[go: up one dir, main page]

JP3976321B2 - Method for estimating operating state of electrical equipment and electrical equipment monitoring system - Google Patents

Method for estimating operating state of electrical equipment and electrical equipment monitoring system Download PDF

Info

Publication number
JP3976321B2
JP3976321B2 JP2003140065A JP2003140065A JP3976321B2 JP 3976321 B2 JP3976321 B2 JP 3976321B2 JP 2003140065 A JP2003140065 A JP 2003140065A JP 2003140065 A JP2003140065 A JP 2003140065A JP 3976321 B2 JP3976321 B2 JP 3976321B2
Authority
JP
Japan
Prior art keywords
electric wire
electric
power consumption
power
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140065A
Other languages
Japanese (ja)
Other versions
JP2004340852A (en
Inventor
幸夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2003140065A priority Critical patent/JP3976321B2/en
Publication of JP2004340852A publication Critical patent/JP2004340852A/en
Application granted granted Critical
Publication of JP3976321B2 publication Critical patent/JP3976321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器の動作状態を推定する方法および電気機器モニタリングシステムに関する。さらに詳述すると、本発明は、IH(Induction Heating、誘導加熱)クッキングヒータ等の高電圧での電力供給を利用する電気機器の動作状態を、電力需要家の家屋内に入らずに(即ち非侵入的に)、推定するための方法及び装置に関する。
【0002】
【従来の技術】
従来、電気機器の動作状態を非侵入的に推定するモニタリングシステムとしては、MIT(Massachusetts Institute of Technology ; 米国) で開発されたアルゴリスムを用いてEPRI(Electric Power Research Institute; 米国) が装置化しているものがある。このモニタリングシステムは、電気機器のオン・オフ動作を電力需要家の総電力負荷カーブのステップ状の時間変化として捉え、電気機器の定格消費電力及び力率に基づいてオンあるいはオフとなった電気機器の特定と動作状態の推定を行うものである。
【0003】
一方、本件出願人によって、電力需要家において設置されている電気機器が発生する高調波電流のパターンに着目し、給電線引込口付近で測定される総負荷電流と電圧から、総負荷電流の基本波並びに高調波の電流及び電圧に対するそれらの位相差を求め、そのパターンから屋内で使用されている電気機器と電気機器個別の動作状態を推定する電気機器モニタリングシステムが提案されている(特許文献1等参考)。
【0004】
ところで、電力需要家への電力供給は図2に示す単相三線式給電回路1が一般に用いられている。この単相三線式給電回路1は、第1電線(U相)2と第2電線(V相)3と中性線(N相)4を有し、U相2またはV相3とN相4とに接続する低電圧(100V)での電力供給と、U相2とV相3とに接続する高電圧(200V)での電力供給が可能となっている。以下、本明細書では、100Vでの電力供給を利用する電気機器5,6を100V機器とも呼び、200Vでの電力供給を利用する電気機器7を200V機器とも呼ぶ。200V機器7としては、例えば最近普及の著しい家庭用IHクッキングヒータなどがある。また、本明細書では、高圧給電回路(図2の例においてはU相2とV相3の間)に接続された電気機器7を高圧給電利用機器とも呼び、低圧給電回路(図2の例においてはU相2とN相4の間あるいはV相3とN相4の間)に接続された電気機器5,6を低圧給電利用機器とも呼ぶ。
【0005】
【特許文献1】
特開平2000−292465号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記MITのアルゴリズムでは、高圧給電利用機器7と低圧給電利用機器5,6の定格消費電流および力率が同程度である場合は、両者を区別してそれぞれの動作状態を推定することは困難である。
【0007】
また、特許文献1の技術では、電力需要家の給電線に接続されている主たる電気機器について、各電気機器固有の高調波特性と消費電力の関係に関する情報が予め必要であり、更にこの既知情報に基づいて推定アルゴリズムを事前に学習させておく必要がある。このため推定を行なうまでの準備に手間がかかる不利がある。
【0008】
そこで本発明は、200V機器等の高圧給電利用機器の動作状態を容易かつ非侵入的に推定できる方法および電気機器モニタリングシステムを提供することを目的とする。
【0009】
【課題を解決するための手段】
かかる目的を達成するため、請求項1記載の電気機器の動作状態推定方法は、第1電線と第2電線と中性線を有し、第1電線または第2電線と中性線とに接続する低電圧での電力供給と、第1電線と第2電線とに接続する高電圧での電力供給とが可能な給電回路を有する電力需要家について、電力需要家に対して非侵入的な位置で第1電線および第2電線における電流または消費電力を測定し、電力需要家内で使用される高電圧での電力供給を利用する電気機器について、第1電線および第2電線における電流を測定する場合は負荷電流を、第1電線および第2電線における消費電力を測定する場合は消費電力の2分の1を基準として閾値を設定し、第1電線および第2電線における電流または消費電力の変化量を対応する閾値と比較することにより、電力需要家内で使用される電気機器の動作状態を推定するようにしている。
【0010】
また、請求項2記載の電気機器モニタリングシステムは、第1電線と第2電線と中性線を有し、第1電線または第2電線と中性線とに接続する低電圧での電力供給と、第1電線と第2電線とに接続する高電圧での電力供給とが可能な給電回路を有する電力需要家について、電力需要家に対して非侵入的な位置で第1電線および第2電線における電流または消費電力を測定する測定手段と、電力需要家内で使用される高電圧での電力供給を利用する電気機器について、第1電線および第2電線における電流を測定する場合は負荷電流を、第1電線および第2電線における消費電力を測定する場合は消費電力の2分の1を基準として閾値を設定し、第1電線における測定値の変化量の絶対値と第2電線における測定値の変化量の絶対値の双方が対応する閾値以上となる場合に、上記変化が双方とも増加であれば電気機器がオン方向へ状態が変化したと判断し、上記変化が双方とも減少であれば電気機器がオフ方向へ状態が変化したと判断する比較手段を備えるものである。
【0011】
高圧給電利用機器がオフ状態からオン状態へ変化する場合、第1電線と中性線の間および第2電線と中性線の間において計測される夫々の総消費電力は高圧給電利用機器の消費電力の半分の値だけ同時に増加し、第1電線および第2電線における夫々の総電流は高圧給電利用機器の負荷電流の値だけ同時に増加する。逆に、高圧給電利用機器がオン状態からオフ状態へ変化する場合、第1電線と中性線の間および第2電線と中性線の間において計測される夫々の総消費電力は高圧給電利用機器の消費電力の半分の値だけ同時に減少し、第1電線および第2電線における夫々の総電流は高圧給電利用機器の負荷電流の値だけ同時に減少する。したがって、高圧給電利用機器の消費電力の2分の1または負荷電流に相当するような閾値を予め設定しておくことにより、第1電線および第2電線において総消費電力または総電流が同時かつ同方向(即ち双方とも正または双方とも負)に変化した場合に、当該変化量と当該閾値を比較することで、当該変化が高圧給電利用機器の動作に起因するものか否かを判断することができる。更に、当該変化が高圧給電利用機器の動作に起因する場合には、上記の変化量に基づいて、例えば高圧給電利用機器がオフ状態であるのかオン状態であるのか、オン状態であればどの程度の電力を消費しているのか、等を推定することができる。
【0012】
更に、請求項2記載の電気機器モニタリングシステムは、高圧給電利用機器の状態変化がオン方向であるのかオフ方向であるのか或いは状態変化がないのか、を非侵入的に判断できる。
【0013】
また、請求項記載の発明は、請求項2に記載の電気機器モニタリングシステムにおいて、第1電線における測定値の変化量と第2電線における測定値の変化量から電気機器の消費電力を推定し、当該推定結果を記録するようにしている。従って、高圧給電利用機器の推定消費電力の履歴に基づいて、当該機器の消費電力量を推定することができ、また、当該機器が現在オン状態であるのかオフ状態であるのかを推定することができる。
【0014】
【発明の実施の形態】
以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。
【0015】
図1から図7に本発明の電気機器の動作状態推定方法および電気機器モニタリングシステムの実施の一形態を示す。この電気機器の動作状態推定方法は、第1電線2と第2電線3と中性線4を有し、第1電線2または第2電線3と中性線4とに接続する低電圧での電力供給と、第1電線2と第2電線3とに接続する高電圧での電力供給とが可能な給電回路1を有する電力需要家について、この電力需要家に対して非侵入的な位置で第1電線2および第2電線3における電流または消費電力を測定し、第1電線2および第2電線3における各測定値の変化量と予め定めた閾値とに基づいて、電力需要家内で使用される高電圧での電力供給を利用する電気機器7の動作状態を推定するようにしている。
【0016】
本実施形態の給電回路1は、例えば100Vと200Vでの電力供給が可能な単相三線式の給電回路とする(図2参照)。従って、本実施形態における動作状態の推定対象となる電気機器7は、200V機器となる。以下、本実施形態では、第1電線をU相2とも呼び、第2電線をV相3とも呼び、中性線をN相4とも呼ぶ。また、動作状態の推定対象となる電気機器7を対象機器とも呼ぶ。
【0017】
「電力需要家に対する非侵入的な位置」とは、電力需要家の家屋内に入らない位置であり、例えば電力需要家の給電線引込口付近である。即ち、「非侵入的」とは、給電線下流の分岐回路毎に測定センサーを取り付けたり、回路に接続されている電気機器毎に測定センサーを取り付けたりしない状態のことを指す。本実施形態では、電力需要家の給電線入口位置で、U相2およびV相3におけるそれぞれの総消費電力を測定するようにしている。
【0018】
ここで、本実施形態における対象機器7は、インバータ等を用いて出力を連続的に調整する方式ではなく、階段状(即ちステップ状)の出力変化と、出力をオンまたはオフとする時間幅の調整とによって、出力の大きさを調整する方式の機器(以下、本明細書ではオンオフ式の電気機器とも呼ぶ。)であるものとする。
【0019】
例えば本実施形態における電力需要家には、単相三線式の屋内配線に、200V機器であり尚且つオンオフ式の電気機器である対象機器として、単相200V仕様の1台の家庭用IHクッキングヒータ7が接続されているものとする。このIHクッキングヒータ7は、IHヒータ、ラジエントヒータ、ロースタ等で構成され、各ヒータは数百Wから二千W程度の出力を有する。このIHクッキングヒータ7における火力の調整は、出力をステップ状に切り換えることと、ヒータのオンおよびオフの時間間隔を調整すること、で行われる。このIHクッキングヒータ7の仕様例を表1に示す。
【0020】
【表1】

Figure 0003976321
【0021】
このIHクッキングヒータ7の消費電力の変化を実際に測定した結果を図3に例示する。図3からも確認できる様に、このIHクッキングヒータ7での出力切り換え時における消費電力の変化の幅は、数百Wから千数百W程度である。
【0022】
このIHクッキングヒータ7を構成するIHヒータ、ラジエントヒータ、ロースタ等のヒータが、オフ状態からオン状態へ変化する場合、U相2とN相4の間およびV相3とN相4の間において計測される夫々の総消費電力は、当該ヒータの消費電力の半分の値だけ、同時に増加するはずである。また、U相2およびV相3における夫々の総電流は、当該ヒータの負荷電流の値だけ、同時に増加するはずである。一方、逆に、当該ヒータがオン状態からオフ状態へ変化する場合には、U相2とN相4の間およびV相3とN相4の間において計測される夫々の総消費電力は、当該ヒータの消費電力の半分の値だけ、同時に減少するはずである。また、U相2およびV相3における夫々の総電流は、当該ヒータの負荷電流の値だけ、同時に減少するはずである。IHクッキングヒータ7における消費電力の変化の幅は、図3に例示するように数百Wから千数百W程度と大きいので、半分の値であっても他の100V機器5,6の消費電力と比較すれば大きい場合が多い。同様にIHクッキングヒータ7における負荷電流の変化の幅は、他の100V機器5,6の負荷電流と比較すれば大きい場合が多い。
【0023】
したがって、IHクッキングヒータ7がオン状態とオフ状態の間を遷移する際の消費電力の変化量の2分の1または負荷電流に相当するような適切な閾値を設定しておけば、U相2およびV相3において総消費電力または総電流が同時に変化した場合に、当該変化量と当該閾値を比較することで、当該変化がIHクッキングヒータ7の動作に起因するものか否かを判断できる。即ち、適切な閾値を設けて判断することで、U相2またはV相3に接続されている100V機器5,6が仮にIHクッキングヒータ7と同時にオンまたはオフされたとしても、IHクッキングヒータ7の動作状態を推定することができる。
【0024】
以上の原理を一般化して記述すると例えば以下のようになる。時刻tにおけるU相2の総消費電力をPu(t)とし、時刻tにおけるU相2に接続された100V機器5の総消費電力をPu100(t)とし、時刻tにおける200V機器7の総消費電力をP200(t)とすると、数式1が成立する。また、時刻tにおけるU相2の総電流をIu(t)とし、時刻tにおけるU相2に接続された100V機器5の負荷電流をIu100(t)とし、時刻tにおける200V機器7の負荷電流をI200(t)とすると、数式2が成立する。
【0025】
【数1】
Pu(t)=Pu100(t)+P200(t)/2
【数2】
Iu(t)=Iu100(t)+I200(t)
【0026】
また、時刻tにおけるV相3の総消費電力をPv(t)とし、時刻tにおけるV相3に接続された100V機器6の総消費電力をPv100(t)とすると、数式3が成立する。また、時刻tにおけるV相3の総電流をIv(t)とし、時刻tにおけるV相3に接続された100V機器6の負荷電流をIv100(t)とすると、数式4が成立する。
【0027】
【数3】
Pv(t)=Pv100(t)+P200(t)/2
【数4】
Iv(t)=Iv100(t)+I200(t)
【0028】
また、U相2についての時刻tと時刻t−Δtにおける総消費電力の差をΔPu(t)とし、U相2に接続された100V機器5についての時刻tと時刻t−Δtにおける総消費電力の差をΔPu100(t)とし、200V機器7についての時刻tと時刻t−Δtにおける総消費電力の差をΔP200(t)とすると、数式5が成立する。また、U相2についての時刻tと時刻t−Δtにおける総電流の差をΔIu(t)とし、U相2に接続された100V機器5についての時刻tと時刻t−Δtにおける負荷電流の差をΔIu100(t)とし、200V機器7についての時刻tと時刻t−Δtにおける負荷電流の差をΔI200(t)とすると、数式6が成立する。
【0029】
【数5】
Figure 0003976321
【数6】
Figure 0003976321
【0030】
また、V相3についての時刻tと時刻t−Δtにおける総消費電力の差をΔPv(t)とし、V相3に接続された100V機器6についての時刻tと時刻t−Δtにおける総消費電力の差をΔPv100(t)とすると、数式7が成立する。また、V相3についての時刻tと時刻t−Δtにおける総電流の差をΔIv(t)とし、V相3に接続された100V機器6についての時刻tと時刻t−Δtにおける負荷電流の差をΔIv100(t)とすると、数式8が成立する。
【0031】
【数7】
Figure 0003976321
【数8】
Figure 0003976321
【0032】
ここで、200V機器7の消費電力が他の100V機器5,6の消費電力よりも十分に大きいという仮定(数式9,10および数式12,13)に立つと、200V機器7がオンあるいはオフされた時刻の前後の時刻をtおよびt−Δtに選べば、数式11および数式14が成立する。
【0033】
【数9】
|ΔP200(t)/2| ≫ |ΔPu100(t)|
【数10】
|ΔP200(t)/2| ≫ |ΔPv100(t)|
【数11】
ΔPu(t) ≒ ΔPv(t) ≒ ΔP200(t)/2
【0034】
【数12】
|ΔI200(t)| ≫ |ΔIu100(t)|
【数13】
|ΔI200(t)| ≫ |ΔIv100(t)|
【数14】
ΔIu(t) ≒ ΔIv(t) ≒ ΔI200(t)
【0035】
したがって、200V機器7の定格に基づいて適切な閾値設定し、電力需要家の給電線入口位置で測定されるU相2およびV相3の総消費電力の変化を監視していて、数式11の条件を満たし、かつその絶対値が設定した閾値を超えるような状態が出現すれば、200V機器7がオン方向へあるいはオフ方向へ状態が変化したと判断できる。或いは、200V機器7の定格に基づいて適切な閾値設定し、電力需要家の給電線入口位置で測定されるU相2およびV相3の総電流の変化を監視していて、数式14の条件を満たし、かつその絶対値が設定した閾値を超えるような状態が出現すれば、200V機器7がオン方向へあるいはオフ方向へ状態が変化したと判断できる。さらに、数式11に基づいて推定される200V機器7の消費電力P200(t)を記録しておけば、200V機器7の推定消費電力の時間変化を導き出すことができ、200V機器7の消費電力量の推定も可能となる。 200 (t)の初期値は、例えば0とする。また、200V機器7のオフ方向への状態変化は、必ずしも200V機器7がオフ状態に変化したことには限られず、200V機器7の出力レベルが低下した場合(例えばIHクッキングヒータの火力が小さくされた場合)も含まれるが、200V機器7の推定消費電力の時間変化を参照することで、200V機器7がオフ方向へ状態変化した場合に、オフ状態になったのか或いは出力レベルが低下しただけでまだオン状態にあるのか、を判断することができる。
【0036】
例えば本実施形態では、IHクッキングヒータ7のオンオフ動作に伴う消費電力変化のうち最も小さい変化量(例えば350W程度であり、図3のΔPで示す。)の2分の1を閾値として設定し、U相2およびV相3における総消費電力の変化量が夫々同時かつ同方向(即ち双方とも正または負)にこの閾値以上となる場合に、IHクッキングヒータ7はオン方向へあるいはオフ方向へ状態が変化したと推定するようにしている。そして、当該総消費電力の変化の双方が増加であれば、IHクッキングヒータ7がオン方向へ状態が変化したと判断し、当該総消費電力の変化の双方が減少であれば、IHクッキングヒータ7がオフ方向へ状態が変化したと判断するようにしている。
【0037】
さらに本実施形態では、IHクッキングヒータ7の動作に起因すると推定されるU相2およびV相3における総消費電力の変化量ΔPu(t),ΔPv(t)に基づいて、IHクッキングヒータ7の消費電力P200(t)の推定値を算出するようにする。当該推定値の算出方法は必ずしも限定されないが、例えばIHクッキングヒータ7の動作に起因すると推定されるΔPu(t)とΔPv(t)の一方(例えば絶対値の小さい方)を2倍した値を、P200(t−Δt)に加算して、消費電力P200(t)の推定値とする。或いは、IHクッキングヒータ7の動作に起因すると推定されるΔPu(t)とΔPv(t)とをP200(t−Δt)に加算して、消費電力P200(t)の推定値としても良い。P200(t)の初期値は、例えば0とする。尚、実際にはIHクッキングヒータ7の消費電力は状態変化がなくても微小の変動を伴う。そこで、閾値以上にならなくてもΔPu(t)とΔPv(t)が同方向に変化するような場合、もしくは同方向かつ同等に変化するような場合には、例えば上記算出方法に基づいて消費電力P200(t)の推定値を算出するようにしても良い。この場合、IHクッキングヒータ7の上記微小変動による変化を補正でき、IHクッキングヒータ7の消費電力の推定精度を高めることができる。
【0038】
以上に説明した電気機器の動作状態推定方法は、電気機器モニタリングシステム10として装置化できる。この電気機器モニタリングシステム10は、例えば図1に示すように、電力需要家に対して非侵入的な位置で第1電線2(U相2)および第2電線3(V相3)における電流または消費電力を測定する測定手段11と、第1電線2および第2電線3における各測定値の変化量と予め定めた閾値とを比較する比較手段12と、を少なくとも有し、比較手段12での比較結果に基づいて高圧給電利用機器(例えば本実施形態では200V機器としてのIHクッキングヒータ7)の動作状態を推定するようにしている。
【0039】
測定手段11は、U相2における電流または消費電力を測定する第1測定手段11aと、V相3における電流または消費電力を測定する第2測定手段11bを有している。第1測定手段11aおよび第2測定手段11bには、既存の電流計または電力計を利用して良く、例えば本実施形態では既存の電力計を利用する。第1測定手段11aおよび第2測定手段11bで得られた測定値は、一定時間間隔(計算時間刻み又は測定インターバルとも呼ぶ。)Δt毎に、例えばA/D変換器等を介してデジタル信号として比較手段12に入力される。
【0040】
本実施形態の比較手段12は、例えば比較演算命令等を備えるCPU(中央処理演算装置)により実現される。このCPUが行なう処理の一例を図6および図7のフローチャートに示す。先ず、第1測定手段11aおよび第2測定手段11bよりΔt毎に入力される測定値Pu(t)、Pv(t)に基づいて、U相側電力変化量ΔPu(t)とV相側電力変化量ΔPv(t)を求める(図6のS1〜S8)。そして、ΔPu(t)とΔPv(t)が同方向の変化であるか、即ちΔPu(t)とΔPv(t)とで正負の符号が一致するか判断し(図6のS9)、一致すれば(S9;Yes)、閾値記憶部13(例えば不揮発性メモリ)に予め格納しておいた閾値を読み出し、ΔPu(t)とΔPv(t)の絶対値の双方が閾値以上であるか否か、比較演算処理を実行する(図6のS10)。
【0041】
上記比較演算処理の結果、ΔPu(t)とΔPv(t)が同方向の変化で双方が閾値以上である場合は(S10;Yes)、当該消費電力変化はIHクッキングヒータ7の動作に起因すると判断し、IHクッキングヒータ7の動作状態の推定処理を行なう(S11)。例えばΔPu(t),ΔPv(t)の双方が増加(プラス)であれば(図7のS101;No)、IHクッキングヒータ7はオン方向へ状態が変化したと判断し(S102)、ΔPu(t),ΔPv(t)の双方が減少(マイナス)であれば(図7のS101;Yes)、IHクッキングヒータ7はオフ方向へ状態が変化したと判断する(S103)。上記状態変化の判断結果は、例えばディスプレイ等の出力装置14に出力する。尚、出力装置14の形態は特に限定されず、例えばプリンタであっても良く、或いはスピーカ等の音声出力装置であっても良く、或いはハードディスク等の記録装置であっても良く、更には遠隔のコンピュータ等に推定結果を送信する通信装置であっても良い。また、IHクッキングヒータ7の消費電力P200(t)の推定値を算出する(S104)。例えばΔPu(t)とΔPv(t)のうち絶対値の小さい方を2倍した値をP200(t−Δt)に加算して、消費電力P200(t)の推定値とする。尚、P200(t)の初期値は例えば0とする。P200(t)の推定値は、例えば電気機器モニタリングシステム10が有する記憶装置15に測定時刻tと対応させて記録しておく(S105)。記憶装置15に記録されたP200(t)の履歴を利用して、例えば図5に示すようなIHクッキングヒータ7の推定消費電力の時間変化を導き出すことができる。これよりIHクッキングヒータ7の消費電力量の推定も可能となる。また、当該推定消費電力の時間変化を参照することで、IHクッキングヒータ7がオフ方向へ状態変化した場合に、オフ状態になったのか或いは出力レベルが低下しただけ(火力が小さくされただけ)でまだオン状態にあるのか、等も判断することができる。
【0042】
【実施例】
IHクッキングヒータ7を保有する電力需要家においてU相2およびV相3の各総消費電力を測定するとともに、IHクッキングヒータ7には消費電力を測定する装置を別途取り付けた。測定インターバルΔtは1分とし、4,920個(82時間分)のデータを得た。U相2およびV相3の総消費電力のデータに基づいて上記方法により、IHクッキングヒータ7がオン状態であるかオフ状態であるかの推定と、オン状態である場合の消費電力の推定とを行なった。尚、IHクッキングヒータ7のオンまたはオフを判定する閾値は例えば図3に基づいて350[W]の2分の1を採用した。IHクッキングヒータ7に取り付けた測定装置によるIHクッキングヒータ7の消費電力の実測値を図4に示す。尚、図4中の実線が当該実測値を示し、破線はU相2およびV相3の総消費電力の合計値を示す。また、U相2およびV相3の各総消費電力の測定値に基づくIHクッキングヒータ7の消費電力の推定値を図5に示す。図4および図5から実測値と推定値はよく一致していることが確認できる。上記実験結果をまとめたものを表2に示す。
【0043】
【表2】
Figure 0003976321
【0044】
IHクッキングヒータ7がオン状態の時にオンと判定した割合(正解率)は92%であった。この時、実測値を基準にして±10%の範囲に消費電力の推定値が入る割合は68%、±20%の範囲に推定値が入る割合は75%であった。一方、IHクッキングヒータ7がオフ状態の時にオフと判定した正解率は98%であった。U相2およびV相3の総消費電力を測定するために給電線入口位置に取り付けた測定手段11と、IHクッキングヒータ7のみの消費電力を測定するためにIHクッキングヒータ7に取り付けた測定装置とは、共に1分に1回測定を行ったが、両者の同期が取れているわけではない。したがって、両者の測定タイミングには最大1分程度のずれが存在する可能性がある。測定期間中にIHクッキングヒータ7がオフ状態からオン状態に変化した回数(イベント数)は36回であった。したがって、このことを考慮すると実際の推定の精度は表2の値よりも優れているものと考えられる。以上のように高い正解率が得られたことから、本発明は十分実用に供し得る性能を有するものと考えられる。
【0045】
以上のように本発明によれば、単相三線式給電回路1を備える電力需要家の屋内に入ることなく、当該電力需要家の給電線入口位置で計測される電流あるいは電力のみから、当該電力需要家の給電線の高圧給電回路に接続された比較的消費電力の大きいオンオフ式の電気機器の動作状態(オンかオフか、オンならば消費電力はどの程度か)を推定することができる。また、本発明は対象となる電力需要家内の電気機器の高調波特性等について既知である必要はなく、適切な閾値を設定するために、対象機器7の消費電力の階段状変化のきざみ値が既知であれば良い。測定した電気機器の動作状態は電力需要家自身が利用できる以外に、通信回線を経由して電力会社等が利用できるシステムを構築できる。
【0046】
21世紀初頭には、需要家情報ネットワークが整備され、多用な情報サービスが電力需要家へ提供されると同時に、電力需要家の側の情報もネットワークを通して収集され、これらの情報は電気事業者等の経営にも反映されてゆくものと期待される。例えば、電気事業者にとって電力需要家の側の重要な情報の一つに電力需要家が保有する電気機器の構成や使用実態に関する情報があるが、これらはDSM(Demand Side Management)の効果評価、潜在需要の予測、需要変化の予測、負荷率低下(悪化)の要因分析、きめ細かな季時別料金システムの構築、電力需要家への各種サービスの提供等を行う上で必要不可欠である。本発明のモニタリングシステムは、上述したニーズに応えることができる有力なシステムの一つである。
【0047】
なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、第1電線2および第2電線3における電力を測定するようにしたが、第1電線2および第2電線3における電流を測定しても良いのは勿論である。また、対象機器はIHクッキングヒータに限らず、電気温水器等の他の高圧給電利用機器であっても良い。
【0048】
また、閾値を用いた判断の処理は、必ずしも上述の実施形態の例には限定されない。例えば、第1電線2および第2電線3における消費電力または電流の変化量が「同等」であるかを先ず判断し、「同等」である場合にのみ、当該変化量と閾値とを比較するようにしても良い。ここで「同等」とは、両者の値が完全に一致する場合の他に、当該二つの値の差が予め設定した一定の範囲内にある場合も含むものとする。例えば比較対象となるU相2およびV相3における総消費電力の変化の差が、100V機器5,6の消費電力程度であれば、U相2およびV相3における総消費電力の変化は「同等」であると判断するようにする。この場合、U相2またはV相3に接続されている100V機器5,6が仮に200V機器7と同時にオンまたはオフされたとしても、200V機器7の動作の検出が可能になる。
【0049】
また、閾値を設定する基準は必ずしも上述の実施形態には限定されない。閾値は、第1電線2および第2電線3における消費電力または電流の変化が、高圧給電利用機器(例えば200V機器7)の動作に起因するのか、低圧給電利用機器(例えば100V機器)のみの動作に基づくものであるのか、を判別し得るものであれば良い。例えば上述の実施形態では、200V機器7の出力切り換え時における消費電力変化のうちの最小の変化量の2分の1を閾値として設定したが、200V機器7の出力切り換え時における消費電力の変化量は異なる値で複数存在し得るので、これらの値の夫々2分の1となるような複数の閾値を設定しても良い。
【0050】
さらに、上述の実施形態では、200V機器7の出力切り換え時における消費電力変化量の2分の1(例えば350/2[W])を閾値として設定し、この閾値と第1電線2および第2電線3における消費電力の変化量とをそれぞれ比較するようにしたが、この例には限らない。例えば200V機器7の出力切り換え時における消費電力変化量そのもの(例えば350[W])を閾値として設定し、第1電線2および第2電線3における消費電力の変化量が「同等」であるかを判断し、「同等」である場合に、第1電線2または第2電線3における消費電力変化量の一方(例えば絶対値の小さい方)を2倍にした値、または第1電線2と第2電線3の各消費電力変化量を合計した値を200V機器7の消費電力変化量と推定し、この推定電力変化量と上記設定した閾値とを比較するようにしても良い。
【0051】
また、高圧給電利用機器(例えば200V機器7)のオンオフ動作を検出する閾値の他に、高圧給電利用機器の種類、台数などを判断するための閾値を別に定めておいても良い。例えば、第1の閾値によりIHクッキングヒータ7のオンオフ動作を検出した後、IHクッキングヒータ7の推定消費電力P200(t)と第2の閾値とを比較して、当該IHクッキングヒータ7において現在使用しているヒータの数(例えばIHヒータとラジエントヒータを同時に使っているか等)を推定するようにしても良い。
【0052】
【発明の効果】
以上の説明から明らかなように、請求項1記載の電気機器の動作状態推定方法および請求項2記載の電気機器モニタリングシステムによれば、電力需要家の屋内に入ることなく、例えば当該電力需要家の給電線入口位置で計測される電流あるいは電力のみから、当該電力需要家の給電線の高圧給電回路に接続された電気機器の動作状態を推定することができる。対象となる電力需要家内の電気機器の高調波特性等について既知である必要はない。測定した電気機器の動作状態は電力需要家自身が利用できる以外に、通信回線を経由して電力会社等が利用できるシステムを構築できる。
【0053】
さらに、請求項記載の電気機器モニタリングシステムによれば、推定対象となる高圧給電利用機器の状態変化がオン方向であるのかオフ方向であるのか或いは状態変化がないのか、を非侵入的に判断できる。
【0054】
さらに、請求項記載の電気機器モニタリングシステムによれば、高圧給電利用機器の消費電力を推定し、当該推定結果を記録するようにしているので、当該記録に基づいて当該機器の消費電力量を推定することができ、また、当該機器が現在オン状態であるのかオフ状態であるのかを推定することができる。
【図面の簡単な説明】
【図1】本発明の電気機器モニタリングシステムの実施の一形態を示す概略構成図である。
【図2】電力需要家が有する給電回路の一例(単相三線式給電回路)を示す概略構成図である。
【図3】IHクッキングヒータの消費電力の変化を実際に測定した結果を示すグラフである。
【図4】実線がIHクッキングヒータの消費電力の実測値の時間変化を示すグラフであり、破線がU相およびV相の総消費電力の合計値の時間変化を示すグラフである。
【図5】本発明方法によって推定したIHクッキングヒータの消費電力の推定値の時間変化を示すグラフである。
【図6】本発明の電気機器モニタリングシステムの処理の一例を示すフローチャートである。
【図7】本発明の電気機器モニタリングシステムの処理の一例を示すフローチャートである。
【符号の説明】
1 単相三線式給電回路(給電回路)
2 U相(第1電線)
3 V相(第2電線)
4 N相(中性線)
7 200V機器(電気機器)
10 電気機器モニタリングシステム
11 測定手段
12 比較手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating an operating state of an electrical device and an electrical device monitoring system. More specifically, the present invention relates to the operating state of an electric device that uses high-voltage power supply such as an induction heating (IH) cooking heater without entering the home of the power consumer (ie, non-intrusive). In particular) relates to a method and apparatus for estimation.
[0002]
[Prior art]
Conventionally, an EPRI (Electric Power Research Institute; USA) has been implemented as a monitoring system for non-intrusive estimation of the operating state of electrical equipment using an algorithm developed by MIT (Massachusetts Institute of Technology; USA). There is something. This monitoring system regards the on / off operation of electrical equipment as a step-like time change of the total power load curve of the power consumer, and electrical equipment that is turned on or off based on the rated power consumption and power factor of the electrical equipment. Identification and operation state estimation.
[0003]
On the other hand, the present applicant pays attention to the harmonic current pattern generated by the electrical equipment installed in the power consumer, and based on the total load current and voltage measured in the vicinity of the feeder inlet, There has been proposed an electrical equipment monitoring system that obtains a phase difference between a current and a voltage of a wave and a harmonic, and estimates an operation state of the electrical equipment used indoors and the electrical equipment from the pattern (Patent Document 1). Etc.)
[0004]
Incidentally, a single-phase three-wire power supply circuit 1 shown in FIG. 2 is generally used for power supply to power consumers. This single-phase three-wire feed circuit 1 has a first electric wire (U phase) 2, a second electric wire (V phase) 3, and a neutral wire (N phase) 4, and U phase 2 or V phase 3 and N phase. Power supply at a low voltage (100V) connected to the power supply 4 and power supply at a high voltage (200V) connected to the U phase 2 and the V phase 3 are possible. Hereinafter, in this specification, the electric devices 5 and 6 that use power supply at 100V are also referred to as 100V devices, and the electric device 7 that uses power supply at 200V is also referred to as 200V devices. As the 200V device 7, for example, there is a household IH cooking heater that has been widely spread recently. Further, in this specification, the electric device 7 connected to the high voltage power supply circuit (between the U phase 2 and the V phase 3 in the example of FIG. 2) is also referred to as a high voltage power supply utilization device, and the low voltage power supply circuit (example of FIG. 2). In FIG. 5, the electric devices 5 and 6 connected between the U phase 2 and the N phase 4 or between the V phase 3 and the N phase 4) are also referred to as low-voltage power supply utilizing devices.
[0005]
[Patent Document 1]
JP 2000-292465 A
[0006]
[Problems to be solved by the invention]
However, according to the MIT algorithm, when the rated current consumption and power factor of the high-voltage power supply using device 7 and the low-voltage power supply using devices 5 and 6 are approximately the same, it is difficult to distinguish between the two and estimate the respective operation states. It is.
[0007]
Moreover, in the technique of Patent Document 1, information on the relationship between the harmonic characteristics unique to each electrical device and the power consumption is required in advance for the main electrical device connected to the power consumer's feeder line. The estimation algorithm needs to be learned in advance based on the information. For this reason, there is a disadvantage that it takes time to prepare for estimation.
[0008]
Then, an object of this invention is to provide the method and electric equipment monitoring system which can estimate the operating state of high voltage electric power feeding utilization apparatuses, such as a 200V apparatus, easily and non-invasively.
[0009]
[Means for Solving the Problems]
  In order to achieve such an object, the operation state estimation method for an electric device according to claim 1 includes a first electric wire, a second electric wire, and a neutral wire, and is connected to the first electric wire or the second electric wire and the neutral wire. A non-intrusive position for a power consumer having a power supply circuit capable of supplying power at a low voltage and supplying power at a high voltage connected to the first electric wire and the second electric wire. Electrical equipment that measures the current or power consumption in the first electric wire and the second electric wire and uses the power supply at a high voltage used in electric power consumersIn the case of measuring the current in the first electric wire and the second electric wire, the load current is measured. In the case of measuring the power consumption in the first electric wire and the second electric wire, one half of the power consumption is measured.Is used as a reference, and the operating state of the electrical equipment used in the power consumer is estimated by comparing the amount of change in current or power consumption in the first electric wire and the second electric wire with the corresponding threshold value. ing.
[0010]
  In addition, the electrical equipment monitoring system according to claim 2 has a first electric wire, a second electric wire, and a neutral wire, and is connected to the first electric wire or the second electric wire and the neutral wire at a low voltage. The electric power consumer having a power supply circuit capable of supplying power at a high voltage connected to the first electric wire and the second electric wire, the first electric wire and the second electric wire at a non-intrusive position with respect to the electric power consumer Measuring means for measuring current or power consumption in electric power, and electric equipment using high-voltage power supply used in power consumersIn the case of measuring the current in the first electric wire and the second electric wire, the load current is measured. In the case of measuring the power consumption in the first electric wire and the second electric wire, one half of the power consumption is measured.If the threshold value is set with reference to the absolute value of the change amount of the measured value in the first wire and the absolute value of the change value of the measured value in the second wire is equal to or greater than the corresponding threshold values, Comparing means for determining that the state of the electric device has changed in the ON direction if the increase is present, and for determining that the state of the electric device has changed in the OFF direction if both of the above changes are decreasing is provided.
[0011]
When the high-voltage power supply device changes from the off state to the on state, the total power consumption measured between the first electric wire and the neutral wire and between the second electric wire and the neutral wire is the consumption of the high-voltage power supply device. The value of half of the power increases at the same time, and the total current of each of the first electric wire and the second electric wire increases at the same time by the value of the load current of the high-voltage power supply utilization device. Conversely, when the high-voltage power supply utilization device changes from the ON state to the OFF state, the total power consumption measured between the first electric wire and the neutral wire and between the second electric wire and the neutral wire is the high-voltage power supply utilization. The total current in the first electric wire and the second electric wire is simultaneously reduced by the value of the load current of the high-voltage power supply utilizing device. Therefore, by setting a threshold value corresponding to one half of the power consumption of the high-voltage power supply equipment or the load current in advance, the total power consumption or the total current of the first electric wire and the second electric wire are the same and the same. When the direction changes (that is, both are positive or both are negative), it is possible to determine whether the change is caused by the operation of the high-voltage power supply using device by comparing the change amount with the threshold value. it can. Further, when the change is caused by the operation of the high-voltage power supply using device, based on the amount of change described above, for example, whether the high-voltage power supply using device is in the off state or the on state, and if it is in the on state, to what extent It is possible to estimate whether power is consumed.
[0012]
  Furthermore, the electrical equipment monitoring system according to claim 2 comprises:It can be determined in a non-intrusive manner whether the state change of the high-voltage power supply utilizing device is the on direction, the off direction, or no state change.
[0013]
  Claims3The described invention is claimed.2In the electrical equipment monitoring system described, the power consumption of the electrical equipment is estimated from the amount of change in the measured value of the first wire and the amount of change of the measured value in the second wire, and the estimated result is recorded. Therefore, based on the history of the estimated power consumption of the high-voltage power supply utilization device, the power consumption amount of the device can be estimated, and whether the device is currently in an on state or an off state can be estimated. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.
[0015]
1 to 7 show an embodiment of an operation state estimation method and an electrical device monitoring system according to the present invention. This method for estimating the operating state of an electrical device has a first electric wire 2, a second electric wire 3, and a neutral wire 4, and is connected to the first electric wire 2 or the second electric wire 3 and the neutral wire 4 at a low voltage. About the electric power consumer which has the electric power supply and the electric power supply circuit 1 which can perform the electric power supply by the high voltage connected to the 1st electric wire 2 and the 2nd electric wire 3, It is a non-intrusive position with respect to this electric power consumer. The current or power consumption in the first electric wire 2 and the second electric wire 3 is measured and used in the electric power consumer based on the amount of change of each measured value in the first electric wire 2 and the second electric wire 3 and a predetermined threshold value. The operating state of the electrical device 7 that uses power supply at a high voltage is estimated.
[0016]
The power supply circuit 1 of the present embodiment is a single-phase three-wire power supply circuit capable of supplying power at 100 V and 200 V, for example (see FIG. 2). Therefore, the electrical device 7 that is the target of the estimation of the operation state in the present embodiment is a 200V device. Hereinafter, in the present embodiment, the first electric wire is also referred to as U-phase 2, the second electric wire is also referred to as V-phase 3, and the neutral wire is also referred to as N-phase 4. In addition, the electric device 7 whose operation state is to be estimated is also referred to as a target device.
[0017]
The “non-intrusive position with respect to the electric power consumer” is a position that does not enter the electric power consumer's house, and is, for example, in the vicinity of the electric power customer's feeder line entrance. That is, “non-intrusive” means a state in which a measurement sensor is not attached to each branch circuit downstream of the feeder line, or a measurement sensor is not attached to each electric device connected to the circuit. In the present embodiment, the total power consumption of each of the U phase 2 and the V phase 3 is measured at the position where the power consumer feeds the power line.
[0018]
Here, the target device 7 in this embodiment is not a method of continuously adjusting the output using an inverter or the like, but a step-like (ie step-like) output change and a time width for turning the output on or off. It is assumed that the device is a device that adjusts the magnitude of the output by the adjustment (hereinafter also referred to as an on-off electric device in this specification).
[0019]
For example, the power consumer in the present embodiment includes a single-phase three-wire indoor wiring, a single-phase 200V specification household IH cooking heater 7 as a target device that is a 200V device and an on / off type electrical device. Is connected. The IH cooking heater 7 includes an IH heater, a radiant heater, a roaster, and the like, and each heater has an output of several hundred W to 2,000 W. Adjustment of the heating power in the IH cooking heater 7 is performed by switching the output in a step-like manner and adjusting the time interval between turning on and off the heater. A specification example of the IH cooking heater 7 is shown in Table 1.
[0020]
[Table 1]
Figure 0003976321
[0021]
The result of actually measuring the change in power consumption of the IH cooking heater 7 is illustrated in FIG. As can be confirmed from FIG. 3, the width of the change in power consumption when the output is switched by the IH cooking heater 7 is about several hundred W to several thousand HW.
[0022]
When an IH heater, a radiant heater, a roaster or the like constituting this IH cooking heater 7 changes from an off state to an on state, measurement is performed between the U phase 2 and the N phase 4 and between the V phase 3 and the N phase 4. Each total power consumed should increase at the same time by half the power consumption of the heater. Further, the total currents in the U phase 2 and the V phase 3 should simultaneously increase by the value of the load current of the heater. On the other hand, when the heater changes from the on state to the off state, the total power consumption measured between the U phase 2 and the N phase 4 and between the V phase 3 and the N phase 4 is Only half the power consumption of the heater should decrease simultaneously. In addition, the total currents in the U phase 2 and the V phase 3 should simultaneously decrease by the value of the load current of the heater. As illustrated in FIG. 3, the width of the change in power consumption in the IH cooking heater 7 is as large as several hundred W to several thousand W, so that the power consumption of the other 100V devices 5 and 6 is half the value. In many cases, the comparison is large. Similarly, the width of the change in the load current in the IH cooking heater 7 is often larger than the load currents of the other 100 V devices 5 and 6.
[0023]
Therefore, if an appropriate threshold value corresponding to one half of the amount of change in power consumption or the load current when the IH cooking heater 7 transitions between the on state and the off state is set, When total power consumption or total current changes in the V-phase 3 at the same time, it is possible to determine whether the change is caused by the operation of the IH cooking heater 7 by comparing the change amount with the threshold value. That is, by determining by setting an appropriate threshold value, even if the 100 V devices 5 and 6 connected to the U phase 2 or V phase 3 are turned on or off simultaneously with the IH cooking heater 7, the operation of the IH cooking heater 7 is performed. The state can be estimated.
[0024]
The above principle is generalized and described as follows, for example. The total power consumption of the U phase 2 at time t is Pu (t), and the total power consumption of the 100V device 5 connected to the U phase 2 at time t is Pu.100(T), and the total power consumption of the 200V device 7 at time t is P200Assuming (t), Equation 1 is established. Further, the total current of the U phase 2 at time t is Iu (t), and the load current of the 100V device 5 connected to the U phase 2 at time t is Iu.100(T) and the load current of the 200V device 7 at time t is I200Assuming (t), Formula 2 is established.
[0025]
[Expression 1]
Pu (t) = Pu100(T) + P200(T) / 2
[Expression 2]
Iu (t) = Iu100(T) + I200(T)
[0026]
Further, the total power consumption of the V phase 3 at time t is Pv (t), and the total power consumption of the 100V device 6 connected to the V phase 3 at time t is Pv.100Assuming (t), Equation 3 is established. Further, the total current of the V phase 3 at time t is Iv (t), and the load current of the 100V device 6 connected to the V phase 3 at time t is Iv.100Assuming (t), Formula 4 is established.
[0027]
[Equation 3]
Pv (t) = Pv100(T) + P200(T) / 2
[Expression 4]
Iv (t) = Iv100(T) + I200(T)
[0028]
Further, the difference between the total power consumption at time t and time t−Δt for the U phase 2 is ΔPu (t), and the total power consumption at time t and time t−Δt for the 100V device 5 connected to the U phase 2 Is the difference ΔPu100(T), and the difference in total power consumption between time t and time t−Δt for the 200V device 7 is ΔP200Assuming (t), Equation 5 is established. Also, the difference between the total currents at time t and time t−Δt for the U phase 2 is ΔIu (t), and the difference between the load currents at the time t and the time t−Δt for the 100V device 5 connected to the U phase 2 ΔIu100(T), and the difference between the load currents at time t and time t−Δt for the 200V equipment 7200Assuming (t), Equation 6 is established.
[0029]
[Equation 5]
Figure 0003976321
[Formula 6]
Figure 0003976321
[0030]
Also, the difference between the total power consumption at time t and time t−Δt for V phase 3 is ΔPv (t), and the total power consumption at time t and time t−Δt for 100 V equipment 6 connected to V phase 3 Is the difference ΔPv100Assuming (t), Equation 7 is established. Also, the difference between the total currents at time t and time t−Δt for V phase 3 is ΔIv (t), and the difference between the load currents at time t and time t−Δt for 100 V equipment 6 connected to V phase 3 ΔIv100Assuming (t), Formula 8 is established.
[0031]
[Expression 7]
Figure 0003976321
[Equation 8]
Figure 0003976321
[0032]
  Here, it is assumed that the power consumption of the 200V device 7 is sufficiently larger than the power consumption of the other 100V devices 5 and 6(Formulas 9 and 10 and Formulas 12 and 13)If the time before and after the time when the 200V device 7 is turned on or off is selected as t and t−Δt,Formula 11 and Formula 14Is established.
[0033]
[Equation 9]
| ΔP200(T) / 2 | >>>> ΔPu100(T) |
[Expression 10]
| ΔP200(T) / 2 | >>>> ΔPv100(T) |
## EQU11 ##
ΔPu (t) ≒ ΔPv (t) ≒ ΔP200(T) / 2
[0034]
[Expression 12]
| ΔI200(T) | >>>> ΔIu100(T) |
[Formula 13]
| ΔI200(T) | >> | ΔIv100(T) |
[Expression 14]
ΔIu (t) ≈ΔIv (t) ≈ΔI200(T)
[0035]
  Therefore2Appropriate threshold based on rating of 00V device 7TheSet and monitor the change in total power consumption of U phase 2 and V phase 3 measured at the power supply line entrance position of the power consumer, and satisfy the condition of Equation 11And its absolute value exceeds the set thresholdIf such a state appears, it can be determined that the state of the 200V device 7 has changed in the ON direction or in the OFF direction. Or2Appropriate threshold based on rating of 00V device 7TheSet and monitor the change in the total current of the U phase 2 and V phase 3 measured at the feeder line entrance position of the power consumer and satisfy the condition of Equation 14And its absolute value exceeds the set thresholdIf such a state appears, it can be determined that the state of the 200V device 7 has changed in the ON direction or in the OFF direction. Furthermore, the power consumption P of the 200V device 7 estimated based on Equation 11200If (t) is recorded, the time change of the estimated power consumption of the 200V device 7 can be derived, and the power consumption amount of the 200V device 7 can be estimated.P 200 The initial value of (t) is 0, for example.Further, the change in the state of the 200V device 7 in the off direction is not necessarily limited to the change of the 200V device 7 to the off state, and when the output level of the 200V device 7 decreases (for example, the heating power of the IH cooking heater is reduced). Case), but referring to the time change of the estimated power consumption of the 200V device 7, when the 200V device 7 changes its state in the off direction, it is only turned off or the output level is lowered. It can be determined whether it is still on.
[0036]
For example, in the present embodiment, one half of the smallest change amount (for example, about 350 W and indicated by ΔP in FIG. 3) among the power consumption changes accompanying the on / off operation of the IH cooking heater 7 is set as the threshold value. When the amount of change in total power consumption in phase 2 and V phase 3 is equal to or greater than this threshold value simultaneously and in the same direction (ie both positive or negative), the state of IH cooking heater 7 changes to the on direction or the off direction. It is supposed to have been done. If both of the changes in the total power consumption increase, it is determined that the state of the IH cooking heater 7 has changed to the ON direction. If both of the changes in the total power consumption decrease, the IH cooking heater 7 is turned off. It is determined that the state has changed in the direction.
[0037]
Further, in the present embodiment, the power consumption of the IH cooking heater 7 is based on the changes ΔPu (t) and ΔPv (t) of the total power consumption in the U phase 2 and the V phase 3 estimated to be caused by the operation of the IH cooking heater 7. P200An estimated value of (t) is calculated. Although the calculation method of the estimated value is not necessarily limited, for example, a value obtained by doubling one of ΔPu (t) and ΔPv (t) estimated to be caused by the operation of the IH cooking heater 7 (for example, the smaller absolute value) P200In addition to (t−Δt), power consumption P200The estimated value of (t). Alternatively, ΔPu (t) and ΔPv (t) that are estimated to be caused by the operation of the IH cooking heater 7 are expressed as P200In addition to (t−Δt), power consumption P200It is good also as an estimated value of (t). P200The initial value of (t) is 0, for example. Actually, the power consumption of the IH cooking heater 7 is accompanied by minute fluctuations even if the state does not change. Therefore, if ΔPu (t) and ΔPv (t) change in the same direction, or change in the same direction and even if they do not exceed the threshold, they are consumed based on the above calculation method, for example. Electric power P200An estimated value of (t) may be calculated. In this case, it is possible to correct the change due to the minute fluctuation of the IH cooking heater 7 and to increase the estimation accuracy of the power consumption of the IH cooking heater 7.
[0038]
The electric device operating state estimation method described above can be implemented as an electric device monitoring system 10. For example, as shown in FIG. 1, the electrical equipment monitoring system 10 is configured so that the current in the first electric wire 2 (U phase 2) and the second electric wire 3 (V phase 3) or the At least a measuring means 11 for measuring power consumption, and a comparing means 12 for comparing a change amount of each measured value in the first electric wire 2 and the second electric wire 3 with a predetermined threshold value. Based on the comparison result, the operating state of the high-voltage power supply utilizing device (for example, IH cooking heater 7 as a 200V device in this embodiment) is estimated.
[0039]
The measuring unit 11 includes a first measuring unit 11 a that measures current or power consumption in the U phase 2 and a second measuring unit 11 b that measures current or power consumption in the V phase 3. For the first measuring unit 11a and the second measuring unit 11b, an existing ammeter or wattmeter may be used. For example, in the present embodiment, an existing wattmeter is used. The measured values obtained by the first measuring means 11a and the second measuring means 11b are converted into digital signals at regular time intervals (also called calculation time increments or measurement intervals) Δt, for example, via an A / D converter. Input to the comparison means 12.
[0040]
The comparison unit 12 of the present embodiment is realized by a CPU (Central Processing Unit) having a comparison calculation instruction or the like, for example. An example of processing performed by the CPU is shown in the flowcharts of FIGS. First, based on the measured values Pu (t) and Pv (t) inputted for each Δt from the first measuring means 11a and the second measuring means 11b, the U-phase side power change amount ΔPu (t) and the V-phase side power A change amount ΔPv (t) is obtained (S1 to S8 in FIG. 6). Then, it is determined whether ΔPu (t) and ΔPv (t) are changes in the same direction, that is, whether ΔPu (t) and ΔPv (t) have the same sign (S9 in FIG. 6). If (S9; Yes), the threshold value stored in advance in the threshold value storage unit 13 (for example, a non-volatile memory) is read, and whether or not both absolute values of ΔPu (t) and ΔPv (t) are equal to or greater than the threshold value. Then, the comparison calculation process is executed (S10 in FIG. 6).
[0041]
If ΔPu (t) and ΔPv (t) change in the same direction and both are equal to or greater than the threshold value as a result of the comparison calculation process (S10; Yes), it is determined that the power consumption change is caused by the operation of the IH cooking heater 7. Then, an estimation process of the operating state of the IH cooking heater 7 is performed (S11). For example, if both ΔPu (t) and ΔPv (t) increase (plus) (S101 in FIG. 7; No), it is determined that the state of the IH cooking heater 7 has changed in the ON direction (S102), and ΔPu (t ), ΔPv (t) both decrease (minus) (S101 in FIG. 7; Yes), it is determined that the state of the IH cooking heater 7 has changed in the off direction (S103). The determination result of the state change is output to an output device 14 such as a display. The form of the output device 14 is not particularly limited. For example, the output device 14 may be a printer, a sound output device such as a speaker, a recording device such as a hard disk, or a remote device. It may be a communication device that transmits the estimation result to a computer or the like. Further, the power consumption P of the IH cooking heater 7200An estimated value of (t) is calculated (S104). For example, a value obtained by doubling the smaller absolute value of ΔPu (t) and ΔPv (t) is P200In addition to (t−Δt), power consumption P200The estimated value of (t). P200The initial value of (t) is 0, for example. P200The estimated value of (t) is recorded in correspondence with the measurement time t in, for example, the storage device 15 included in the electrical equipment monitoring system 10 (S105). P recorded in the storage device 15200Using the history of (t), for example, a temporal change in the estimated power consumption of the IH cooking heater 7 as shown in FIG. 5 can be derived. From this, the power consumption amount of the IH cooking heater 7 can be estimated. In addition, by referring to the time change of the estimated power consumption, when the state of the IH cooking heater 7 changes to the off direction, the IH cooking heater 7 is turned off or the output level is lowered (only the thermal power is reduced). It can also be determined whether it is still on.
[0042]
【Example】
A power consumer who owns the IH cooking heater 7 measures the total power consumption of the U-phase 2 and the V-phase 3, and a device for measuring the power consumption is separately attached to the IH cooking heater 7. The measurement interval Δt was 1 minute, and 4,920 data (82 hours) were obtained. Based on the total power consumption data of the U phase 2 and the V phase 3, the above method is used to estimate whether the IH cooking heater 7 is in the on state or the off state, and estimate the power consumption in the on state. I did it. The threshold for determining whether the IH cooking heater 7 is on or off is, for example, one half of 350 [W] based on FIG. FIG. 4 shows measured values of power consumption of the IH cooking heater 7 by a measuring device attached to the IH cooking heater 7. The solid line in FIG. 4 indicates the actual measurement value, and the broken line indicates the total value of the total power consumption of the U phase 2 and the V phase 3. Moreover, the estimated value of the power consumption of IH cooking heater 7 based on the measured value of each total power consumption of U phase 2 and V phase 3 is shown in FIG. It can be confirmed from FIG. 4 and FIG. 5 that the measured value and the estimated value are in good agreement. A summary of the experimental results is shown in Table 2.
[0043]
[Table 2]
Figure 0003976321
[0044]
The ratio (correct answer rate) determined to be on when the IH cooking heater 7 was on was 92%. At this time, the ratio of the estimated value of the power consumption in the range of ± 10% based on the actual measurement value was 68%, and the ratio of the estimated value in the range of ± 20% was 75%. On the other hand, the correct answer rate determined to be off when the IH cooking heater 7 was off was 98%. Measuring means 11 attached to the feed line entrance position to measure the total power consumption of U phase 2 and V phase 3, and a measuring device attached to IH cooking heater 7 to measure the power consumption of only IH cooking heater 7 Both measured once per minute, but the two are not synchronized. Therefore, there is a possibility that there is a deviation of about 1 minute at the maximum between the measurement timings. The number of times (number of events) that the IH cooking heater 7 changed from the off state to the on state during the measurement period was 36 times. Therefore, considering this, the accuracy of the actual estimation is considered to be superior to the values in Table 2. Since a high accuracy rate was obtained as described above, the present invention is considered to have a performance that can be sufficiently put to practical use.
[0045]
As described above, according to the present invention, the electric power can be obtained only from the current or electric power measured at the electric power supply line entrance position of the electric power consumer without entering the electric power consumer having the single-phase three-wire electric power feeding circuit 1. It is possible to estimate an operating state (on or off, or how much power is consumed if it is on) of an on / off type electric device that is connected to a high voltage power supply circuit of a customer's power supply line and has relatively large power consumption. In addition, the present invention does not need to be known about the harmonic characteristics and the like of the electric equipment in the target electric power consumer, and in order to set an appropriate threshold, the step value of the step change in the power consumption of the target equipment 7 Should be known. In addition to being able to use the measured operating state of the electrical equipment by the power consumer, a system that can be used by a power company or the like via a communication line can be constructed.
[0046]
At the beginning of the 21st century, a consumer information network was established, and a variety of information services were provided to power consumers. At the same time, information on the power consumer side was also collected through the network. It is expected to be reflected in the management of the company. For example, one of the important information on the electric power consumer side for electric power companies is information on the configuration and usage of electric equipment held by electric power consumers. These are the effects evaluation of DSM (Demand Side Management), It is indispensable for forecasting potential demand, forecasting demand changes, analyzing the factors of load factor decline (deteriorating), building a detailed seasonal fee system, and providing various services to power consumers. The monitoring system of the present invention is one of powerful systems that can meet the above-mentioned needs.
[0047]
The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the electric power in the first electric wire 2 and the second electric wire 3 is measured, but it is needless to say that the current in the first electric wire 2 and the second electric wire 3 may be measured. Further, the target device is not limited to the IH cooking heater, but may be other high-voltage power supply utilization device such as an electric water heater.
[0048]
In addition, the determination process using the threshold value is not necessarily limited to the example of the above-described embodiment. For example, it is first determined whether the amount of change in power consumption or current in the first electric wire 2 and the second electric wire 3 is “equivalent”, and only when the amount is “equivalent”, the amount of change is compared with the threshold value. Anyway. Here, “equivalent” includes not only the case where the two values completely match, but also the case where the difference between the two values is within a predetermined range. For example, if the difference in change in total power consumption between U phase 2 and V phase 3 to be compared is about the power consumption of 100 V devices 5 and 6, the change in total power consumption in U phase 2 and V phase 3 is " Judge that it is “equivalent”. In this case, even if the 100V devices 5 and 6 connected to the U phase 2 or the V phase 3 are turned on or off simultaneously with the 200V device 7, the operation of the 200V device 7 can be detected.
[0049]
Moreover, the reference | standard which sets a threshold value is not necessarily limited to the above-mentioned embodiment. The threshold is whether the change in power consumption or current in the first electric wire 2 and the second electric wire 3 is caused by the operation of a high-voltage power supply utilizing device (for example, 200V device 7) or the operation of only a low-voltage power supply utilizing device (for example, 100V device) What is necessary is just to be able to distinguish whether it is based on. For example, in the above-described embodiment, one half of the minimum change amount of the power consumption when the output of the 200V device 7 is switched is set as the threshold. However, the change amount of the power consumption when the output of the 200V device 7 is switched. Since there may be a plurality of different values, a plurality of threshold values may be set such that each of these values is half.
[0050]
Furthermore, in the above-described embodiment, half of the power consumption change amount (for example, 350/2 [W]) when the output of the 200V device 7 is switched is set as a threshold, and the threshold, the first electric wire 2, and the second Although the change amount of the power consumption in the electric wire 3 is compared, it is not limited to this example. For example, the power consumption change amount itself (for example, 350 [W]) at the time of output switching of the 200V device 7 is set as a threshold, and whether the power consumption change amounts in the first electric wire 2 and the second electric wire 3 are “equivalent”. When it is determined that they are “equivalent”, one of the power consumption changes in the first electric wire 2 or the second electric wire 3 (for example, the smaller absolute value) is doubled, or the first electric wire 2 and the second electric wire 2 A value obtained by summing the power consumption change amounts of the electric wires 3 may be estimated as the power consumption change amount of the 200V device 7 and the estimated power change amount may be compared with the set threshold value.
[0051]
In addition to the threshold value for detecting the on / off operation of the high-voltage power supply utilization device (for example, the 200V device 7), a threshold value for determining the type and number of high-voltage power supply utilization devices may be set separately. For example, after detecting the on / off operation of the IH cooking heater 7 based on the first threshold, the estimated power consumption P of the IH cooking heater 7200By comparing (t) and the second threshold value, the number of heaters currently used in the IH cooking heater 7 (for example, whether the IH heater and the radiant heater are used simultaneously) may be estimated.
[0052]
【The invention's effect】
As is clear from the above description, according to the method for estimating the operating state of the electric device according to claim 1 and the electric device monitoring system according to claim 2, for example, the electric power consumer can enter without entering the electric power consumer indoors. The operating state of the electrical equipment connected to the high voltage power supply circuit of the power consumer's power supply line can be estimated from only the current or power measured at the position of the power supply line entrance. It is not necessary to know the harmonic characteristics of the electric equipment in the target electric power consumer. In addition to being able to use the measured operating state of the electrical equipment by the power consumer, a system that can be used by a power company or the like via a communication line can be constructed.
[0053]
  And claims2According to the described electrical equipment monitoring system, it is possible to determine in a non-intrusive manner whether the state change of the high-voltage power supply utilization device to be estimated is the on direction, the off direction, or no state change.
[0054]
  And claims3According to the electrical equipment monitoring system described, the power consumption of the high-voltage power supply utilizing equipment is estimated and the estimation result is recorded. Therefore, the power consumption of the equipment can be estimated based on the record. It is also possible to estimate whether the device is currently on or off.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an electrical equipment monitoring system of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of a power supply circuit (single-phase three-wire power supply circuit) possessed by a power consumer.
FIG. 3 is a graph showing a result of actually measuring a change in power consumption of the IH cooking heater.
FIG. 4 is a graph showing a time change of an actual measurement value of the power consumption of the IH cooking heater, and a broken line is a graph showing a time change of a total value of the total power consumption of the U phase and the V phase.
FIG. 5 is a graph showing a time change of an estimated value of power consumption of the IH cooking heater estimated by the method of the present invention.
FIG. 6 is a flowchart showing an example of processing of the electrical equipment monitoring system of the present invention.
FIG. 7 is a flowchart showing an example of processing of the electrical equipment monitoring system of the present invention.
[Explanation of symbols]
1 Single-phase three-wire feed circuit (feed circuit)
2 U phase (first electric wire)
3 V phase (second electric wire)
4 N phase (neutral wire)
7 200V equipment (electrical equipment)
10 Electrical equipment monitoring system
11 Measuring means
12 Comparison means

Claims (3)

第1電線と第2電線と中性線を有し、前記第1電線または前記第2電線と前記中性線とに接続する低電圧での電力供給と、前記第1電線と前記第2電線とに接続する高電圧での電力供給とが可能な給電回路を有する電力需要家について、前記電力需要家に対して非侵入的な位置で前記第1電線および前記第2電線における電流または消費電力を測定し、前記電力需要家内で使用される前記高電圧での電力供給を利用する電気機器について、前記第1電線および前記第2電線における電流を測定する場合は負荷電流を、前記第1電線および前記第2電線における消費電力を測定する場合は消費電力の2分の1を基準として閾値を設定し、前記第1電線および前記第2電線における電流または消費電力の変化量を対応する前記閾値と比較することにより、前記電力需要家内で使用される前記電気機器の動作状態を推定することを特徴とする電気機器の動作状態推定方法。A first electric wire, a second electric wire, and a neutral wire, and a low-voltage power supply connected to the first electric wire or the second electric wire and the neutral wire, and the first electric wire and the second electric wire The electric power consumer having a power supply circuit capable of supplying power at a high voltage connected to the electric current in the first electric wire and the second electric wire at a non-intrusive position with respect to the electric power consumer or power consumption When measuring the current in the first electric wire and the second electric wire with respect to the electric equipment using the high voltage electric power used in the electric power consumer, the load electric current is measured in the first electric wire. And when measuring the power consumption in the second electric wire , a threshold value is set with reference to half of the power consumption, and the threshold value corresponding to the amount of change in current or power consumption in the first electric wire and the second electric wire. Comparing with More electrical apparatus method of operation state estimation and estimates the operating status of the electrical equipment used in the power demand wife. 第1電線と第2電線と中性線を有し、前記第1電線または前記第2電線と前記中性線とに接続する低電圧での電力供給と、前記第1電線と前記第2電線とに接続する高電圧での電力供給とが可能な給電回路を有する電力需要家について、前記電力需要家に対して非侵入的な位置で前記第1電線および前記第2電線における電流または消費電力を測定する測定手段と、前記電力需要家内で使用される前記高電圧での電力供給を利用する電気機器について、前記第1電線および前記第2電線における電流を測定する場合は負荷電流を、前記第1電線および前記第2電線における消費電力を測定する場合は消費電力の2分の1を基準として閾値を設定し、前記第1電線における測定値の変化量の絶対値と前記第2電線における測定値の変化量の絶対値の双方が対応する前記閾値以上となる場合に、上記変化が双方とも増加であれば前記電気機器がオン方向へ状態が変化したと判断し、上記変化が双方とも減少であれば前記電気機器がオフ方向へ状態が変化したと判断する比較手段を備えることを特徴とする電気機器モニタリングシステム。A first electric wire, a second electric wire, and a neutral wire, and a low-voltage power supply connected to the first electric wire or the second electric wire and the neutral wire, and the first electric wire and the second electric wire The electric power consumer having a power supply circuit capable of supplying power at a high voltage connected to the electric current in the first electric wire and the second electric wire at a non-intrusive position with respect to the electric power consumer or power consumption Measurement means for measuring the electrical current using the high-voltage power supply used in the power consumer, when measuring the current in the first electric wire and the second electric wire, the load current, When measuring the power consumption in the first electric wire and the second electric wire , a threshold is set with reference to half of the power consumption, and the absolute value of the change amount of the measurement value in the first electric wire and the second electric wire Absolute amount of change in measured value When both of the above are equal to or more than the corresponding threshold values, if both the changes are increased, it is determined that the state of the electric device has changed in the ON direction, and if both the changes are decreased, the electric device is An electrical equipment monitoring system comprising comparison means for judging that the state has changed in the off direction. 前記第1電線における測定値の変化量と前記第2電線における測定値の変化量から前記電気機器の消費電力を推定し、当該推定結果を記録することを特徴とする請求項2に記載の電気機器モニタリングシステム。  3. The electricity according to claim 2, wherein the power consumption of the electric device is estimated from the amount of change in the measured value of the first electric wire and the amount of change of the measured value in the second electric wire, and the estimation result is recorded. Equipment monitoring system.
JP2003140065A 2003-05-19 2003-05-19 Method for estimating operating state of electrical equipment and electrical equipment monitoring system Expired - Fee Related JP3976321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140065A JP3976321B2 (en) 2003-05-19 2003-05-19 Method for estimating operating state of electrical equipment and electrical equipment monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140065A JP3976321B2 (en) 2003-05-19 2003-05-19 Method for estimating operating state of electrical equipment and electrical equipment monitoring system

Publications (2)

Publication Number Publication Date
JP2004340852A JP2004340852A (en) 2004-12-02
JP3976321B2 true JP3976321B2 (en) 2007-09-19

Family

ID=33528903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140065A Expired - Fee Related JP3976321B2 (en) 2003-05-19 2003-05-19 Method for estimating operating state of electrical equipment and electrical equipment monitoring system

Country Status (1)

Country Link
JP (1) JP3976321B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028813A (en) * 2005-07-19 2007-02-01 Tokyo Electric Power Co Inc:The Single-phase three-wire state determination apparatus and method
JP5549616B2 (en) * 2011-02-04 2014-07-16 富士通株式会社 Device type determination device, device type determination program, and power management system
TWI517079B (en) * 2013-07-30 2016-01-11 財團法人工業技術研究院 Method for identifying electronic device and apparatus and system using the same
JP6528318B2 (en) * 2015-05-25 2019-06-12 パナソニックIpマネジメント株式会社 Circuit determination system, circuit determination method, and program
JP6951277B2 (en) * 2018-03-14 2021-10-20 株式会社日立製作所 Time synchronizer and its method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133177U (en) * 1974-04-17 1975-11-01
JPH0682137B2 (en) * 1986-05-29 1994-10-19 株式会社アイ・ライテイング・システム Power detection circuit
JPH0933570A (en) * 1995-07-14 1997-02-07 Toshiba Corp Wattmeter
JP2002152971A (en) * 2000-08-30 2002-05-24 Daihen Corp Load-demand estimating device
JP3701596B2 (en) * 2001-09-28 2005-09-28 財団法人電力中央研究所 Method and apparatus for estimating power consumption for each group of electrical equipment, and method and apparatus for determining whether or not to reconnect feeder lines

Also Published As

Publication number Publication date
JP2004340852A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US9945889B2 (en) Method for detecting power theft in a power distribution system
CN100508347C (en) Backup device for peak loads
JP3403368B2 (en) Electrical equipment monitoring system and abnormal operation alarm system
US8804387B2 (en) Power supply apparatus and controller
JP6071397B2 (en) State estimation device, state estimation method and program
US9638723B2 (en) Status estimation apparatus, status estimation method
US10197613B2 (en) Transformer connection phase determination device, method, and program
CN111651721B (en) Anti-electricity-stealing early warning method based on space-time correlation matrix
JP2008236897A (en) Distributed power supply operating status detection device, watt-hour meter, and distribution system control device
JP2013042656A (en) Method and system of demand control based on power factor
JP5859026B2 (en) Energy usage estimation device and energy usage estimation method
RU2651610C1 (en) Method for revealing the places of origin and magnitude of non-technical losses of energy in electrical networks by data of synchronous measurements
WO2018234550A1 (en) Method for detecting impedances in an electrical power distribution grid
JP3976321B2 (en) Method for estimating operating state of electrical equipment and electrical equipment monitoring system
TW201837483A (en) A phase-group estimation device, a phase-group estimation method and a recording media
Baran Branch current based state estimation for distribution system monitoring
JP5506502B2 (en) Detection system for influence of photovoltaic power generation facilities on three-phase distribution lines
JP3701596B2 (en) Method and apparatus for estimating power consumption for each group of electrical equipment, and method and apparatus for determining whether or not to reconnect feeder lines
JP7019335B2 (en) Voltage controller, voltage control method and voltage control program
JP2016039652A (en) Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
JP5335005B2 (en) Distribution system calculation device and distribution system calculation method
Chen et al. Dynamic demand minimization using a smart transformer
Tariq et al. Real time electricity theft detection in microgrids through wireless sensor networks
JP6491499B2 (en) Contract content optimization method
JP6201692B2 (en) Estimation program, estimation method, and estimation apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees