[go: up one dir, main page]

JP3966573B2 - Catalyst for nitrile compound production - Google Patents

Catalyst for nitrile compound production Download PDF

Info

Publication number
JP3966573B2
JP3966573B2 JP10405297A JP10405297A JP3966573B2 JP 3966573 B2 JP3966573 B2 JP 3966573B2 JP 10405297 A JP10405297 A JP 10405297A JP 10405297 A JP10405297 A JP 10405297A JP 3966573 B2 JP3966573 B2 JP 3966573B2
Authority
JP
Japan
Prior art keywords
catalyst
hours
added
alkane
ammoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10405297A
Other languages
Japanese (ja)
Other versions
JPH1043586A (en
Inventor
悟 駒田
修 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP10405297A priority Critical patent/JP3966573B2/en
Publication of JPH1043586A publication Critical patent/JPH1043586A/en
Application granted granted Critical
Publication of JP3966573B2 publication Critical patent/JP3966573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はプロパン、イソブタン等のアルカンを原料にニトリル類を製造する際に用いるアンモ酸化用触媒及びそれを用いたニトリル類の製造方法に関するものである。アクリロニトリル、メタクリロニトリル等のニトリル類は、繊維、合成樹脂、合成ゴム等の重要な中間体として工業的に製造されている。又、副生する青酸、アセトニトリル等のニトリル成分も工業原料や溶剤に用いられている。
【0002】
【従来の技術】
アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類は、多様な工業製品の重要な中間体として大量に製造されている。従来、その製造方法としてはアルケン類すなわちプロピレン、イソブテン等を原料とし、触媒の存在下で分子状酸素とアンモニアを気相接触アンモ酸化する方法が一般的である。一方、近年アルケン類とアルカン類との価格差から、従来アルケン類を原料としてきた多くの誘導体を、より安価なアルカン類を原料とする方法の開発に注力されている。例えば、プロパン又はイソブタンを出発原料としてアンモ酸化によりアクリロニトリルやメタクリロニトリルを製造するために用いられる触媒系のうち、ハロゲン化物等のプロモーターを用いているものとして、Mo−Ce系酸化物触媒(米国特許第3,746,737明細書)、Mo−Ce−Te系酸化物触媒(米国特許第3,833,638明細書)、Mo−Ce−Bi系、Mo−Ce−Te系酸化物触媒(特開昭47−13313号公報)、Sb−U系酸化物触媒(特公昭50−17046号公報)等が提案されている。
【0003】
プロパン等の分圧を高めているものとして、Sb−Sn系、As−Sn系、Mo−Sn系、V−Cr系酸化物触媒(以上特公昭50−28940号公報)、V−Sb系酸化物触媒(特開昭47−33783号公報、特公昭50−23016号公報)、V−Sb−W系酸化物触媒(特開平2−261544号公報)、V−Sn−Sb−Cu−Bi系、V−Sn−Sb−Cu−Te系酸化物触媒(以上特開平4−275266号公報)、Mo−Bi−Fe−Al系酸化物触媒(特開平3−157356号公報)、Mo−Cr−Te系酸化物触媒(米国特許第5,171,876明細書)、Mo−V−Te−Nb系酸化物触媒(特開平4−235153号公報)等が提案されている。
【0004】
その他のものとして、Mo−Bi−Cr系酸化物触媒(特開平7−215925号公報)、Cr−Sb−W系酸化物触媒(特開平7−157461号公報)、Mo−Sb−W系酸化物触媒(平7−157462号公報)、Mo−Bi−Cr−Nb系酸化物触媒(特開平6−116225号公報)等が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの触媒系のうち、反応系にプロモーターとして少量のハロゲン化物等を添加する系では、反応装置の腐食等の問題があり好ましくない。又、プロパンの分圧を高めている系では、未反応プロパンのリサイクルが必要となり、そのためエネルギー消費型のプロセスとなり好ましい方法とはいえない。又、Teの様な非常に揮発逃散しやすく毒性も強い元素を主成分とする系では、プロセスの運転性や点検修理時の安全性に問題があり好ましいとはいえない。
【0006】
本発明はこのような欠点を解決するために行われたものであり、アルカン類をアンモ酸化してニトリル類を製造するための触媒としてモリブデン、アンチモン、クロムを必須成分とした触媒を提供するものである。又、この触媒を用いて高い収率でアクリロニトリル、メタクリロニトリル、青酸、アセトニトリル等のニトリル化合物を製造する方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者はアルカン類を原料とするニトリル類の製造方法について種々の検討を行った結果、ハロゲン化物等のプロモーターを使用する事なしに、又アルカンの分圧を高める事なしに、これまで見いだされなかった新しい組成でニトリル類及び他の有効ニトリル成分を製造し得る方法を見い出し本発明を達成したものである。
【0008】
すなわち、本発明の要旨はアルカン類を触媒の存在下アンモ酸化しニトリル類を製造する方法において、触媒としてモリブデン、アンチモン、及びクロムの三元素を必須成分とする複合酸化物を用いる事を特徴とするニトリル化合物の製造方法である。
以下に本発明を詳細に説明する。
本発明の骨子はモリブデン、アンチモン、及びクロムを必須成分とする複合酸化物固体触媒を使用する事にある。この触媒系は下記の式(1)により表される。
【0009】
Mo1 Sba Crb c n (1)
(式中、Xはアルカリ金属から選ばれる1種以上の元素を表し、a、b、cは各々Sb、Cr、Xの原子数を表し、Moの原子数を1とした時、
0.01≦a≦50
0.67≦b≦50
0≦c≦50
であり、又、nは存在元素の原子価により決定される値である。)
【0010】
上記式(1)の係数について、好ましくはa=0.01〜25、b=0.67〜25である。
又、本発明に用いる触媒として前記式(1)で表される複合酸化物を更にシリカ、アルミナ、シリカアルミナ、マグネシア、酸化チタン、酸化ニオブ、又はこれらの混合物に担持させる事によって、触媒の比表面積を高めたり、物理強度を高めたりする事も可能である。
複合酸化物触媒の調製方法は例えば次のようである。
【0011】
有効成分がMo1 Sba Crb c n の場合、所定量のヘプタモリブデン酸アンモニウム水溶液に硝酸クロム水溶液を加え、更に三酸化アンチモンを懸濁させたスラリーを加える。十分に加熱攪拌混合した後、噴霧乾燥法、蒸発乾固法、真空乾燥法等の方法で乾燥させ、固体物を得る。これを400〜1000℃で焼成して目的物を得る。
焼成は一般に大気中で行われるが、高酸素濃度下、低酸素濃度下でも行う事ができるし、窒素やヘリウム等の不活性ガス中や真空中でも行うことができる。焼成方法についても固定焼成炉、流動焼成炉、回転焼成炉、バンド焼成炉等で実施することができる。
【0012】
本発明で使用する触媒原料には特に制限はない。モリブデンはヘプタモリブデン酸アンモニウムの他、三酸化モリブデン、三塩化モリブデン、リンモリブデン酸等を用いる事ができる。アンチモンは三酸化アンチモンの他、四酸化アンチモン、五酸化アンチモン、アンチモン酸、三塩化アンチモン、五塩化アンチモン等を用いることができる。クロムは硝酸塩の他、塩化第二クロム、酢酸クロム等を用いる事ができる。その他のものについても硝酸塩、酸化物、塩化物、有機酸塩等を使用する事ができる。又、シリカ、アルミナ、シリカアルミナ、マグネシア、酸化チタン、酸化ニオブなどを使用する場合の原料にも制約はなく、成形体、酸化物、水酸化物の粉末やゾル、ゲル等を使い分けることができる。
【0013】
これらの触媒の形状については特に限定されない。乾燥後又は焼成後に打錠機、押し出し成型機、造粒機等で成形し使用することができる。噴霧乾燥法で調製した場合は特に成形せずにそのまま使用することができる。
本発明におけるアンモ酸化の原料ガスとしては、通常アルカン、アンモニア、酸素及び不活性ガスを用いる。使用するアルカンについては特に限定されないが、得られるニトリルの有用性を考えるとプロパン、n−ブタン、イソブタンを用いるのが好ましい。アルカン中に少量のアルケンが含有されていても何ら問題はない。酸素は特に高い純度が要求されているものではなく、空気中の酸素を用いる事ができ、その方が経済的でもある。使用するアルカンはアンモニア及び酸素含有ガスと混合して供給しても良いし、又それぞれ別に供給しても良い。
【0014】
反応に供給される分子状酸素のモル比はアルカンに対して0.2〜5倍量程度が好ましく、アンモニアモル比は0.2〜3倍量程度が好ましい。又、不活性ガスとしてはヘリウム、窒素等の不活性ガスや水蒸気を用いる事ができる。
本発明におけるアンモ酸化反応は前記の触媒存在下、反応温度は300〜600℃、原料ガスと触媒との接触時間は0.1〜30秒が好ましい。反応圧力は常圧はもちろん減圧下、加圧下でも行う事ができる。反応方式についても固定床式、流動床式、移動床式等が可能である。
【0015】
【実施例】
以下にアルカンとしてプロパンを用いた場合の実施例を用いて本発明を更に詳細に説明するが、本発明はその要旨を越えない限りこれら実施例により何等限定されるものではない。
なお、以下の実施例におけるアルカンの転化率(%)、生成化合物の選択率(%)、単流収率(%)は各々次式で計算される。
アルカンの転化率(%)=〔(反応したアルカンのモル数)/(供給したアルカンのモル数)〕×100
生成化合物の選択率(%)=〔(生成化合物のモル数)/(反応したアルカンのモル数)〕×〔(生成化合物の炭素数)/(原料アルカンの炭素数)〕×100
単流収率(%)=〔(生成化合物のモル数)/(供給したアルカンのモル数)〕×〔(生成化合物の炭素数)/(原料アルカンの炭素数)〕×100
【0016】
(実施例1)
温水150mlにヘプタモリブデン酸アンモニウム73.1gを溶解させる。これに温水120mlに溶解させた硝酸クロム115.4gを添加した。続けて温水200mlに分散させた三酸化アンチモンを20.2g加え、液温約80℃とし液量を一定に保ったまま4時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを150℃で15時間乾燥後、10〜24メッシュに造粒した。その後300℃で2時間、更に600℃で2時間焼成を行った。得られた触媒の組成はMo1 Sb0.33Cr0.67n であった。
この触媒の1mlをSUS(ステンレス鋼)製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/3/2/8/1(モル比)、触媒との接触時間5秒、反応温度520℃であった。結果を表1に示す。
【0017】
(実施例2)
温水150mlにヘプタモリブデン酸アンモニウム72.2gを溶解させる。これに温水120mlに溶解させた硝酸クロム114.0g及び硝酸カリウム2.75gを添加した。続けて温水200mlに分散させた三酸化アンチモンを19.9g加え、液温約80℃とし液量を一定に保ったまま4時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを150℃で15時間乾燥後、10〜24メッシュに造粒した。その後300℃で2時間、更に600℃で2時間焼成を行った。得られた触媒の組成はMo1 Sb0.33Cr0.670.067 n であった。
この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/3/2/8/1(モル比)、触媒との接触時間5秒、反応温度520℃であった。結果を表1に示す。
【0018】
(実施例3)
シリカ含量が30重量%のシリカゾル16.4gに、ヘプタモリブデン酸アンモニウム2.42gを温水5mlに溶解させて添加した。次いで温水23mlに溶解させた硝酸クロム10.93g、温水45mlに分散させた三酸化アンチモンを5.97gを加え、最後にアルミナ含量10重量%のアルミナゾルを48.5g添加した。液温約80℃とし液量を一定に保ったまま5時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを120℃で15時間乾燥後、10〜24メッシュに造粒した。その後大気中450℃で3時間、酸素濃度10%雰囲気下600℃で3時間焼成を行った。得られた触媒の組成はMo1 Sb3.0 Cr2.0 n /(25重量%SiO2 +25重量%Al2 3 )であった。この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/2/4/7.5/1(モル比)、触媒との接触時間0.7秒、反応温度540℃であった。結果を表1に示す。
【0019】
(実施例4)
シリカ含量が30重量%のシリカゾル16.7gに、ヘプタモリブデン酸アンモニウム2.33gを温水5mlに溶解させて添加した。次いで温水30mlに溶解させた硝酸クロム12.59g、温水45mlに分散させた三酸化アンチモンを5.73gを加え、最後にアルミナ含量10重量%のアルミナゾルを48.5g添加した。液温約80℃とし液量を一定に保ったまま5時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを120℃で15時間乾燥後、10〜24メッシュに造粒した。その後大気中450℃で3時間、酸素濃度10%雰囲気下600℃で3時間焼成を行った。得られた触媒の組成はMo1 Sb3.0 Cr2.4 n /(25重量%SiO2 +25重量%Al2 3 )であった。この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/2/4/7.5/1(モル比)、触媒との接触時間0.8秒、反応温度520℃であった。結果を表1に示す。
【0020】
(実施例5)
シリカ含量が30重量%のシリカゾル16.7gに、ヘプタモリブデン酸アンモニウム2.53gを温水5mlに溶解させて添加した。次いで温水20mlに溶解させた硝酸クロム9.12g、温水50mlに分散させた三酸化アンチモンを6.23gを加え、最後にアルミナ含量10重量%のアルミナゾルを48.5g添加した。液温約80℃とし液量を一定に保ったまま5時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを120℃で15時間乾燥後、10〜24メッシュに造粒した。その後大気中450℃で3時間、酸素濃度10%雰囲気下600℃で3時間焼成を行った。得られた触媒の組成はMo1 Sb3.0 Cr1.6 n /(25重量%SiO2 +25重量%Al2 3 )であった。この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/2/4/7.5/1(モル比)、触媒との接触時間0.8秒、反応温度540℃であった。結果を表1に示す。
【0021】
(実施例6)
シリカ含量が30重量%のシリカゾル16.7gに、ヘプタモリブデン酸アンモニウム2.69gを温水6mlに溶解させて添加した。次いで温水25mlに溶解させた硝酸クロム12.14g、温水45mlに分散させた三酸化アンチモンを5.52gを加え、最後にアルミナ含量10重量%のアルミナゾルを48.5g添加した。液温約80℃とし液量を一定に保ったまま5時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを120℃で15時間乾燥後、10〜24メッシュに造粒した。その後大気中450℃で3時間、酸素濃度10%雰囲気下600℃で3時間焼成を行った。得られた触媒の組成はMo1 Sb2.5 Cr2.0 n /(25重量%SiO2 +25重量%Al2 3 )であった。この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/2/4/7.5/1(モル比)、触媒との接触時間0.7秒、反応温度540℃であった。結果を表1に示す。
【0022】
(実施例7)
シリカ含量が30重量%のシリカゾル16.7gに、ヘプタモリブデン酸アンモニウム1.35gを温水3mlに溶解させて添加した。次いで温水25mlに溶解させた硝酸クロム12.12g、温水50mlに分散させた三酸化アンチモンを6.62gを加え、最後にアルミナ含量10重量%のアルミナゾルを48.5g添加した。液温約80℃とし液量を一定に保ったまま5時間攪拌を行った。更に液温を上げ水分の蒸発を行いつつ攪拌を継続した。得られたペーストを120℃で15時間乾燥後、10〜24メッシュに造粒した。その後大気中450℃で3時間、酸素濃度10%雰囲気下600℃で3時間焼成を行った。得られた触媒の組成はMo1 Sb6.0 Cr4.0 n /(25重量%SiO2 +25重量%Al2 3 )であった。この触媒の1mlをSUS製で内径10mmの流通式反応装置に充填し、反応を行った。原料ガス組成はプロパン/アンモニア/酸素/ヘリウム/水=1/2/4/7.5/1(モル比)、触媒との接触時間0.8秒、反応温度540℃であった。結果を表1に示す。
【0023】
【表1】

Figure 0003966573
【0024】
【発明の効果】
本発明によればモリブデン、アンチモン、クロムを必須とした触媒を用いる事により、反応系にハロゲン化物等のプロモーターを必要とする事なしに、又アルカン分圧を高める事なしに高い収率でニトリル類を製造する事ができるアンモ酸化用触媒を提供することができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for ammoxidation used for producing nitriles using alkanes such as propane and isobutane as raw materials, and a method for producing nitriles using the same. Nitriles such as acrylonitrile and methacrylonitrile are industrially produced as important intermediates such as fibers, synthetic resins, and synthetic rubbers. In addition, nitrile components such as by-product cyanic acid and acetonitrile are also used as industrial raw materials and solvents.
[0002]
[Prior art]
Unsaturated nitriles such as acrylonitrile and methacrylonitrile are produced in large quantities as important intermediates for various industrial products. Conventionally, the production method is generally a method in which molecular oxygen and ammonia are subjected to gas phase catalytic ammoxidation using alkenes, that is, propylene, isobutene and the like as raw materials in the presence of a catalyst. On the other hand, in recent years, due to the price difference between alkenes and alkanes, efforts have been focused on the development of methods using many alkanes as raw materials from more expensive alkanes as raw materials. For example, among catalyst systems used to produce acrylonitrile and methacrylonitrile by ammoxidation using propane or isobutane as a starting material, a catalyst such as a halide is used as a Mo-Ce oxide catalyst (US Patent No. 3,746,737), Mo—Ce—Te-based oxide catalyst (US Pat. No. 3,833,638), Mo—Ce—Bi based, Mo—Ce—Te based oxide catalyst ( Japanese Laid-Open Patent Publication No. 47-13313), Sb-U oxide catalysts (Japanese Patent Publication No. 50-17046), and the like have been proposed.
[0003]
Sb-Sn-based, As-Sn-based, Mo-Sn-based, V-Cr-based oxide catalysts (above Japanese Patent Publication No. 50-28940), V-Sb-based oxidation are those in which the partial pressure of propane or the like is increased. Product catalyst (Japanese Patent Laid-Open No. 47-33783, Japanese Patent Publication No. 50-23016), V-Sb-W-based oxide catalyst (Japanese Patent Laid-Open No. 2-261544), V-Sn-Sb-Cu-Bi-based V-Sn-Sb-Cu-Te-based oxide catalyst (JP-A-4-275266), Mo-Bi-Fe-Al-based oxide catalyst (JP-A-3-157356), Mo-Cr- Te-based oxide catalysts (US Pat. No. 5,171,876), Mo—V—Te—Nb-based oxide catalysts (Japanese Patent Laid-Open No. 4-235153), and the like have been proposed.
[0004]
Others include a Mo—Bi—Cr-based oxide catalyst (JP-A-7-215925), a Cr—Sb—W-based oxide catalyst (JP-A-7-157461), and a Mo—Sb—W-based oxidation. A product catalyst (Japanese Patent Laid-Open No. 7-157462), a Mo—Bi—Cr—Nb-based oxide catalyst (Japanese Patent Laid-Open No. 6-116225), and the like have been proposed.
[0005]
[Problems to be solved by the invention]
However, among these catalyst systems, a system in which a small amount of halide or the like is added as a promoter to the reaction system is not preferable because of problems such as corrosion of the reactor. Further, in a system in which the partial pressure of propane is increased, it is necessary to recycle unreacted propane, which makes it an energy consuming process and is not a preferable method. Further, a system mainly composed of an element that is highly volatile and toxic and has high toxicity such as Te is not preferable because of problems in process operability and safety during inspection and repair.
[0006]
The present invention has been made to solve such drawbacks, and provides a catalyst having molybdenum, antimony and chromium as essential components as a catalyst for ammoxidation of alkanes to produce nitriles. It is. Further, the present invention provides a method for producing a nitrile compound such as acrylonitrile, methacrylonitrile, hydrocyanic acid, acetonitrile, etc. at a high yield using this catalyst.
[0007]
[Means for Solving the Problems]
As a result of various investigations on the production method of nitriles using alkanes as a raw material, the present inventor has found so far without using a promoter such as a halide or without increasing the partial pressure of alkane. The present invention has been accomplished by finding a method capable of producing nitriles and other effective nitrile components with a new composition that has not been obtained.
[0008]
That is, the gist of the present invention is characterized in that, in the method for producing nitriles by ammoxidation of alkanes in the presence of a catalyst, a composite oxide containing three elements of molybdenum, antimony and chromium as essential components is used as the catalyst. This is a method for producing a nitrile compound.
The present invention is described in detail below.
The gist of the present invention is to use a composite oxide solid catalyst containing molybdenum, antimony and chromium as essential components. This catalyst system is represented by the following formula (1).
[0009]
Mo 1 Sb a Cr b X c O n (1)
(Time wherein, X represents at least one element selected from the group consisting of alkali metals or al, a, b, c are each represents Sb, Cr, the number of atoms of X, was 1 the number of atoms of Mo,
0.01 ≦ a ≦ 50
0.67 ≦ b ≦ 50
0 ≦ c ≦ 50
And n is a value determined by the valence of the existing element. )
[0010]
About the coefficient of the said Formula (1), Preferably they are a = 0.01-25 and b = 0.67-7 .
Further, the catalyst used in the present invention is further supported on the composite oxide represented by the above formula (1) on silica, alumina, silica alumina, magnesia, titanium oxide, niobium oxide, or a mixture thereof, thereby reducing the ratio of the catalyst. It is also possible to increase the surface area and physical strength.
The method for preparing the composite oxide catalyst is, for example, as follows.
[0011]
If the active ingredient is Mo 1 Sb a Cr b X c O n, a chromium nitrate aqueous solution was added to a predetermined amount of ammonium heptamolybdate solution, further adding a slurry suspension of antimony trioxide. After sufficiently stirring and mixing, the mixture is dried by a method such as spray drying, evaporation to dryness, or vacuum drying to obtain a solid product. This is fired at 400 to 1000 ° C. to obtain the target product.
Firing is generally performed in the air, but can be performed under high oxygen concentration or low oxygen concentration, or in an inert gas such as nitrogen or helium or in vacuum. The firing method can also be carried out in a fixed firing furnace, a fluid firing furnace, a rotary firing furnace, a band firing furnace or the like.
[0012]
There is no particular limitation on the catalyst raw material used in the present invention. In addition to ammonium heptamolybdate, molybdenum trioxide, molybdenum trichloride, phosphomolybdic acid, or the like can be used as molybdenum. As antimony, antimony trioxide, antimony tetraoxide, antimony pentoxide, antimonic acid, antimony trichloride, antimony pentachloride, and the like can be used. As chromium, nitrate, chromic chloride, chromium acetate and the like can be used. For other substances, nitrates, oxides, chlorides, organic acid salts and the like can be used. In addition, there are no restrictions on the raw materials when silica, alumina, silica alumina, magnesia, titanium oxide, niobium oxide, etc. are used, and it is possible to selectively use compacts, oxides, hydroxide powders, sols, gels, etc. .
[0013]
The shape of these catalysts is not particularly limited. It can be molded and used with a tableting machine, an extrusion molding machine, a granulating machine or the like after drying or baking. When prepared by the spray drying method, it can be used as it is without being molded.
As the source gas for ammoxidation in the present invention, alkane, ammonia, oxygen and inert gas are usually used. The alkane used is not particularly limited, but propane, n-butane, and isobutane are preferably used in view of the usefulness of the resulting nitrile. There is no problem even if a small amount of alkene is contained in the alkane. Oxygen is not particularly required to have high purity, and oxygen in the air can be used, which is more economical. The alkane used may be supplied in a mixture with ammonia and an oxygen-containing gas, or may be supplied separately.
[0014]
The molar ratio of molecular oxygen supplied to the reaction is preferably about 0.2 to 5 times the amount of alkane, and the ammonia molar ratio is preferably about 0.2 to 3 times. As the inert gas, an inert gas such as helium or nitrogen or water vapor can be used.
In the present invention, the ammoxidation reaction is preferably performed in the presence of the above catalyst, the reaction temperature is 300 to 600 ° C., and the contact time between the raw material gas and the catalyst is 0.1 to 30 seconds. The reaction pressure can be carried out under normal pressure as well as under reduced pressure. As the reaction method, a fixed bed type, a fluidized bed type, a moving bed type, and the like are possible.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail using examples in which propane is used as the alkane, but the present invention is not limited to these examples as long as it does not exceed the gist thereof.
In the following examples, alkane conversion (%), product compound selectivity (%), and single stream yield (%) are calculated by the following equations.
Alkane conversion rate (%) = [(number of moles of reacted alkane) / (number of moles of supplied alkane)] × 100
Selectivity of product compound (%) = [(mole number of product compound) / (mole number of reacted alkane)] × [(carbon number of product compound) / (carbon number of raw material alkane)] × 100
Single stream yield (%) = [(moles of product compound) / (moles of supplied alkane)] × [(carbon number of product compound) / (carbon number of raw material alkane)] × 100
[0016]
Example 1
Dissolve 73.1 g of ammonium heptamolybdate in 150 ml of warm water. To this was added 115.4 g of chromium nitrate dissolved in 120 ml of warm water. Subsequently, 20.2 g of antimony trioxide dispersed in 200 ml of warm water was added, the liquid temperature was set to about 80 ° C., and the liquid volume was kept constant and stirred for 4 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 150 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, baking was performed at 300 ° C. for 2 hours and further at 600 ° C. for 2 hours. The composition of the resulting catalyst was Mo 1 Sb 0.33 Cr 0.67 O n .
1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS (stainless steel) and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/3/2/8/1 (molar ratio), the contact time with the catalyst was 5 seconds, and the reaction temperature was 520 ° C. The results are shown in Table 1.
[0017]
(Example 2)
Dissolve 72.2 g of ammonium heptamolybdate in 150 ml of warm water. To this was added 114.0 g of chromium nitrate and 2.75 g of potassium nitrate dissolved in 120 ml of warm water. Subsequently, 19.9 g of antimony trioxide dispersed in 200 ml of warm water was added, the liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 4 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 150 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, baking was performed at 300 ° C. for 2 hours and further at 600 ° C. for 2 hours. The composition of the resulting catalyst was Mo 1 Sb 0.33 Cr 0.67 K 0.067 O n.
1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/3/2/8/1 (molar ratio), the contact time with the catalyst was 5 seconds, and the reaction temperature was 520 ° C. The results are shown in Table 1.
[0018]
(Example 3)
To 16.4 g of silica sol having a silica content of 30% by weight, 2.42 g of ammonium heptamolybdate was dissolved in 5 ml of warm water and added. Next, 10.93 g of chromium nitrate dissolved in 23 ml of warm water and 5.97 g of antimony trioxide dispersed in 45 ml of warm water were added, and finally 48.5 g of alumina sol having an alumina content of 10% by weight was added. The liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 5 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 120 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, firing was performed in air at 450 ° C. for 3 hours and in an atmosphere of 10% oxygen concentration at 600 ° C. for 3 hours. The composition of the resulting catalyst was Mo 1 Sb 3.0 Cr 2.0 O n / (25 wt% SiO 2 +25 wt% Al 2 O 3). 1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/2/4 / 7.5 / 1 (molar ratio), the contact time with the catalyst was 0.7 seconds, and the reaction temperature was 540 ° C. The results are shown in Table 1.
[0019]
Example 4
To 16.7 g of silica sol having a silica content of 30% by weight, 2.33 g of ammonium heptamolybdate was dissolved in 5 ml of warm water and added. Next, 12.59 g of chromium nitrate dissolved in 30 ml of warm water and 5.73 g of antimony trioxide dispersed in 45 ml of warm water were added, and finally 48.5 g of alumina sol having an alumina content of 10% by weight was added. The liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 5 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 120 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, firing was performed in air at 450 ° C. for 3 hours and in an atmosphere of 10% oxygen concentration at 600 ° C. for 3 hours. The composition of the resulting catalyst was Mo 1 Sb 3.0 Cr 2.4 O n / (25 wt% SiO 2 +25 wt% Al 2 O 3). 1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/2/4 / 7.5 / 1 (molar ratio), the contact time with the catalyst was 0.8 seconds, and the reaction temperature was 520 ° C. The results are shown in Table 1.
[0020]
(Example 5)
To 16.7 g of silica sol having a silica content of 30% by weight, 2.53 g of ammonium heptamolybdate was dissolved in 5 ml of hot water and added. Next, 9.12 g of chromium nitrate dissolved in 20 ml of warm water, 6.23 g of antimony trioxide dispersed in 50 ml of warm water were added, and finally 48.5 g of alumina sol having an alumina content of 10% by weight was added. The liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 5 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 120 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, firing was performed in air at 450 ° C. for 3 hours and in an atmosphere of 10% oxygen concentration at 600 ° C. for 3 hours. The composition of the resulting catalyst was Mo 1 Sb 3.0 Cr 1.6 O n / (25 wt% SiO 2 +25 wt% Al 2 O 3). 1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/2/4 / 7.5 / 1 (molar ratio), the contact time with the catalyst was 0.8 seconds, and the reaction temperature was 540 ° C. The results are shown in Table 1.
[0021]
(Example 6)
To 16.7 g of silica sol having a silica content of 30% by weight, 2.69 g of ammonium heptamolybdate was dissolved in 6 ml of warm water and added. Next, 12.14 g of chromium nitrate dissolved in 25 ml of warm water and 5.52 g of antimony trioxide dispersed in 45 ml of warm water were added, and finally 48.5 g of alumina sol having an alumina content of 10% by weight was added. The liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 5 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 120 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, firing was performed in air at 450 ° C. for 3 hours and in an atmosphere of 10% oxygen concentration at 600 ° C. for 3 hours. The composition of the resulting catalyst was Mo 1 Sb 2.5 Cr 2.0 O n / (25 wt% SiO 2 +25 wt% Al 2 O 3). 1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/2/4 / 7.5 / 1 (molar ratio), the contact time with the catalyst was 0.7 seconds, and the reaction temperature was 540 ° C. The results are shown in Table 1.
[0022]
(Example 7)
To 16.7 g of silica sol having a silica content of 30% by weight, 1.35 g of ammonium heptamolybdate was dissolved in 3 ml of warm water and added. Next, 12.12 g of chromium nitrate dissolved in 25 ml of warm water and 6.62 g of antimony trioxide dispersed in 50 ml of warm water were added, and finally 48.5 g of alumina sol having an alumina content of 10% by weight was added. The liquid temperature was about 80 ° C., and the liquid volume was kept constant and stirred for 5 hours. Further, the liquid temperature was raised and stirring was continued while evaporating water. The obtained paste was dried at 120 ° C. for 15 hours and then granulated to 10 to 24 mesh. Thereafter, firing was performed in air at 450 ° C. for 3 hours and in an atmosphere of 10% oxygen concentration at 600 ° C. for 3 hours. The composition of the resulting catalyst was Mo 1 Sb 6.0 Cr 4.0 O n / (25 wt% SiO 2 +25 wt% Al 2 O 3). 1 ml of this catalyst was filled in a flow reactor with an inner diameter of 10 mm made of SUS and reacted. The raw material gas composition was propane / ammonia / oxygen / helium / water = 1/2/4 / 7.5 / 1 (molar ratio), the contact time with the catalyst was 0.8 seconds, and the reaction temperature was 540 ° C. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0003966573
[0024]
【The invention's effect】
According to the present invention, by using a catalyst essentially composed of molybdenum, antimony and chromium, a nitrile can be obtained in a high yield without requiring a promoter such as a halide in the reaction system and without increasing the alkane partial pressure. It was possible to provide an ammoxidation catalyst capable of producing a catalyst.

Claims (3)

下記式(1)により表される複合酸化物からなる、アルカン類と分子状酸素及びアンモニアとを反応させてニトリル類を製造するアンモ酸化用触媒。
Mo1 Sba Crb c n (1)
(式中、Xはアルカリ金属から選ばれる少なくとも1種以上の元素を表し、a、b、cは各々Sb、Cr、Xの原子数を表し、Moの原子数を1とした時、
0.01≦a≦50
0.67≦b≦50
0≦c≦50
であり、又、nは存在元素の原子価により決定される値である。)
A catalyst for ammoxidation comprising a complex oxide represented by the following formula (1) and producing nitriles by reacting alkanes with molecular oxygen and ammonia.
Mo 1 Sb a Cr b X c O n (1)
(Time wherein, X represents at least one element selected from the group consisting of alkali metals or al, a, b, c are each represents Sb, Cr, the number of atoms of X, was 1 the number of atoms of Mo,
0.01 ≦ a ≦ 50
0.67 ≦ b ≦ 50
0 ≦ c ≦ 50
And n is a value determined by the valence of the existing element. )
請求項1に記載の複合酸化物を、更にシリカ、アルミナ、シリカアルミナ、マグネシア、酸化チタン、酸化ニオブ、又はこれらの混合物からなる酸化物に担持したアンモ酸化用触媒。  A catalyst for ammoxidation in which the composite oxide according to claim 1 is further supported on an oxide comprising silica, alumina, silica alumina, magnesia, titanium oxide, niobium oxide, or a mixture thereof. アルカン類と分子状酸素及びアンモニアからニトリル類を製造するに当たり、請求項1又は2に記載のアンモ酸化用触媒を用いる事を特徴とするニトリル類の製造方法。  A method for producing a nitrile characterized by using the catalyst for ammoxidation according to claim 1 or 2 when producing a nitrile from an alkane, molecular oxygen and ammonia.
JP10405297A 1996-04-17 1997-04-08 Catalyst for nitrile compound production Expired - Lifetime JP3966573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10405297A JP3966573B2 (en) 1996-04-17 1997-04-08 Catalyst for nitrile compound production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11818096 1996-04-17
JP8-118180 1996-04-17
JP10405297A JP3966573B2 (en) 1996-04-17 1997-04-08 Catalyst for nitrile compound production

Publications (2)

Publication Number Publication Date
JPH1043586A JPH1043586A (en) 1998-02-17
JP3966573B2 true JP3966573B2 (en) 2007-08-29

Family

ID=26444604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10405297A Expired - Lifetime JP3966573B2 (en) 1996-04-17 1997-04-08 Catalyst for nitrile compound production

Country Status (1)

Country Link
JP (1) JP3966573B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535611B2 (en) * 2000-12-27 2010-09-01 旭化成ケミカルズ株式会社 Catalyst and method for producing unsaturated nitrile using the same

Also Published As

Publication number Publication date
JPH1043586A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
US5231214A (en) Process for producing nitriles
US5750760A (en) Method for producing a nitrile
US4066704A (en) Catalytic oxidation
JP2608768B2 (en) Nitrile manufacturing method
JP3669077B2 (en) Nitrile production method
JP4081824B2 (en) Acrylic acid production method
US4552978A (en) Oxidation of unsaturated aldehydes
US4113768A (en) Preparation of acrylic or methacrylic acid from acrolein or methacrolein
JP3982869B2 (en) Catalyst for nitrile compound production
JP3966573B2 (en) Catalyst for nitrile compound production
JP2798879B2 (en) Method for producing (meth) acrylonitrile
JPS6231609B2 (en)
JPH1135519A (en) Production of acrylic acid
JP3818697B2 (en) Ammoxidation catalyst and method for producing nitrile using the same
JP3966588B2 (en) Ammoxidation catalyst composition and method for producing nitrile compound using the same
JP3789164B2 (en) Catalyst for nitrile compound production
JP3209960B2 (en) Production method of unsaturated nitrile
JP3117265B2 (en) Method for producing α, β-unsaturated nitrile
JP3789165B2 (en) Catalyst for nitrile compound production
JP3768289B2 (en) Ammoxidation catalyst and method for producing nitrile using the same
US4560673A (en) Catalyst for the oxidation of unsaturated aldehydes
JP3505547B2 (en) Method for producing acrylonitrile
US4065487A (en) Process for producing benzonitrile
JPH0924277A (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3894986B2 (en) Ammoxidation catalyst and method for producing nitrile using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term