[go: up one dir, main page]

JP3991447B2 - Induction heat purification device for internal combustion engine - Google Patents

Induction heat purification device for internal combustion engine Download PDF

Info

Publication number
JP3991447B2
JP3991447B2 JP14367598A JP14367598A JP3991447B2 JP 3991447 B2 JP3991447 B2 JP 3991447B2 JP 14367598 A JP14367598 A JP 14367598A JP 14367598 A JP14367598 A JP 14367598A JP 3991447 B2 JP3991447 B2 JP 3991447B2
Authority
JP
Japan
Prior art keywords
catalyst
filter
exhaust gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14367598A
Other languages
Japanese (ja)
Other versions
JPH11336534A (en
Inventor
彰男 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14367598A priority Critical patent/JP3991447B2/en
Publication of JPH11336534A publication Critical patent/JPH11336534A/en
Application granted granted Critical
Publication of JP3991447B2 publication Critical patent/JP3991447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用内燃機関等に付設される排気浄化装置に関するもので、特に、排気浄化のために浄化装置の温度を迅速且つ効率的に上昇させるための加熱装置に関するものである。
【0002】
【従来の技術】
排気浄化装置の一つである触媒装置においては、触媒が触媒作用を発揮するためには一定温度以上に昇温されなければならない。従って、自動車等の排気浄化装置における触媒の場合、機関始動時等には十分な触媒機能が発揮されにくい。そのため、従来ではこの触媒暖機時間を短縮するため、電気ヒータ等によって直接もしくは間接的に加熱する手段についての種々の提案がなされている。
【0003】
その提案の一つとして、特開平08−28250に示すように誘導加熱により触媒を加熱する方法が提案されている。これは、触媒が担持されたモノリス触媒担体の外周に、モノリス触媒担体を誘導加熱するためのコイルが電気絶縁材を介して設けられた誘導発熱式モノリス触媒を備えている。このモノリス触媒担体は、担体が電気抵抗体で形成されることで、担体に誘導電流を発生させる。このため、従来の担体自体に電流を外部から直接通ずる方式、いわゆる直接加熱方式の場合のように触媒担体自体に電極部を形成する必要がなく、電極部の酸化、熱的衝撃による接触抵抗の変化などの問題点が解消される。又、発熱量の調整においては、発振周波数やパルス幅、パルスのデューテイサイクル調整など数多くの方法から最適な方法を用いて制御できるという利点がある。
【0004】
又、別の排気浄化装置として、ディーゼルエンジンから排出されるパティキュレートを捕集し、捕集されたパティキュレートを燃焼させるパティキュレートフィルタがある。このパティキュレートを燃焼させる手段についても、上記従来技術と同様な手法、即ち誘導加熱により金属フィルタを加熱し、パティキュレートフィルタに捕集されたパティキュレートを燃焼除去する方法が提案されている。(特開平08−326522)
【0005】
【発明が解決しようとする課題】
しかしながら、従来の誘導発熱式浄化装置では、浄化装置全体を加熱しているため、温度を上昇させる必要のない部位にも加熱することとなり、加熱エネルギが無駄であるとともに所望の温度まで上昇させるには多くの時間が必要であった。具体的には、触媒装置では、触媒装置内の浄化作用を引き起こす触媒金属及びその周辺部位のみ加熱すべきを、担体を含めた触媒全体を加熱していたし、パテキュレートフィルタでは、パティキュレートフィルタ内のパティキュレート付着部分のみを加熱すべきをフィルタ全体を加熱していた。さらに、加熱エネルギの無駄に関しては、排気ガスが上記浄化装置を通って車外に放出されているため、浄化装置全体を加熱すると排ガスによって加熱エネルギが車外へ持ち去られる割合が大きくなるという問題があった。
【0006】
本発明は、加熱すべき所望の部位に粒子状の磁性体を点在させることで、局所的に加熱して加熱エネルギを大幅に低減させる内燃機関の誘導発熱式浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明によれば、内燃機関の排気管に排気ガスを浄化するための触媒が設けられ、該触媒は、触媒担体と、該担体表面上に分散担持された触媒金属粒子と、誘導電流を流すための誘導加熱用コイルとからなり、さらに該触媒は誘導電流によって発熱する磁性体から構成され、該触媒の温度を上昇すべきときには該誘導加熱用コイルを作動させて該磁性体を加熱するコイル通電制御手段を備えた内燃機関の誘導発熱式浄化装置において、前記触媒担体は非磁性体からなり、前記磁性体は触媒担体表面上の触媒金属粒子近傍に粒子状に点在させた内燃機関の誘導発熱式浄化装置が提供される。
【0008】
すなわち、請求項1の発明では誘導加熱用コイルに通電されて、浄化装置全体に交番磁界が形成される。この交番磁界内に存在する触媒担体表面上に粒子状に点在させた磁性体は電磁誘導作用によって電圧が誘起されて誘導電流が流れる。そして、この誘導電流によってジュール熱が発生する。特に磁性体表面上に多く誘導電流が流れるので、磁性体の粒子表面程加熱温度が大きい。磁性体の表面が高温になると、磁性体近傍の空間及び担体が加熱され、磁性体と触媒金属は近接しているため低温の触媒金属粒子へ熱が伝導又は伝達され、触媒金属は活性温度となり、排気ガス中のHC,CO等を分解する。従って請求項1の発明では、触媒担体表面上の触媒金属粒子近傍に粒子状に点在させた磁性体のみ発熱させるので誘導加熱用コイルの通電量を低減でき、加熱エネルギの無駄をなくすことができる。
【0009】
請求項2の記載の発明によれば、内燃機関の排気管に排気ガス中のパティキュレートを捕集するためのフィルタが設けられ、該フィルタは非磁性体からなり、該フィルタは誘導電流を流すための誘導加熱用コイル付設され誘導電流によって発熱する磁性体を該フィルタの表面上に粒子状に点在させ、該フィルタのパティキュレートを燃焼すべきときには該誘導加熱用コイルを作動させて該磁性体を加熱するコイル通電制御手段を備え内燃機関の誘導発熱式浄化装置が提供される。
【0010】
すなわち、請求項2の発明では誘導加熱用コイルに通電されて、浄化装置全体に交番磁界が形成される。この交番磁界内に存在するフィルタ表面上に粒子状に点在させた磁性体は電磁誘導作用によって電圧が誘起されて誘導電流が流れる。そして、この誘導電流によってジュール熱が発生する。特に磁性体表面上に多く誘導電流が流れるので、磁性体の粒子表面程加熱温度が大きい。この熱によって磁性体微粒子周りに付着していた微粒子が加熱燃焼しはじめる。この燃焼によって発生した燃焼熱によって次々に周りのパティキュレートに燃え移り付着した全てのパティキュレートを除去することができる。従って請求項2の発明では、フィルタ表面上に粒子状に点在させた磁性体のみ発熱させるので誘導加熱用コイルの通電量を低減でき、加熱エネルギの無駄をなくすことができる。
【0011】
【発明の実施の形態】
以下、本発明の内燃機関の排気浄化装置の第一の実施の形態を図1の図面に基づいて説明する。
車両に搭載された内燃機関(例えばガソリンエンジン)から排出される排気ガスは、排気管30を通って車外に排出される。この排気ガス中に含まれる有害成分HC、CO、NOxを浄化するため、排気浄化装置として、図1に示すような誘導発熱式触媒装置1が排気管30に設けられている。この誘導発熱式触媒装置1において、2は誘導発熱型のハニカム状モノリス触媒であり、コンバータケース3にシール4及びクッション5を介して支持されている。シール4は、排気ガスが上記モノリス触媒2の外側を通って吹き抜けることを防止するためのものであって、コンバータケース3における排気ガス流れ方向の上流部位に設けられている。クッション5は、上記モノリス触媒2をコンバータケース3に弾性的に支持して、その振動による損傷を防止するためのものであってワイヤネットによって形成されており、上記シール4よりも下流側に設けられている。さらに、シール4及びクッション5内のモノリス触媒2側には上記モノリス触媒全体に交番磁界を発生させるためのコイル7及び一対の電極9a、9bが設けられ、この電極9a、9bはバッテリ11及び高周波発生手段12が接続されている。尚、図1において、白抜き矢符は排気ガスの流れ方向を示し、上記コンバータケース3は、その上流側と下流側とがコーン状に形成されており、これにより排気ガスをモノリス触媒2に全面に広がるように流入させることができるようになっている。
【0012】
さらに、上記モノリス触媒2を通過する排気ガス温度(若しくは触媒温度)を検出するための温度検出端子13と、該温度検出端子13によって検出される温度に基づいてエンジン始動時に排気ガス温度(触媒温度)が所定値(例えば300℃)以上になるまで、当該通電を行う通電制御手段14とが設けられている。
【0013】
図2に示すように排気ガス流れ方向からみると、上記モノリス触媒2は排気ガス通路である空間17とコージエライト製の格子状の担体16からなっている。また、モノリス触媒2の外周にはコイル7が同心円状に形成されている。
【0014】
さらに、図3には、排気ガスが通過する排気ガス通路17と担体16との接触表面の拡大図を示す。排気ガスと担体16の接触面積を増加させて浄化性能を向上させるために、担体16の表面は多孔質構造(細孔18)となっている。そして、細孔18の内部の細孔表面19を含めた担体表面上に触媒金属粒子20と磁性体粒子21を混在させて担持させている。尚、触媒金属粒子としては白金属金属である白金、ロジウム、パラジウム等の少なくとも一種類を担持し、磁性体粒子21としてはマグネタイト又は鉄等が用いられる。
【0015】
次に、上記触媒浄化装置1における具体的な制御及び作用について述べることにする。冷間時、エンジン停止から始動したと検出すると、高周波発生手段12が作動する。この高周波発生手段12はコイル7に励磁コイルとして高周波(10〜100MHz)を印加させ、これによって、担体16全体に交番磁界が形成される。この交番磁界内に存在する各々の磁性体粒子は電気抵抗体としての電磁誘導作用によって電圧が誘起されて誘導電流が流れ、ジュール熱が発生する。特に、周波数を最適化することによって磁性体粒子表面上に多く誘導電流が流れるので、粒子表面程加熱温度が大きい。この加熱温度上昇についてソレノイドコイルによる昇温特性を図10に示す。図10ではソレノイドコイルに200KHZ/5KWの交流電流を通電し、このソレノイドコイルの中心と端部に磁性体微粒子として鉄の微粒子(50〜200μm)を塗布した熱電対によって温度上昇を測定したものである。このように交流電流を8秒程度通電することで磁性体粒子の表面が高温(250℃以上)になり、磁性体粒子近傍の空間及び担体が加熱され、低温の触媒金属粒子へ熱が伝導又は伝達される。その結果、触媒粒子の温度が上昇して早期に活性温度になり、排気ガス中のHC,CO等を分解する。この時の反応熱及び排気ガスからの受熱によって触媒温度はさらに上昇し、すみやかに触媒全体が活性温度に到達する。この温度上昇は上記温度検出端子13によって検出され、例えば排気ガス温度が300℃を超えると、上記温度検出端子13からの信号により通電制御手段14が上記通電を断ち、磁性体粒子による加熱を終了する。尚、図10では磁性体粒子の大きさは50〜200μmではあるが、nmのオーダの大きさの微粒子であっても良い昇温特性が得られる。
【0016】
次に、本発明の内燃機関の排気浄化装置の第二の実施の形態を図4から図9の図面に基づいて説明する。
52はディーゼル機関に連結している排気マニホールド、53は排気マニホルド52に連結されたフィルタケーシング、54はケーシング53内に挿入された多孔質セラミックよりなるフィルタを示す。このフィルタ54の外周面には、交番磁界を発生させるためのコイル48及び一対の電極49a、49bが備えられており、この電極49a、49bはバッテリ47及び高周波発生装置46へと接続されている。また、このフィルタ54の外周面とケーシング53の内周面間には排気ガスの吹き抜けを防止するためにシール部材55並びにスチールウール56等が挿入されている。図示のとおりフィルタ54はフィルタ軸線方向に薄肉壁57を隔てて互いに並行に延びる多数個のセル58a、58bからなるハニカム構造を有する。第6図及び第7図に示すように各セル58a、58bは正方形断面形状を有し、更に第8図からわかるように各セル58a、58bはそれぞれ交互にどちらか一端が栓59a、59bによって閉塞される。
尚、図5から図7に於て栓59a、59bは斜線で示してある。このような排気ガスフィルタに於いて、フィルタ上流(図8左方)からセル58a内に流入した排気ガスは図8に於いて矢印で示すように多孔質セラミックからなる薄肉壁57を通過して隣接するセル58b内に流入し、次いでセル58bの後方開口部から流出する。排気ガス中に含まれるパティキュレートは排気ガスが薄肉壁57内を通過する際に薄肉壁57により捕集される。ここで、パティキュレートとは、主として固体状炭素微粒子(SOOT)と有機溶媒可溶分(SOF)からなっている。
【0017】
図9には、この薄肉壁57を詳細に示している。薄肉壁57は排気ガス中に含まれるパティキュレートを濾過するため排気ガスが通過できる程度の微小な無数の気孔62からなっており、気孔62の表面には無数の磁性体粒子63を付着させている。尚、排ガスは矢印で示すように排気ガス入口側のセル隔壁60から排気ガス出口側のセル隔壁61へ通過している。さらに、排気ガス入口側のセル隔壁60にも無数の磁性体粒子63を付着させる。気孔の大きさは、パティキュレートが流入できる程度の大きさにする。具体的には、パティキュレートの平均粒径は10〜30nmであり、またパティキュレートは通常直鎖状につながっているため、気孔の大きさはこれより大きくすることが好ましく、望ましくは25〜40μm程度である。また、気孔は互いに細い通路を介してつながっているため、気孔の大きさはかなり大きくてもこの通路においてトラップされ、隔壁を通過することは殆どない。さらに、パティキュレートをより多く気孔内に入れるため、排気ガスの入口側の気孔の大きさを大きく、そして排気ガスの出口側の気孔の大きさを小さくすることがより好ましい。
【0018】
上記気孔又は排ガス入口側壁面の表面によって排気ガス中に含まれるパティキュレートはトラップ(付着)される。そして、所定期間、ディーゼル機関が作動すると、上記表面はパティキュレートによって徐々に積み重ねられ、磁性体粒子を覆うとともに排気ガスの通過面積は徐々に狭められていく。その結果、排気ガスが通過するための流通抵抗が大きくなり、トラップされたパティキュレートを燃焼除去すべきと判断する。ここで、燃焼除去する判断手段として、車の走行距離又はディーゼル機関の運転時間が所定値以上の時に燃焼除去すべきと判断してもよいし、パティキュレートフィルタの上流排気管内に圧力センサを設け、この圧力センサの検出値が所定値以上の時に燃焼除去すべきと判断してもよい。上記手段等でパティキュレートを燃焼除去すべきと判断した時には、高周波発生装置46を作動させてコイル48に励磁コイルとして高周波(10〜100MHz)を印加させ、これによって、フィルタ全体に交番磁界を発生させる。この交番磁界内に存在する各々の磁性体粒子は電気抵抗体としての電磁誘導作用によって電圧が誘起されて誘導電流が流れる。そして、この誘導電流によってジュール熱が発生する。特に周波数を最適化することによって磁性体粒子表面上に多く誘導電流が流れるので、粒子表面程加熱温度が大きい。所定期間、交番磁界を発生し続けると磁性体粒子周りに付着していたパティキュレートが加熱燃焼しはじめる。この燃焼によって発生した燃焼熱によって次々に周りのパティキュレートに燃え移り付着した全てのパティキュレートを除去することができる。尚、高周波発生装置46の作動時間はパティキュレートフィルタのパティキュレートが全て燃焼除去するように予め実験等で定められた値とする。
【0019】
【発明の効果】
各請求項に記載の発明によれば、誘導発熱によって排気ガスの有害物質を除去するための排気浄化装置を加熱する際、温度上昇の必要な部位へ局所的且つ効率的に加熱熱量を与えることができるので、加熱に必要なエネルギを低減することができる。
【図面の簡単な説明】
【図1】第一の実施の形態を示す触媒装置の概略構成図である
【図2】図1の触媒装置の断面図である
【図3】図1の触媒装置の中で本発明部分の詳細な断面図である
【図4】第二の実施の形態を示すフィルタ装置の概略構成図である
【図5】図4のフィルタの斜視図である
【図6】図4のA−A線に沿ってみたフィルタ端面の一部の側面図である
【図7】図4のB−B線に沿ってみたフィルタ端面の一部の側面図である
【図8】図4のフィルタの軸断面図である
【図9】図4のフィルタ装置の中で本発明部分の詳細な断面図である
【図10】誘導発熱による温度上昇特性図である
【符号の説明】
1…内燃機関の触媒装置
2…モノリス触媒
16…担体
17…空間
18…細孔
19…細孔表面
20…触媒金属粒子
21…磁性体粒子
54…フィルタ
60…排気ガス入口側のセル隔壁
61…排気ガス出口側のセル隔壁
62…気孔
63…磁性体粒子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification device attached to an internal combustion engine for automobiles, and more particularly to a heating device for quickly and efficiently raising the temperature of the purification device for exhaust gas purification.
[0002]
[Prior art]
In a catalyst device which is one of exhaust purification devices, the temperature must be raised to a certain temperature or higher in order for the catalyst to exhibit a catalytic action. Therefore, in the case of a catalyst in an exhaust purification device such as an automobile, a sufficient catalytic function is difficult to be exhibited when the engine is started. Therefore, conventionally, various proposals have been made for means for heating directly or indirectly by an electric heater or the like in order to shorten the catalyst warm-up time.
[0003]
As one of the proposals, a method of heating a catalyst by induction heating is proposed as disclosed in JP-A-08-28250. This includes an induction heating type monolith catalyst in which a coil for induction heating of the monolith catalyst carrier is provided on the outer periphery of the monolith catalyst carrier on which the catalyst is supported via an electric insulating material. This monolithic catalyst carrier generates an induced current in the carrier when the carrier is formed of an electric resistor. For this reason, it is not necessary to form an electrode portion on the catalyst carrier itself as in the case of a so-called direct heating method in which current is directly passed from the outside to the conventional carrier itself, and the contact resistance due to oxidation of the electrode portion and thermal shock is reduced. Problems such as changes are resolved. In addition, the adjustment of the heat generation amount has an advantage that it can be controlled using an optimum method from a number of methods such as adjustment of oscillation frequency, pulse width, and pulse duty cycle.
[0004]
As another exhaust purification device, there is a particulate filter that collects particulates discharged from a diesel engine and burns the collected particulates. As for the means for burning the particulates, a method similar to the above-described prior art, that is, a method for heating and removing the particulates collected by the particulate filter by heating the metal filter by induction heating has been proposed. (Japanese Patent Laid-Open No. 08-326522)
[0005]
[Problems to be solved by the invention]
However, in the conventional induction heating type purification apparatus, since the entire purification apparatus is heated, the part that does not need to be heated is also heated, so that the heating energy is wasted and the temperature is raised to a desired temperature. Needed a lot of time. Specifically, in the catalyst device, only the catalyst metal that causes the purification action in the catalyst device and its peripheral part should be heated, but the entire catalyst including the carrier is heated, and in the particulate filter, the inside of the particulate filter The entire filter should have been heated, although only the particulate adhering portion should be heated. Furthermore, regarding the waste of heating energy, since exhaust gas is discharged outside the vehicle through the purification device, there is a problem that when the entire purification device is heated, the ratio of heat energy taken away from the vehicle by the exhaust gas increases. .
[0006]
An object of the present invention is to provide an induction heating type purification apparatus for an internal combustion engine that can be locally heated to greatly reduce heating energy by interspersing particulate magnetic bodies at desired sites to be heated. And
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the exhaust pipe of the internal combustion engine is provided with a catalyst for purifying the exhaust gas, and the catalyst includes a catalyst carrier and catalyst metal particles dispersed and supported on the surface of the carrier. The induction heating coil for flowing an induction current, and the catalyst is made of a magnetic material that generates heat by the induction current. When the temperature of the catalyst is to be raised, the induction heating coil is operated to In the induction heating purification device for an internal combustion engine provided with a coil energization control means for heating the body, the catalyst carrier is made of a non-magnetic material, and the magnetic material is scattered in the vicinity of catalyst metal particles on the surface of the catalyst carrier. An induction heating type purification device for an internal combustion engine is provided.
[0008]
That is, in the first aspect of the invention, the induction heating coil is energized to form an alternating magnetic field in the entire purification device. In the magnetic material scattered in the form of particles on the surface of the catalyst carrier existing in the alternating magnetic field, a voltage is induced by an electromagnetic induction action and an induced current flows. Then, Joule heat is generated by this induced current. In particular, since a large amount of induced current flows on the surface of the magnetic material, the heating temperature is higher on the particle surface of the magnetic material. When the surface of the magnetic material becomes high temperature, the space and the carrier in the vicinity of the magnetic material are heated, and since the magnetic material and the catalytic metal are close to each other, heat is conducted or transferred to the low-temperature catalytic metal particles, and the catalytic metal becomes the active temperature. Decompose HC, CO, etc. in exhaust gas. Accordingly, in the first aspect of the present invention, only the magnetic material scattered in the vicinity of the catalyst metal particles on the surface of the catalyst carrier generates heat, so that the amount of current supplied to the induction heating coil can be reduced and the waste of heating energy can be eliminated. it can.
[0009]
According to the invention described in claim 2, the filter is provided for collecting particulates in exhaust gas in an exhaust pipe of an internal combustion engine, the filter is made of non-magnetic material, the induced current in the filter An induction heating coil for flowing is attached , and a magnetic body that generates heat due to an induction current is scattered in the form of particles on the surface of the filter. When the particulate of the filter is to be burned, the induction heating coil is operated. Thus, there is provided an induction heating type purification device for an internal combustion engine provided with coil energization control means for heating the magnetic body.
[0010]
That is, in the invention of claim 2, the induction heating coil is energized to form an alternating magnetic field in the entire purification device. Filter table surface magnetic material interspersed into particles onto existing in the alternating magnetic field induced current flows are induced voltage by electromagnetic induction. Then, Joule heat is generated by this induced current. In particular, since a large amount of induced current flows on the surface of the magnetic material, the heating temperature is higher on the particle surface of the magnetic material. Due to this heat, the fine particles attached around the magnetic fine particles start to be heated and burned. It is possible to remove all the particulates that have burned and adhered to the surrounding particulates one after another by the combustion heat generated by this combustion. Accordingly, in the invention of claim 2, since heat is generated only magnetic material interspersed into particles on filter table surface can be reduced energization of the induction heating coil, it is possible to eliminate the waste of heating energy.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of an exhaust emission control device for an internal combustion engine according to the present invention will be described below with reference to the drawing of FIG.
Exhaust gas discharged from an internal combustion engine (for example, a gasoline engine) mounted on the vehicle is discharged outside the vehicle through the exhaust pipe 30. In order to purify harmful components HC, CO, and NOx contained in the exhaust gas, an induction heat generation type catalyst device 1 as shown in FIG. 1 is provided in the exhaust pipe 30 as an exhaust purification device. In this induction heat generation type catalyst device 1, reference numeral 2 denotes an induction heat generation type honeycomb monolith catalyst, which is supported on the converter case 3 via a seal 4 and a cushion 5. The seal 4 is for preventing the exhaust gas from being blown through the outside of the monolith catalyst 2, and is provided at an upstream portion of the converter case 3 in the exhaust gas flow direction. The cushion 5 elastically supports the monolithic catalyst 2 on the converter case 3 and prevents damage due to vibration thereof, and is formed of a wire net, and is provided on the downstream side of the seal 4. It has been. Further, a coil 7 and a pair of electrodes 9a and 9b for generating an alternating magnetic field in the entire monolith catalyst are provided on the monolith catalyst 2 side in the seal 4 and the cushion 5, and the electrodes 9a and 9b are connected to the battery 11 and the high frequency. The generating means 12 is connected. In FIG. 1, white arrows indicate the flow direction of the exhaust gas, and the converter case 3 is formed in a cone shape on the upstream side and the downstream side, whereby the exhaust gas is transferred to the monolith catalyst 2. It can be made to flow so as to spread over the entire surface.
[0012]
Further, a temperature detection terminal 13 for detecting an exhaust gas temperature (or catalyst temperature) passing through the monolith catalyst 2 and an exhaust gas temperature (catalyst temperature) at the start of the engine based on the temperature detected by the temperature detection terminal 13. ) Is provided with energization control means 14 for energization until a predetermined value (for example, 300 ° C.) is reached.
[0013]
As seen from the exhaust gas flow direction as shown in FIG. 2, the monolith catalyst 2 is composed of a space 17 serving as an exhaust gas passage and a grid-like carrier 16 made of cordierite. A coil 7 is concentrically formed on the outer periphery of the monolith catalyst 2.
[0014]
Further, FIG. 3 shows an enlarged view of a contact surface between the exhaust gas passage 17 through which the exhaust gas passes and the carrier 16. In order to improve the purification performance by increasing the contact area between the exhaust gas and the carrier 16, the surface of the carrier 16 has a porous structure (pores 18). The catalyst metal particles 20 and the magnetic particles 21 are mixed and supported on the carrier surface including the pore surface 19 inside the pores 18. The catalyst metal particles carry at least one kind of platinum, rhodium, palladium, etc., which are white metal metals, and the magnetic particles 21 are magnetite or iron.
[0015]
Next, specific control and operation in the catalyst purification apparatus 1 will be described. When it is detected that the engine has been started after it is cold, the high frequency generator 12 is activated. The high frequency generating means 12 applies a high frequency (10 to 100 MHz) as an exciting coil to the coil 7, whereby an alternating magnetic field is formed in the entire carrier 16. Each magnetic particle present in the alternating magnetic field is induced by an electromagnetic induction action as an electric resistor, an induced current flows, and Joule heat is generated. In particular, by optimizing the frequency, a large amount of induced current flows on the surface of the magnetic particles, so that the heating temperature is higher as the particle surface. FIG. 10 shows the temperature rise characteristics of the solenoid coil with respect to this heating temperature rise. In FIG. 10, a 200 KHZ / 5 KW alternating current is applied to the solenoid coil, and the temperature rise is measured by a thermocouple in which iron fine particles (50 to 200 μm) are applied as magnetic fine particles to the center and ends of the solenoid coil. is there. Thus, by supplying an alternating current for about 8 seconds, the surface of the magnetic particles becomes high temperature (250 ° C. or higher), the space and the carrier in the vicinity of the magnetic particles are heated, and heat is conducted to the low-temperature catalyst metal particles. Communicated. As a result, the temperature of the catalyst particles rises to the activation temperature early, and decomposes HC, CO, etc. in the exhaust gas. The catalyst temperature further rises due to the reaction heat and heat received from the exhaust gas at this time, and the entire catalyst quickly reaches the activation temperature. This temperature rise is detected by the temperature detection terminal 13. For example, when the exhaust gas temperature exceeds 300 ° C., the energization control means 14 cuts off the energization by a signal from the temperature detection terminal 13, and the heating by the magnetic particles is finished. To do. In FIG. 10, the magnetic particles have a size of 50 to 200 μm, but a temperature rise characteristic may be obtained which may be fine particles having a size on the order of nm.
[0016]
Next, a second embodiment of the exhaust emission control device for an internal combustion engine of the present invention will be described based on the drawings of FIGS.
52 denotes an exhaust manifold connected to the diesel engine, 53 denotes a filter casing connected to the exhaust manifold 52, and 54 denotes a filter made of porous ceramic inserted into the casing 53. A coil 48 and a pair of electrodes 49 a and 49 b for generating an alternating magnetic field are provided on the outer peripheral surface of the filter 54, and the electrodes 49 a and 49 b are connected to the battery 47 and the high frequency generator 46. . Further, a seal member 55 and steel wool 56 are inserted between the outer peripheral surface of the filter 54 and the inner peripheral surface of the casing 53 in order to prevent exhaust gas from being blown through. As shown in the figure, the filter 54 has a honeycomb structure including a plurality of cells 58a and 58b extending in parallel with each other with a thin wall 57 in the filter axial direction. As shown in FIGS. 6 and 7, each cell 58a, 58b has a square cross-sectional shape. Further, as can be seen from FIG. 8, each cell 58a, 58b is alternately inserted into one end by plugs 59a, 59b. Blocked.
In FIGS. 5 to 7, the plugs 59a and 59b are indicated by hatching. In such an exhaust gas filter, the exhaust gas flowing into the cell 58a from the upstream side of the filter (left side of FIG. 8) passes through the thin wall 57 made of porous ceramic as shown by the arrow in FIG. It flows into the adjacent cell 58b and then flows out from the rear opening of the cell 58b. Particulates contained in the exhaust gas are collected by the thin wall 57 when the exhaust gas passes through the thin wall 57. Here, the particulate mainly consists of solid carbon fine particles (SOOT) and an organic solvent soluble component (SOF).
[0017]
FIG. 9 shows the thin wall 57 in detail. The thin wall 57 is composed of innumerable pores 62 that allow the exhaust gas to pass through in order to filter the particulates contained in the exhaust gas, and innumerable magnetic particles 63 are attached to the surface of the pores 62. Yes. The exhaust gas passes from the cell partition wall 60 on the exhaust gas inlet side to the cell partition wall 61 on the exhaust gas outlet side as indicated by an arrow. Further, countless magnetic particles 63 are attached to the cell partition wall 60 on the exhaust gas inlet side. The size of the pores is set to a size that allows particulates to flow. Specifically, the average particle size of the particulates is 10 to 30 nm, and the particulates are usually connected in a straight chain, so that the pore size is preferably larger than this, preferably 25 to 40 μm. Degree. In addition, since the pores are connected to each other through a narrow passage, even if the pore size is quite large, the pores are trapped in the passage and hardly pass through the partition wall. Furthermore, in order to put more particulates into the pores, it is more preferable to increase the size of the pores on the exhaust gas inlet side and reduce the size of the pores on the exhaust gas outlet side.
[0018]
Particulates contained in the exhaust gas are trapped (attached) by the pores or the surface of the exhaust gas inlet side wall. When the diesel engine is operated for a predetermined period, the surface is gradually piled up by the particulates, covering the magnetic particles and gradually reducing the passage area of the exhaust gas. As a result, the flow resistance for passing the exhaust gas increases, and it is determined that the trapped particulates should be removed by combustion. Here, as a judgment means for removing the combustion, it may be judged that the combustion should be removed when the mileage of the vehicle or the operation time of the diesel engine is a predetermined value or more, or a pressure sensor is provided in the upstream exhaust pipe of the particulate filter. Further, it may be determined that the combustion should be removed when the detected value of the pressure sensor is equal to or greater than a predetermined value. When it is determined by the above means that the particulates should be burned and removed, the high frequency generator 46 is operated to apply a high frequency (10 to 100 MHz) as an exciting coil to the coil 48, thereby generating an alternating magnetic field in the entire filter. Let A voltage is induced in each magnetic particle existing in the alternating magnetic field by an electromagnetic induction action as an electric resistor, and an induced current flows. Then, Joule heat is generated by this induced current. In particular, by optimizing the frequency, a lot of induced current flows on the surface of the magnetic particles, so that the heating temperature is higher as the particle surface. When the alternating magnetic field is continuously generated for a predetermined period, the particulates attached around the magnetic particles start to be heated and burned. It is possible to remove all the particulates that have burned and adhered to the surrounding particulates one after another by the combustion heat generated by this combustion. The operating time of the high-frequency generator 46 is set to a value determined in advance through experiments or the like so that all the particulates of the particulate filter are burned and removed.
[0019]
【The invention's effect】
According to the invention described in each claim, when heating the exhaust gas purification device for removing harmful substances of exhaust gas by induction heat generation, the amount of heating heat is locally and efficiently applied to a portion requiring a temperature increase. Therefore, energy required for heating can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a catalyst device showing a first embodiment. FIG. 2 is a cross-sectional view of the catalyst device of FIG. 1. FIG. Fig. 4 is a detailed cross-sectional view. Fig. 4 is a schematic configuration diagram of a filter device showing a second embodiment. Fig. 5 is a perspective view of the filter of Fig. 4. Fig. 6 is a line AA in Fig. 4. Fig. 7 is a side view of a part of the filter end surface taken along the line. Fig. 7 is a side view of a part of the filter end surface taken along the line BB of Fig. 4. Fig. 8 is an axial cross section of the filter of Fig. 4. FIG. 9 is a detailed cross-sectional view of the portion of the present invention in the filter device of FIG. 4. FIG. 10 is a temperature rise characteristic diagram due to induction heat generation.
DESCRIPTION OF SYMBOLS 1 ... Catalyst apparatus 2 of internal combustion engine ... Monolith catalyst 16 ... Carrier 17 ... Space 18 ... Fine pore 19 ... Fine pore surface 20 ... Catalytic metal particle 21 ... Magnetic substance particle 54 ... Filter 60 ... Cell partition wall 61 on the exhaust gas inlet side Cell partition wall 62 on the exhaust gas outlet side ... pore 63 ... magnetic particles

Claims (2)

内燃機関の排気管に排気ガスを浄化するための触媒が設けられ、該触媒は、触媒担体と、該担体表面上に分散担持された触媒金属粒子と、誘導電流を流すための誘導加熱用コイルとからなり、さらに該触媒は誘導電流によって発熱する磁性体から構成され、該触媒の温度を上昇すべきときには該誘導加熱用コイルを作動させて該磁性体を加熱するコイル通電制御手段を備えた内燃機関の誘導発熱式浄化装置において、前記触媒担体は非磁性体からなり、前記磁性体は触媒担体表面上の触媒金属粒子近傍に粒子状に点在させたことを特徴とする内燃機関の誘導発熱式浄化装置。A catalyst for purifying exhaust gas is provided in an exhaust pipe of an internal combustion engine. The catalyst includes a catalyst carrier, catalyst metal particles dispersedly supported on the surface of the carrier, and an induction heating coil for flowing an induction current. Further, the catalyst is composed of a magnetic body that generates heat by an induced current, and when the temperature of the catalyst is to be raised, coil induction control means for heating the magnetic body by operating the induction heating coil is provided. In the induction heat purification device for an internal combustion engine, the catalyst support is made of a non-magnetic material, and the magnetic material is scattered in the vicinity of the catalyst metal particles on the surface of the catalyst support. Exothermic purification device. 内燃機関の排気管に排気ガス中のパティキュレートを捕集するためのフィルタが設けられ、該フィルタは非磁性体からなり、該フィルタは誘導電流を流すための誘導加熱用コイル付設され誘導電流によって発熱する磁性体を該フィルタの表面上に粒子状に点在させ、該フィルタのパティキュレートを燃焼すべきときには該誘導加熱用コイルを作動させて該磁性体を加熱するコイル通電制御手段を備えたことを特徴とする内燃機関の誘導発熱式浄化装置。Filter is provided for collecting particulates in exhaust gas in an exhaust pipe of an internal combustion engine, the filter is made of non-magnetic material, the induction heating coil for supplying an induced current is attached to the filter, Coil energization control means for heating the magnetic material by operating the induction heating coil when the magnetic material that generates heat by the induced current is scattered in the form of particles on the surface of the filter and the particulates of the filter are to be burned. induction heating type purification apparatus for an internal combustion engine, wherein the kite comprising a.
JP14367598A 1998-05-26 1998-05-26 Induction heat purification device for internal combustion engine Expired - Fee Related JP3991447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14367598A JP3991447B2 (en) 1998-05-26 1998-05-26 Induction heat purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14367598A JP3991447B2 (en) 1998-05-26 1998-05-26 Induction heat purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11336534A JPH11336534A (en) 1999-12-07
JP3991447B2 true JP3991447B2 (en) 2007-10-17

Family

ID=15344331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14367598A Expired - Fee Related JP3991447B2 (en) 1998-05-26 1998-05-26 Induction heat purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3991447B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484342B1 (en) * 2000-03-27 2005-04-22 도요타지도샤가부시키가이샤 Exhaust gas cleaning device
CN1246573C (en) 2000-03-27 2006-03-22 丰田自动车株式会社 Exhaust gas cleaning device for IC engines
US6568178B2 (en) 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US20020007629A1 (en) 2000-07-21 2002-01-24 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
JP2007332781A (en) * 2006-06-12 2007-12-27 Shigehide Kakei Continuously regenerative particulate matter filter
KR100792912B1 (en) 2006-11-13 2008-01-08 현대자동차주식회사 Exhaust gas nanoparticle collecting device and method
US7533643B2 (en) * 2006-12-07 2009-05-19 Contour Hardening, Inc. Induction driven ignition system
JP4838196B2 (en) * 2007-05-17 2011-12-14 重英 可計 Continuous regeneration type particulate matter filter
US9488085B2 (en) 2013-09-18 2016-11-08 Advanced Technology Emission Solutions Inc. Catalytic converter structures with induction heating
US10132221B2 (en) * 2013-09-18 2018-11-20 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with enhanced catalyst distribution
US10226738B2 (en) * 2013-09-18 2019-03-12 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment using front end induction heating
US10450915B2 (en) * 2013-09-18 2019-10-22 Advanced Technology Emission Solutions Inc. Emission control system with induction heating and methods for use therewith
US10207222B2 (en) * 2013-09-18 2019-02-19 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with induction heating of loop conductors
US9657622B2 (en) * 2013-09-18 2017-05-23 Advanced Technology Emission Solutions Inc. Catalytic converter system with control and methods for use therewith
US10918994B2 (en) * 2013-09-18 2021-02-16 Advanced Technology Emission Solutions Inc. Induction heating apparatus and methods
US10590819B2 (en) 2013-09-18 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with resonant frequency measurement and methods for use therewith
US10143967B2 (en) * 2013-09-18 2018-12-04 Advanced Technology Emission Solutions Inc. Apparatus and method for gaseous emissions treatment with directed induction heating
US10590818B2 (en) 2016-11-24 2020-03-17 Advanced Technology Emission Solutions Inc. Emission control system with frequency controlled induction heating and methods for use therewith
US10557392B2 (en) 2013-09-18 2020-02-11 Advanced Technology Emission Solutions Inc. Emission control system with temperature measurement and methods for use therewith
JP6243041B2 (en) * 2014-08-07 2017-12-06 日本特殊陶業株式会社 Exhaust gas channel member, exhaust gas purification device, method for raising temperature, and magnetic body for exhaust gas channel member
JP2016044611A (en) * 2014-08-22 2016-04-04 株式会社東芝 Exhaust emission control device
EP2987975B1 (en) * 2014-08-23 2017-09-20 Advanced Technology Emission Solutions Inc. Catalytic converter system and corresponding control method
JP2016196845A (en) * 2015-04-03 2016-11-24 株式会社東芝 Exhaust emission control device
WO2017195107A2 (en) * 2016-05-11 2017-11-16 Basf Corporation Catalyst composition comprising magnetic material adapted for inductive heating
JP6737110B2 (en) * 2016-09-29 2020-08-05 富士通株式会社 Filter device, vehicle, filter device monitoring system, and filter device monitoring program
CN107288716A (en) * 2017-07-10 2017-10-24 浙江交通职业技术学院 The wall flow type ceramic grain catcher device that current vortex is uniformly heated
CN107484281B (en) * 2017-07-31 2020-07-03 无锡双翼汽车环保科技有限公司 Electric eddy heater
CN107300257A (en) * 2017-07-31 2017-10-27 无锡双翼汽车环保科技有限公司 Portable electric is vortexed regenerator
US10400645B2 (en) * 2017-08-04 2019-09-03 Ford Global Technologies, Llc Systems and methods for vehicle system component thermal regulation
CN107387213A (en) * 2017-08-08 2017-11-24 浙江锋锐发动机有限公司 Exhaust gas treatment device catalyst warm-up system
US10612440B2 (en) * 2018-04-10 2020-04-07 GM Global Technology Operations LLC Induction heating-assisted catalysts
JP7089932B2 (en) 2018-04-18 2022-06-23 日本碍子株式会社 A carrier for supporting a catalyst, a method for producing the same, and an exhaust gas purifying device.
DE112019004048T5 (en) * 2018-08-10 2021-05-20 Ngk Insulators, Ltd. Column-shaped honeycomb structure, exhaust gas purification device, exhaust system and method for manufacturing the honeycomb structure
JP7229272B2 (en) * 2018-11-30 2023-02-27 日本碍子株式会社 Honeycomb structure and exhaust gas purification device
DE112019005955T5 (en) 2018-11-30 2021-08-12 Ngk Insulators, Ltd. Honeycomb structure, emission control device and exhaust system
WO2020195278A1 (en) * 2019-03-27 2020-10-01 日本碍子株式会社 Honeycomb structure and exhaust gas purification device
GB2582614A (en) * 2019-03-28 2020-09-30 Johnson Matthey Plc An exhaust gas treatment system and the use thereof for the treatment of an exhaust gas
CN114286718B (en) * 2019-09-11 2024-02-02 日本碍子株式会社 Honeycomb structure and exhaust gas purifying device
CN114340761B (en) * 2019-09-11 2024-09-10 日本碍子株式会社 Honeycomb structure and exhaust gas purifying device
JP7246525B2 (en) * 2020-02-07 2023-03-27 日本碍子株式会社 Honeycomb structure and exhaust gas purification device
CN115551614A (en) * 2020-05-14 2022-12-30 日本碍子株式会社 Honeycomb structure and exhaust gas purification device
EP4225489A4 (en) * 2020-10-05 2024-10-30 BASF Mobile Emissions Catalysts LLC CATALYST SUBSTRATE WITH MAGNETIC MATERIAL FOR INDUCTIVE HEATING
EP4226025A4 (en) * 2020-10-05 2024-11-20 BASF Mobile Emissions Catalysts LLC INDUCTIVELY HEATED NOx ADSORBER
US12163455B2 (en) 2020-10-26 2024-12-10 Basf Mobile Emissions Catalysts Llc Catalyst with magnetic ferrite support material
CN116528960A (en) * 2020-12-02 2023-08-01 日本碍子株式会社 Honeycomb structure, exhaust gas purifying device, and method for manufacturing honeycomb structure
CN116990008B (en) * 2023-09-28 2024-01-02 中汽研汽车检验中心(昆明)有限公司 Particle catcher fault simulation device and fault simulation method thereof

Also Published As

Publication number Publication date
JPH11336534A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP3991447B2 (en) Induction heat purification device for internal combustion engine
JP4362370B2 (en) Open particle filter with heating device
US6513324B2 (en) Device with heating element for exhaust gas cleaning
CN102465732B (en) Control method and apparatus for regenerating particle filter
JPH09317440A (en) Exhaust particulate purifier for internal combustion engine
JP5163695B2 (en) Exhaust gas purification device for internal combustion engine
CN114929365B (en) Exhaust system and its characteristics
CN106640292B (en) Apparatus and method for treating gaseous emissions using directed induction heating
JPH09222009A (en) Exhaust particulate purifying device for internal combustion engine
AU2008263189A1 (en) System and method for the treatment of diesel exhaust particulate matter
JP3573708B2 (en) Diesel particulate removal equipment
WO2007010985A1 (en) Exhaust gas purifier
JP2002147218A (en) Device for removing particulate matter from diesel engine exhaust gas
US20040101451A1 (en) Catalyst temperature control via microwave-induced particle oxidation
JP2005061246A (en) Exhaust purification equipment
JP2012154247A (en) Exhaust gas treatment device
JP2005030280A (en) Filter
JPH0842325A (en) Exhaust fine particle purifying device for internal combustion engine
JP2002097927A (en) Exhaust emission control device
JP4001213B2 (en) Diesel exhaust particulate purifier
JP2001164924A (en) Exhaust emission control device
JP2021001592A (en) Exhaust emission control device of internal combustion engine
JPH10266826A (en) Exhaust gas processing device for diesel engine
JP3064322B2 (en) Exhaust gas purification device for internal combustion engine
JP3230799B2 (en) Exhaust gas purification equipment for diesel engines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees