスはコストアップの要因となり、実用的でなくなるとともにε化合物及びτ化合物を生成し、偏析の原因となる。従って、銅を含む亜鉛合金の鋳返し時に用いる母合金の銅の含量は5重量%以下、好ましくは4重量%以下とする。
【0014】
以上の説明からも明らかなように、亜鉛合金の鋳返し時に使用する本発明の母合金の組成については、鋳返しする亜鉛合金の組成と目標とするマグネシウム含有亜鉛合金組成との差異及び溶湯量に応じて、マグネシウム20〜80重量%、アルミニウム0〜10重量%及び銅0〜5重量%の範囲内で最適な組成を選択すればよい。
【0015】
尚、亜鉛合金の鋳返し時に使用する母合金の添加は次のようにして実施する。含有成分、含有量の異なる複数の母合金(例えば、アルミニウム及び銅を含有しないもの、アルミニウム及び銅の何れか一方又は両方を含有するもの、マグネシウム含量が高いもの、中位のもの、低いもの等)を用意しておく。まず最初に、鋳返しする亜鉛合金の組成を分析して母合金添加量の算出基礎とする。アルミニウム含量については下記のように再調整する場合は再調整後の値を採用する。また、母合金添加後の最終目標組成を決める。その後、従来の操業条件と同じ条件でノロをきれいに除去し、必要ならば亜鉛合金溶湯のアルミニウム含量を例えば特開平5−332961号公報に記載されているような亜鉛合金の炉前分析法に従って炉前で直前に分析し、不足分のアルミニウムをアルミニウム含量調整用母合金の添加によって再調整する。次に、上記の最終目標組成と鋳返しする亜鉛合金の組成との組成の差に基づいて使用する母合金を選定し、上記の最終目標組成と鋳返しする亜鉛合金の組成との組成の差及び鋳返しする亜鉛合金の溶湯量に基づいて使用する母合金の添加割合を計算する。この計算量の母合金を鋳返しする亜鉛合金の溶湯に添加する。
【0016】
【実施例】
以下に、実施例及び比較例に基づいて本発明を説明する。
実施例1〜7及び比較例1〜4
鋳返し調整する亜鉛合金として、未使用の亜鉛合金インゴット(第1表中では合金と記載してある)、使用済みのプレス成形用亜鉛合金金型(第1表中では金型と記載してある)、及び使用済みの亜鉛合金ダイカスト品(第1表中ではDC材と記載してある)を用いた。各々の亜鉛合金を溶解し、それらの組成を分析した。その結果は第1表に示す通りであり、マグネシウム含量の分析値はいずれも0.03〜0.04重量%であった。前もって調製してある種々の組成の母合金から、母合金添加後の亜鉛合金中のマグネシウム含量を約2重量%とし、アルミニウム含量及び銅含量を鋳返し前の亜鉛合金中の含量とほぼ同一水準とすることのできる母合金を選択した。各々の亜鉛合金の溶湯温度を430℃に制御し、選択した所定量の第1表に示す組成の母合金を溶湯中に添加し、攪拌して母合金が完全に溶解し適正な溶湯温度になるまでの時間を測定した。母合金を添加した後の溶湯の合金組成を分析し、目標値と比較した。それらの測定値、分析値は第1表に示す通りであった。
【0017】
【表1】

Figure 0003992251
【0018】
第1表中の実施例1〜7のデータから明らかなように、亜鉛合金の鋳返し時に本発明の母合金を使用した場合には、従来の操業条件下の亜鉛合金溶湯温度で短時間に溶解が可能であり、全亜鉛合金溶湯量の増加を10重量%以内に押さえながらマグネシウムの添加を可能とし、高品質の亜鉛合金への再生を可能とした。しかし、比較例1のデータから明らかなようにマグネシウム含量が80重量%をこえた母合金を用いた場合には、母合金の表面の酸化が激しく目標値との乖離が大きくなった。また比較例2〜4のデータから、マグネシウム含量が10重量%より少ない母合金を用いた場合、アルミニウム含量が10重量%を超えた母合金を用いた場合、または銅含量が5重量%をこえた母合金を用いた場合には、母合金の必要添加量が増加したり融点が高くなるため、母合金を溶湯に添加してから母合金が完全に溶解し適正な溶湯温度になるまで時間がかかり、その間のタイムロスはコストアップの要因となるとともに全亜鉛合金量が増加するなどコスト高の要因となり、またアルミニウム含量が10重量%を超えた母合金を用いた場合には溶湯中のアルミニウム含量がスペックオーバーした。
【0019】
【発明の効果】
本発明の母合金は、亜鉛合金の鋳返し時に用いる場合に、従来の操業条件下の亜鉛合金溶湯温度で溶解が可能であり、全亜鉛合金溶湯の増加を10重量%以内に押さえ、高品質の亜鉛合金への再生を可能とする。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium alloy for adjusting the magnesium content used during recasting of a zinc alloy. More specifically, the present invention relates to a case where a zinc alloy mold for press molding, plastic molding, etc. is recast and recycled, or a zinc alloy. When casting die cast products or zinc alloy processed products (plates, wires, extruded products, etc.) and remanufacturing them, or when refining zinc alloy ingots to change the magnesium content in zinc alloy ingots The present invention relates to a magnesium content adjusting master alloy which is added to adjust the magnesium content in the zinc alloy during turning.
[0002]
[Prior art]
When used in the manufacture of molds, zinc alloys have a lower melting point than iron alloys and have good melt flow characteristics, making casting easier, and having a balanced mechanical strength. Good processability, short delivery time, and unnecessary features such as low cost because molds that are no longer needed can be recast and used for press molding for trial production or low-volume production Many are conventionally used as a metal mold or a plastic mold. Further, since the zinc alloy has the above-described characteristics, it is used as a zinc alloy for die casting in automobile parts, home appliance parts, and other various fields. Usually, the zinc alloy used in them is an alloy containing 3% to 7% by weight of aluminum, or an alloy containing 3% to 7% by weight of aluminum and 4% by weight or less of copper. In order to suppress, what was made into the content of 0.05 weight% or less is used.
[0003]
However, when a conventional zinc alloy is used as, for example, a press molding die, it is said that the wear resistance of the die is insufficient depending on the processing conditions such as the material, thickness, and processing shape of the workpiece material to be processed. Also, plastic molds are said to have frequent pinholes and lack of wear resistance, and die cast parts are said to have insufficient creep characteristics. Recently, in addition to aluminum and copper, a zinc alloy that has been added 1-3% by weight of magnesium, which has not been added as an alloy component, has been improved to improve wear resistance, castability and creep resistance. It has come to be used as a property mold or die-cast product.
[0004]
Rather than newly preparing such a magnesium-containing zinc alloy, a zinc alloy having a magnesium content of 0.05% by weight or less is cast back under operating conditions, and then magnesium is added to the magnesium content. If it can be adjusted and used as a magnesium-added zinc alloy, the cost reduction effect is very large. Regarding the method of adding magnesium, magnesium metal can be used as a magnesium raw material when a magnesium-containing zinc alloy is newly melted.
[0005]
[Problems to be solved by the invention]
However, in an attempt to add magnesium metal during recasting of a zinc alloy having a magnesium content of 0.05% by weight or less, the molten metal temperature under operating conditions is 430 ° C. to 450 ° C. The melting point is 200-220 ° C. lower than the melting point of 650 ° C., and the specific gravity of magnesium metal is 1.74, whereas the specific gravity of molten zinc alloy is 6.7 for casting alloys and die casting alloys, for example. As a result, magnesium metal floats on the surface of the molten metal, so the magnesium metal is melted while being submerged in the molten metal. Also, it takes time until the metal is melted, and the magnesium surface is heavily oxidized. It becomes difficult to adjust the composition to the target value.
[0006]
The object of the present invention is to provide a means for easily and simply adding magnesium without causing the above-mentioned problems when adding magnesium during recasting of a zinc alloy, that is, under conventional operating conditions. An object of the present invention is to provide a master alloy for adjusting the magnesium content, which can be easily melted at a molten zinc temperature and enables the preparation of a higher quality magnesium-added zinc alloy.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have found that the above problems can be achieved by using a zinc alloy containing a specific amount of magnesium as a master alloy for adjusting the magnesium content, thereby completing the present invention.
[0008]
That is, the magnesium content adjusting master alloy according to the present invention contains 20 to 80% by weight of magnesium, or further contains one or both of aluminum of 10% by weight or less and copper of 5% by weight or less, with the remainder excluding inevitable impurities. It is a mother alloy for adjusting the magnesium content used during recasting of a zinc alloy.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The magnesium content adjusting master alloy of the present invention (hereinafter simply referred to as the master alloy) is used by adding to the zinc alloy molten metal. This zinc alloy molten metal is used for used press molding and plastic molding. Zinc alloy molds, etc., used zinc alloy die-cast products, zinc alloy processed products (plate materials, wire rods, extruded products, etc.), zinc alloy scraps, etc., which are melted for recycling, or unused The zinc alloy ingot may be dissolved in order to change the magnesium content. However, the mother alloy of the present invention can be particularly suitably used for recycling used zinc alloy molds.
[0010]
In the master alloy of the present invention, the magnesium content is preferably limited to 20 to 80% by weight. When a master alloy having a magnesium content of less than 20% by weight is used, the required amount of the master alloy is increased. As a result, after the master alloy is added to the molten metal, the master alloy is completely dissolved and is appropriate. It takes time to reach the molten metal temperature, and the time loss during that time becomes a cause of cost increase. In addition, when the mother alloy of the present invention is used for the re-preparation of a zinc alloy mold, the total weight of the zinc alloy mold increases. For example, if a zinc alloy with a magnesium content of 2% by weight is prepared using a master alloy with a magnesium content of 10% by weight, the total mold weight will increase by 20% by weight, resulting in an increase in inventory and a high cost. become.
[0011]
On the other hand, if the magnesium content exceeds 80% by weight, the melting point of the master alloy exceeds 570 ° C. When a master alloy having such a high melting point is used, at a molten zinc temperature of 430 ° C. to 450 ° C. used in normal operation, the master alloy is completely melted after the master alloy is added to the melt, so that the proper melt temperature is obtained. It takes a long time to complete, and the time loss during that time increases the cost and the master alloy oxidizes, so that a predetermined amount of magnesium cannot be added. As a method of shortening the melting time, it is conceivable to raise the molten metal temperature. However, if the molten metal temperature is raised above 450 ° C., the oxidation of magnesium proceeds and the melting pot is eroded. Is not preferred. In order to melt at a molten metal temperature of 430 ° C. to 450 ° C., it is necessary to use a master alloy having a magnesium content of 80% by weight or less. Accordingly, the magnesium content of the master alloy is 20 to 80% by weight, preferably 30 to 50% by weight.
[0012]
When a zinc alloy containing aluminum is cast back, the amount of aluminum in the molten metal is reduced because noro containing aluminum slightly larger than the aluminum content in the molten metal is generated and the aluminum is removed. Therefore, in order to adjust the aluminum content in the molten metal using only the master alloy, the master alloy needs to contain a larger amount of aluminum than the aluminum content of the zinc alloy before re-casting. However, if the aluminum content in the master alloy exceeds 10% by weight, the aluminum content in the molten metal after the master alloy is added to the required amount of magnesium may exceed the spec, and the melt composition may be adjusted. It becomes difficult. In addition, it takes time until the master alloy is completely melted and reaches an appropriate melt temperature after the master alloy is added to the melt. Therefore, the aluminum content of the master alloy used at the time of recasting the zinc alloy containing aluminum is 10% by weight or less, preferably 4 to 7% by weight. However, it is not always necessary that the mother alloy used for recasting the zinc alloy containing aluminum contains aluminum, but the aluminum content in the molten metal after the addition of the mother alloy not containing aluminum is analyzed, and the required amount of aluminum May be added by a separately prepared master alloy for adjusting the aluminum content.
[0013]
There is little change in the composition of copper due to recasting of the zinc alloy. Therefore, it is sufficient that the mother alloy used for recasting the zinc alloy containing copper contains approximately the same amount of copper as the zinc alloy before recasting. The copper content of the zinc alloy is, for example, 0.03% by weight or less for two types of zinc alloy ingots according to JIS H 2201, and 2 to 4% by weight for general casting zinc alloys. If the copper content exceeds 5% by weight, the melting point of the master alloy becomes 580 ° C or higher, and the zinc alloy melt temperature used in normal operation is 430 ° C to 450 ° C. It takes time until it melts into an appropriate molten metal temperature, and the time loss during that time increases the cost, becomes impractical and produces ε and τ compounds, causing segregation. Therefore, the content of copper in the master alloy used for recasting a zinc alloy containing copper is 5% by weight or less, preferably 4% by weight or less.
[0014]
As is clear from the above explanation, the composition of the master alloy of the present invention used at the time of recasting the zinc alloy is the difference between the composition of the zinc alloy to be recast and the target magnesium-containing zinc alloy composition and the amount of molten metal. The optimum composition may be selected within the range of 20 to 80% by weight of magnesium, 0 to 10% by weight of aluminum and 0 to 5% by weight of copper.
[0015]
In addition, the addition of the mother alloy used at the time of recasting the zinc alloy is performed as follows. Multiple master alloys with different contents and contents (for example, those that do not contain aluminum and copper, those that contain one or both of aluminum and copper, those that have a high magnesium content, those that are medium, and those that have a low content) ) Is prepared. First, the composition of the zinc alloy to be cast is analyzed and used as a basis for calculating the amount of added master alloy. About the aluminum content, the value after readjustment is adopted when readjusting as follows. In addition, the final target composition after adding the master alloy is determined. Thereafter, the paste is removed cleanly under the same conditions as the conventional operating conditions, and if necessary, the aluminum content of the molten zinc alloy is determined according to the pre-reactor analysis method of zinc alloy as described in, for example, JP-A-5-332961. Analyze immediately before and readjust the deficient aluminum by adding the master alloy for adjusting the aluminum content. Next, the master alloy to be used is selected based on the difference in composition between the final target composition and the composition of the zinc alloy to be cast, and the difference in composition between the final target composition and the composition of the zinc alloy to be cast back. And the addition ratio of the mother alloy to be used is calculated based on the amount of molten zinc alloy to be cast. This calculated amount of the master alloy is added to the molten zinc alloy to be cast.
[0016]
【Example】
Below, this invention is demonstrated based on an Example and a comparative example.
Examples 1-7 and Comparative Examples 1-4
As the zinc alloy to be adjusted by reworking, an unused zinc alloy ingot (described as an alloy in Table 1), a used zinc alloy mold for press forming (described as a mold in Table 1) And a used zinc alloy die-cast product (shown as DC material in Table 1). Each zinc alloy was dissolved and their composition was analyzed. The results are as shown in Table 1. The analytical values of magnesium content were 0.03 to 0.04% by weight. From the pre-prepared master alloys of various compositions, the magnesium content in the zinc alloy after addition of the master alloy is about 2% by weight, and the aluminum content and the copper content are almost the same as those in the zinc alloy before recasting. A mother alloy that can be used was selected. The molten metal temperature of each zinc alloy is controlled at 430 ° C., and a selected amount of a mother alloy having the composition shown in Table 1 is added to the molten metal, and stirred until the mother alloy is completely melted to an appropriate molten metal temperature. The time to become was measured. The alloy composition of the melt after adding the mother alloy was analyzed and compared with the target value. The measured values and analytical values were as shown in Table 1.
[0017]
[Table 1]
Figure 0003992251
[0018]
As is apparent from the data of Examples 1 to 7 in Table 1, when the mother alloy of the present invention is used during recasting of the zinc alloy, it takes a short time at the molten zinc temperature under the conventional operating conditions. Melting was possible, and magnesium could be added while suppressing the increase in the total amount of molten zinc alloy within 10% by weight, and regeneration into a high-quality zinc alloy was possible. However, as is clear from the data of Comparative Example 1, when the mother alloy having a magnesium content exceeding 80% by weight was used, the surface of the mother alloy was oxidized strongly and the deviation from the target value was large. In addition, from the data of Comparative Examples 2 to 4, when a master alloy having a magnesium content of less than 10% by weight is used, a master alloy having an aluminum content exceeding 10% by weight, or a copper content exceeding 5% by weight. When the master alloy is used, the required amount of the master alloy increases and the melting point increases, so it takes time for the master alloy to completely melt and reach an appropriate melt temperature after the master alloy is added to the melt. The time loss during this period increases costs and increases the total amount of zinc alloy. In addition, when a master alloy with an aluminum content exceeding 10% by weight is used, aluminum in the molten metal is used. The content was over spec.
[0019]
【The invention's effect】
The master alloy of the present invention can be melted at the molten zinc alloy temperature under the conventional operating conditions when used during recasting of the zinc alloy, and the increase in the total molten zinc alloy is suppressed to within 10% by weight, resulting in high quality. Can be regenerated into zinc alloy.

Claims (5)

マグネシウム20〜80重量%を含み、残部が不可避不純物を除いて亜鉛からなることを特徴とする、亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金。A master alloy for adjusting the magnesium content to be used during recasting of a zinc alloy, characterized in that it contains 20 to 80% by weight of magnesium and the balance is made of zinc excluding inevitable impurities. マグネシウム20〜80重量%及びアルミニウム10重量%以下を含み、残部が不可避不純物を除いて亜鉛からなることを特徴とする、亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金。A master alloy for adjusting the magnesium content used for recasting a zinc alloy, comprising 20 to 80% by weight of magnesium and 10% by weight or less of aluminum, the balance being made of zinc except for inevitable impurities. マグネシウム20〜80重量%及び銅5重量%以下を含み、残部が不可避不純物を除いて亜鉛からなることを特徴とする、亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金。A master alloy for adjusting the magnesium content used for recasting a zinc alloy, comprising 20 to 80% by weight of magnesium and 5% by weight or less of copper, the balance being made of zinc except for inevitable impurities. マグネシウム20〜80重量%、アルミニウム10重量%以下及び銅5重量%以下を含み、残部が不可避不純物を除いて亜鉛からなることを特徴とする、亜鉛合金の鋳返し時に使用するマグネシウム含量調整用母合金。Magnesium content adjusting mother used at the time of recasting a zinc alloy, characterized in that it contains 20 to 80% by weight of magnesium, 10% by weight or less of aluminum and 5% by weight or less of copper, and the balance is made of zinc except for inevitable impurities. alloy. 亜鉛合金金型の鋳返し時に使用する請求項1〜4の何れかに記載のマグネシウム含量調整用母合金。The mother alloy for adjusting the magnesium content according to any one of claims 1 to 4, which is used at the time of recasting a zinc alloy mold.
JP08436498A 1998-03-30 1998-03-30 Master alloy for adjusting the magnesium content used during recasting of zinc alloys Expired - Lifetime JP3992251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08436498A JP3992251B2 (en) 1998-03-30 1998-03-30 Master alloy for adjusting the magnesium content used during recasting of zinc alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08436498A JP3992251B2 (en) 1998-03-30 1998-03-30 Master alloy for adjusting the magnesium content used during recasting of zinc alloys

Publications (2)

Publication Number Publication Date
JPH11279670A JPH11279670A (en) 1999-10-12
JP3992251B2 true JP3992251B2 (en) 2007-10-17

Family

ID=13828479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08436498A Expired - Lifetime JP3992251B2 (en) 1998-03-30 1998-03-30 Master alloy for adjusting the magnesium content used during recasting of zinc alloys

Country Status (1)

Country Link
JP (1) JP3992251B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0100297D0 (en) * 2001-01-05 2001-02-14 Castex Prod Zinc based alloy bolus for veterinary use
US7201210B2 (en) * 2003-12-02 2007-04-10 Worcester Polytechnic Institute Casting of aluminum based wrought alloys and aluminum based casting alloys
EP1972699A1 (en) 2007-03-20 2008-09-24 ArcelorMittal France Method of coating a substrate under vacuum
JP2009174038A (en) * 2008-01-28 2009-08-06 Hitachi Cable Ltd Copper alloy conductor manufacturing method, copper alloy conductor, cable, and trolley wire
JP5452082B2 (en) * 2009-06-08 2014-03-26 富士フイルム株式会社 Method for producing lithographic printing plate support and recycling method for lithographic printing plate
JP2011006756A (en) * 2009-06-26 2011-01-13 Fujifilm Corp Method for manufacturing support for planographic printing plate, and method for recycling planographic printing plate
KR20140063959A (en) * 2012-11-19 2014-05-28 한국생산기술연구원 Magnesium alloy and its manufacturing method

Also Published As

Publication number Publication date
JPH11279670A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US20200190630A1 (en) Master alloy for casting a modified copper alloy and casting method using the same
CA2424595C (en) Aluminum alloys having improved cast surface quality
CZ293598A3 (en) Thixotropic alloys of aluminium, silicon and copper, workable in semi-solid state
JP3992251B2 (en) Master alloy for adjusting the magnesium content used during recasting of zinc alloys
CN104805331B (en) A kind of engineering machinery U-shaped material of the wear-resisting extruded zinc alloy of high-strength and high ductility and preparation method thereof
CN114231802A (en) Rare earth aluminum alloy bar for forging aluminum alloy wheel hub and preparation method thereof
CN102321826B (en) Extruded high-tin bronze alloy and preparation method thereof
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
CN106191552B (en) It is a kind of can anodic oxidation pack alloy preparation method
CN110938763B (en) Preparation method of die-casting aluminum alloy material capable of being anodized and die-casting method
CN105132767A (en) High-conductivity compressive-creep-resistant aluminum alloy and manufacturing method thereof
CN110747379A (en) 3XXX series aluminum alloy and preparation method thereof
JPH0635624B2 (en) Manufacturing method of high strength aluminum alloy extruded material
CN112708807A (en) 4XXX series aluminum alloy and preparation method thereof
CN112725661A (en) Aluminum alloy with strong corrosion resistance and preparation method thereof
JPH1161300A (en) Zinc-base alloy for metal mold, zinc-base alloy block for metal mold, and their manufacture
JPS6014828B2 (en) Manufacturing method for rolled semi-finished products
CN112708812A (en) 7XXX series aluminum alloy and preparation method thereof
CN112626389A (en) 4XXX series aluminum alloy and preparation method thereof
CN102921928A (en) Method for producing titanium or titanium alloy castings by using titanium sponges
CN1693012A (en) Method for founding aluminium alloy slab ingot
TWI542712B (en) Copper alloy modified with the parent alloy, and the use of its casting method
NO20220521A1 (en) AlSiMgX MASTER ALLOY AND USE OF THE MASTER ALLOY IN THE PRODUCTION OF AN ALUMINIUM FOUNDRY ALLOY
JPH1036926A (en) Master alloy for composition regulation, for use in recasting of zinc alloy metal mold
TWI609730B (en) Master alloy for copper alloy upgrading, and casting method using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term